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Problem 1 (Aluffi V.4 Problem 11). Let R be a commutative ring, and let p be a prime ideal of R. Prove
that the set S = R~ p is multiplicatively closed. Prove that there is an inclusion-preserving bijection between
the prime ideals of R, and the prime ideals of R contained in p. Deduce that R, is a local ring.

Solution. We first show that S is multiplicatively closed. Indeed, if s,s’ € S, then s,s’ & p. Since p is
prime, ss’ & p and thus ss’ € S.

For convenience, I use the notation £ to denote the elements [s,7] of S™*R. Let A : R — S™'R be the

localization homomorphism 7 N 7- To prove the existence of the necessary bijection, we make use of the
following lemmas.

Lemma 1. If I is an ideal of R such that INS = 0, then S~'I is a proper ideal of S™'R.

Lemma 2. If J is a proper ideal of ST 'R, then A\=1(J) is an ideal of R such that \='(J) NS = 0.
Lemma 3. If J is an ideal of ST'R, then S~ (A\7(J)) = J.

Lemma 4. If I is an ideal of R such that INS =0, then A\™* (S7'1) = {a € R|3s € S such that sa € I}.

First note that I NS = ( if and only if T C p.

Proof of Lemma 1: Let ¢, @ c §=17 such that a,a’ € I. Then sa’, s'a and sa’ + s'a are in I. So
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For £ € 'R, we have ra € I so
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Thus S~17 is an ideal of S™!R.

Suppose S~'I is not a proper ideal of ST'R. Then S~'I = S™'R contains %, and thus

%:%forsomeseSandaEI. Thus ts = ta for some t € S. Since a € I C p, we have

that ts = ta € p, but neither s nor ¢ are in p. This is a contradiction to the primality
of p. O
Proof of Lemma 2: Let J C ST'R be a proper ideal. Then
AM'(J)={aeR|2eJ}.

Let a,a’ € A71(J) then
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soa+a € A71(J). Let r € R, then
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so ra € A1(J). Thus A=1(J) is an ideal of R.
Finally, suppose that A=1(J) NS # 0. Then there exists an a € A~*(J) such that a € S

and thus % t=o= % € J. Since J includes the unit element, J comprises all of S~1R,
a contradiction to the properness of J. O

Proof of Lemma 3: Let J be an ideal of S™'R. Then by definition we have
ST (ATN(J)) ={%|s¢&p,a € Rsuchthat ¢ € J}.

Let ¢ € J, then ¢ = £.% € J since J is an ideal. Therefore ¢ € S~ (A7!(J)), and thus
JCSTH(ATH()).
Similarly, let ¢ ¢ J. Then ¢ = 1.9 ¢ J and thus ¢ ¢ J. Hence ¢ ¢ S~ (A71(J)).
Thus J = S~ (A71(J])). O
Proof of Lemma 4: Let I C p be an ideal of R. We first claim that ¢ € S~1I if and only if there exists
an s € S such that sa € I. Indeed, if sa € I for some s € S, then § = ** € S—1I.
b

Conversely, if ¢ € S~'I then ¢ = 7 forsome b € I and t € S, and thus s'ta = s'b for

some s’ € S. Since b € I, we have s'ta = s’b € I, so take s = s't.
By the claim, we have
AN (STH)={aeR|t S5}
= {a € R|3s € S such that sa € I}

as desired. O
Proposition 1. If I C p is a prime ideal of R, then S™1I is a prime ideal of ST'R and \~! (S’ll) =1
Proof. From Lemma 1, S™'I is a proper ideal of S™'R, so we need to show that it is prime. Suppose
£, % € ST'Rsuch that £ - % = 25 € S7'I. Then

'
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and there exists an s’ € S such that s'srr’ = s'tt’a € I. Since I is prime and s,s" € S and thus s,s’ € I,

!’
either 7 or ' must be in I. Hence either £ or % is in S~'1. So S7'I is prime.

Finally, since [ is prime, if sa € I for some a € R and s & p then a € I. From Lemma 4, we have
A1 (S7') = {a € R|3s € S such that sa € I}
={ae€R|ael}
=1

Proposition 2. If J is a prime ideal of S~'R, then \=1(J) is a prime ideal of R.

Proof. From Lemma 2, A=1(.J) is an ideal of R and A~'(.J) C p, so it remains to show that A=1(J) is prime.
Let 7,7 € R such that 7’ € A=!(J). Then 1 TT/ = TTT/ € J. Since J is prime, either 7 or TT/ € J, hence
either 7 or 7/ is in A=1(J). O
Proposition 3. There is an inclusion-preserving bijection between the prime ideals of R, and the prime
ideals of R contained in p.



