ECE 206 Fall 2019

Practice Problems Week 3

1. Evaluate the following integrals.
(a) $\iint_{D} y d A$, where D is the region bounded by the lines defined by the equations $y=0, y=1$,
$y=x-1$ and $y=-x-1$.
(b) $\iint_{D}\left(x^{2}+y\right) d A$, where D is the triangle with vertices $(0,0),(2,0)$, and $(2,1)$.
(c) $\int_{0}^{1} \int_{y^{1 / 3}}^{1} \sqrt{1+x^{4}} d x d y$
(d) $\int_{-2}^{0} \int_{-2}^{x} \frac{x}{\sqrt{x^{2}+y^{2}}} d y d x$
2. Use Green's Theorem to compute the line integrals $\oint_{\Gamma} \boldsymbol{F} \cdot d \boldsymbol{r}$ by converting them into two-dimensional integrals for each of the following curves and fields.
(a) $\boldsymbol{F}(x, y)=\left(\sqrt{1+x^{3}}, 2 x y\right)$ where Γ is the triangle with vertices $(0,0),(1,0)$, and $(1,3)$, oriented counter clockwise.
(b) $\boldsymbol{F}(x, y)=\left(y^{4}-2 y, 6 x+4 x y^{3}\right)$ where Γ is the curve indicated below.

3. Consider the region D that is bounded inside the curve Γ parameterized by $\gamma(t)=\sin 2 t \hat{\boldsymbol{\imath}}+\sin t \hat{\boldsymbol{\jmath}}$ for $0 \leq t \leq \pi$.
(a) Sketch the curve and the region in the plane.
(b) Use Green's Theorem to compute the area of D.
4. Green's Theorem isn't always satisfied.

Consider the vector field $\boldsymbol{F}(x, y)=\frac{1}{x^{2}+y^{2}}(-y, x)$ and let D be the region inside the unit circle.
(a) Show that $\frac{\partial F_{2}}{\partial x}=\frac{\partial F_{1}}{\partial y}$, and thus that $\iint_{D}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A=0$.
(b) Find the circulation of \boldsymbol{F} around the unit circle ∂D using the definition.
(c) What happened? Which is the true value of the circulation? (consider the assumptions of Green's theorem)

