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Problem 1 (Aluffi V.4 Problem 11). Let R be a commutative ring, and let p be a prime ideal of R. Prove
that the set S = Rrp is multiplicatively closed. Prove that there is an inclusion-preserving bijection between
the prime ideals of Rp and the prime ideals of R contained in p. Deduce that Rp is a local ring.

Solution. We first show that S is multiplicatively closed. Indeed, if s, s′ ∈ S, then s, s′ 6∈ p. Since p is
prime, ss′ 6∈ p and thus ss′ ∈ S.

For convenience, I use the notation r
s to denote the elements [s, r] of S−1R. Let λ : R −→ S−1R be the

localization homomorphism r
λ7−→ r

1 . To prove the existence of the necessary bijection, we make use of the
following lemmas.

Lemma 1. If I is an ideal of R such that I ∩ S = ∅, then S−1I is a proper ideal of S−1R.

Lemma 2. If J is a proper ideal of S−1R, then λ−1(J) is an ideal of R such that λ−1(J) ∩ S = ∅.

Lemma 3. If J is an ideal of S−1R, then S−1
(
λ−1(J)

)
= J .

Lemma 4. If I is an ideal of R such that I ∩ S = ∅, then λ−1
(
S−1I

)
= {a ∈ R | ∃s ∈ S such that sa ∈ I} .

First note that I ∩ S = ∅ if and only if I ⊂ p.

Proof of Lemma 1 : .Let a
s ,

a′

s′ ∈ S
−1I such that a, a′ ∈ I. Then sa′, s′a and sa′ + s′a are in I. So

a
s + a′

s′ = sa′+s′a
ss′ ∈ S−1I.

For r
s ∈ S

−1R, we have ra ∈ I so

r
s′ ·

a
s′ = ra

ss′ ∈ S
−1I.

Thus S−1I is an ideal of S−1R.

Suppose S−1I is not a proper ideal of S−1R. Then S−1I = S−1R contains 1
1 , and thus

1
1 = a

s for some s ∈ S and a ∈ I. Thus ts = ta for some t ∈ S. Since a ∈ I ⊂ p, we have
that ts = ta ∈ p, but neither s nor t are in p. This is a contradiction to the primality
of p.

Proof of Lemma 2 : .Let J ⊂ S−1R be a proper ideal. Then

λ−1(J) =
{
a ∈ R

∣∣ a
1 ∈ J

}
.

Let a, a′ ∈ λ−1(J) then
a
1 + a′

1 = a+a′

1 ∈ J
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so a+ a′ ∈ λ−1(J). Let r ∈ R, then

r
1 ·

a
1 = ra

1 ∈ J

so ra ∈ λ−1(J). Thus λ−1(J) is an ideal of R.

Finally, suppose that λ−1(J) ∩ S 6= 0. Then there exists an a ∈ λ−1(J) such that a ∈ S
and thus 1

a ·
a
1 = a

a = 1
1 ∈ J . Since J includes the unit element, J comprises all of S−1R,

a contradiction to the properness of J .

Proof of Lemma 3 : .Let J be an ideal of S−1R. Then by definition we have

S−1
(
λ−1(J)

)
=
{
a
s

∣∣ s 6∈ p, a ∈ R such that a
1 ∈ J

}
.

Let a
s ∈ J , then a

1 = s
1 ·

a
s ∈ J since J is an ideal. Therefore a

s ∈ S
−1 (λ−1(J)

)
, and thus

J ⊂ S−1
(
λ−1(J)

)
.

Similarly, let a
s 6∈ J . Then a

s = 1
s ·

a
1 6∈ J and thus a

1 6∈ J . Hence a
s 6∈ S

−1 (λ−1(J)
)
.

Thus J = S−1
(
λ−1(J)

)
.

Proof of Lemma 4 : .Let I ⊂ p be an ideal of R. We first claim that a
1 ∈ S−1I if and only if there exists

an s ∈ S such that sa ∈ I. Indeed, if sa ∈ I for some s ∈ S, then a
1 = sa

s ∈ S−1I.

Conversely, if a
1 ∈ S

−1I then a
1 = b

t for some b ∈ I and t ∈ S, and thus s′ta = s′b for
some s′ ∈ S. Since b ∈ I, we have s′ta = s′b ∈ I, so take s = s′t.

By the claim, we have

λ−1
(
S−1I

)
=
{
a ∈ R

∣∣ a
1 ∈ S

−1I
}

= {a ∈ R | ∃s ∈ S such that sa ∈ I}

as desired.