Proof. From Lemma 3 and Propositions 1 and 2, we clearly see that there is a bijection between the prime
ideals of R contained in p and the prime ideals of R, = S™!'R. This is induced by S7!(-) and A7*(-). It
remains to show that this bijection is inclusion preserving. Suppose I C I’ C p are prime ideals in R. Then

S I={¢]|seS acl}c{|seS acl'}=5"I
so ST ¢ S~'I'. Now suppose J C J’ are prime ideals in S~'R. Then
AM(J)={aecR|4eJ}c{acR|%ecT}=1"(])
so A7H(J) c ATH(T). O
Proposition 4. S™'R is a local ring. That is, it has a unique mazimal ideal.

Proof. For each ideal I C p in R, S~'I is proper ideal of S~'R by Lemma 1. Since I C p, note that
ST I={¢]|seS,acl}c{%|seS acp}=S""p,

so S7'I c S~'p. By Lemma 2, every proper ideal J of S™!'R is of the form J = ST for some ideal I C p
in R. So every proper ideal J of S™!R is contained in S~!p. Since S~!'p is a proper ideal, it is the unique
maximal ideal of S~!R. O



Problem 2 (Aluffi IT1.5 Problem 4). Let R be a ring. A nonzero R-module M is simple (or irreducible) if
its only submodules are {0} and M. Let M, N be simple modules, and let ¢ : M — N be a homomorphism
of R-modules. Prove that either ¢ = 0, or ¢ is an isomorphism.

Solution. Suppose that ¢ # 0. Then imy # {0} and kerp # M, otherwise ¢ is the zero map. By
the discussion in class, im ¢ is a submodule of N and ker ¢ is a submodule of M. Since N is simple and
imp # {0}, we have imp = N and thus ¢ is a surjection. Similarly, ker ¢ = {0} since M is simple and
kerp # M, so ¢ is an injection. Thus ¢ is a bijection and hence an isomorphism, since bijections and
isomorphisms are the same in R-Mod.



Problem 3 (Aluffi II1.5 Problem 16). Let R be a commutative ring, M an R-module, and let a € R be a
nilpotent element determining a submodule aM of M. Prove that M = 0 <= aM = M.

Solution. Since a is nilpotent, there exists an integer n > 1 such that o™ = 0. If M = {0} then clearly
aM = M = {0}, so suppose aM = M. Let m € M. Then there is an element m; € M such that m = am;.
Similarly, since am; € M, there is an my € M such that m; = ams, and thus m = a?m,. Continuing this
process, we eventually find m = a™m,, = 0 for some m,, € M, so m =0 for all m € M. Thus M = {0}.



Problem 4 (Aluffi ITI.6 Problem 18). Let M be an R-module, and let N be a submodule of M. Prove that
if N and M/N are both finitely generated, then M is finitely generated.

Solution. Since N and M/N are finitely generated, there exist numbers n, k > 1 and surjective R-module
homomorphisms

R L N and R® %, M/N.
Define the maps i : R®"—R®(*+1) and p : REE+") _LRO% by i 2 (r,...,r0) — (r1,...,7n,0,...,0) and
p:(riy . Tn,S1,..+,8m) — (81,...,8m). Then the sequence

4

RO >R€B(k+’ﬂ) p s ROk 0

is exact.

Define a map p : Rea (k+n) 5 M in the following manner. For each j = 1,. .., k, consider k(0,...,1,...,0)
(with a one in the j*" position and zeros elsewhere) as an element in M/N and pick a representative m; € M
such that £(0,...,1,...,0) = m; + N. Then define

W(r1y oo Ty 81y ooy Sm) = V(r1, ..y Th) —1—23,9]-771]-7
where v(ry,...,7,) € N C M. This is a homomorphism of R-modules. Indeed,

k
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:V(rh...,rn)—i—Zsjmj+V(r'1,...,r;)+289mj
j=1 j=1

=pu(r1, .oy Tny 81y 8k) F (T, ST, SY)

and fort € R

w(try, ... trp, ts1, ... tsg) = tw(ry, ..., 1) —|—tZSjmj

=tp(r1y .oy Tny S1y- vy SE)-

Consider the following diagram.

RO i, po®k+n) P pok s 0

Ne—' s M—" % M/N—>0

The rows are clearly exact. Furthermore, the diagram commutes. Indeed, poi(ry,...,rn) = v(ry,...,m)
by definition of u so the left square commutes. For the right square,

TOpU(r1y ey Ty S1ye.ey SE) =T E s;m;

k
= Z sjm(m;)
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By the surjective four lemma, p is also a surjection.

k
:Zsj/ﬁ(o,...,l,...O)

j=1
= Ii(sl, N ,Sk)

=ROoP(T1y.. yTn,y Sy, Sk)-

So M is finitely generated.



