ECE 206 Fall 2019 Practice Problems Week 3

- 1. Evaluate the following integrals.
 - (a) $\iint_D y \, dA$, where D is the region bounded by the lines defined by the equations y = 0, y = 1, y = x 1 and y = -x 1.
 - (b) $\iint_D (x^2 + y) \, dA$, where D is the triangle with vertices (0, 0), (2, 0), and (2, 1). (c) $\int_0^1 \int_{y^{1/3}}^1 \sqrt{1 + x^4} \, dx \, dy$ (d) $\int_{-2}^0 \int_{-2}^x \frac{x}{\sqrt{x^2 + y^2}} \, dy \, dx$
- 2. Use Green's Theorem to compute the line integrals $\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$ by converting them into two-dimensional integrals for each of the following curves and fields.
 - (a) $F(x,y) = (\sqrt{1+x^3}, 2xy)$ where Γ is the triangle with vertices (0,0), (1,0), and (1,3), oriented counter clockwise.
 - (b) $F(x,y) = (y^4 2y, 6x + 4xy^3)$ where Γ is the curve indicated below.

- 3. Consider the region D that is bounded inside the curve Γ parameterized by $\gamma(t) = \sin 2t \,\hat{\imath} + \sin t \,\hat{\jmath}$ for $0 \le t \le \pi$.
 - (a) Sketch the curve and the region in the plane.
 - (b) Use Green's Theorem to compute the area of D.

4. Green's Theorem isn't always satisfied.

Consider the vector field $F(x,y) = \frac{1}{x^2 + y^2}(-y,x)$ and let D be the region inside the unit circle.

- (a) Show that $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$, and thus that $\iint_D \left(\frac{\partial F_2}{\partial x} \frac{\partial F_1}{\partial y}\right) dA = 0.$
- (b) Find the circulation of ${\pmb F}$ around the unit circle ∂D using the definition.
- (c) What happened? Which is the true value of the circulation? (consider the assumptions of Green's theorem)