Proposition 1. If I ⊂ p is a prime ideal of R, then S−1I is a prime ideal of S−1R and λ−1
(
S−1I

)
= I.

Proof. From Lemma 1, S−1I is a proper ideal of S−1R, so we need to show that it is prime. Suppose
r
t ,
r′

t′ ∈ S
−1R such that r

t ·
r′

t′ = rr′

tt′ ∈ S
−1I. Then

rr′

tt′ = a
s for some s ∈ S and a ∈ I,

and there exists an s′ ∈ S such that s′srr′ = s′tt′a ∈ I. Since I is prime and s, s′ ∈ S and thus s, s′ 6∈ I,
either r or r′ must be in I. Hence either r

t or r′

t′ is in S−1I. So S−1I is prime.
Finally, since I is prime, if sa ∈ I for some a ∈ R and s 6∈ p then a ∈ I. From Lemma 4, we have

λ−1
(
S−1I

)
= {a ∈ R | ∃s ∈ S such that sa ∈ I}
= {a ∈ R | a ∈ I}
= I.

Proposition 2. If J is a prime ideal of S−1R, then λ−1(J) is a prime ideal of R.

Proof. From Lemma 2, λ−1(J) is an ideal of R and λ−1(J) ⊂ p, so it remains to show that λ−1(J) is prime.

Let r, r′ ∈ R such that rr′ ∈ λ−1(J). Then r
1 ·

r′

1 = rr′

1 ∈ J . Since J is prime, either r
1 or r′

1 ∈ J , hence
either r or r′ is in λ−1(J).

Proposition 3. There is an inclusion-preserving bijection between the prime ideals of Rp and the prime
ideals of R contained in p.
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Proof. From Lemma 3 and Propositions 1 and 2, we clearly see that there is a bijection between the prime
ideals of R contained in p and the prime ideals of Rp = S−1R. This is induced by S−1(·) and λ−1(·). It
remains to show that this bijection is inclusion preserving. Suppose I ⊂ I ′ ⊂ p are prime ideals in R. Then

S−1I =
{
a
s

∣∣ s ∈ S, a ∈ I} ⊂ {as ∣∣ s ∈ S, a ∈ I ′} = S−1I

so S−1I ⊂ S−1I ′. Now suppose J ⊂ J ′ are prime ideals in S−1R. Then

λ−1(J) =
{
a ∈ R

∣∣ a
1 ∈ J

}
⊂
{
a ∈ R

∣∣ a
1 ∈ J

′} = λ−1(J ′)

so λ−1(J) ⊂ λ−1(J ′).

Proposition 4. S−1R is a local ring. That is, it has a unique maximal ideal.

Proof. For each ideal I ⊆ p in R, S−1I is proper ideal of S−1R by Lemma 1. Since I ⊂ p, note that

S−1I =
{
a
s

∣∣ s ∈ S, a ∈ I} ⊂ {as ∣∣ s ∈ S, a ∈ p
}

= S−1p,

so S−1I ⊂ S−1p. By Lemma 2, every proper ideal J of S−1R is of the form J = S−1I for some ideal I ⊆ p
in R. So every proper ideal J of S−1R is contained in S−1p. Since S−1p is a proper ideal, it is the unique
maximal ideal of S−1R.
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Problem 2 (Aluffi III.5 Problem 4). Let R be a ring. A nonzero R-module M is simple (or irreducible) if
its only submodules are {0} and M . Let M , N be simple modules, and let ϕ : M → N be a homomorphism
of R-modules. Prove that either ϕ = 0, or ϕ is an isomorphism.

Solution. Suppose that ϕ 6= 0. Then imϕ 6= {0} and kerϕ 6= M , otherwise ϕ is the zero map. By
the discussion in class, imϕ is a submodule of N and kerϕ is a submodule of M . Since N is simple and
imϕ 6= {0}, we have imϕ = N and thus ϕ is a surjection. Similarly, kerϕ = {0} since M is simple and
kerϕ 6= M , so ϕ is an injection. Thus ϕ is a bijection and hence an isomorphism, since bijections and
isomorphisms are the same in R-Mod.
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Problem 3 (Aluffi III.5 Problem 16). Let R be a commutative ring, M an R-module, and let a ∈ R be a
nilpotent element determining a submodule aM of M . Prove that M = 0⇐⇒ aM = M .

Solution. Since a is nilpotent, there exists an integer n > 1 such that an = 0. If M = {0} then clearly
aM = M = {0}, so suppose aM = M . Let m ∈M . Then there is an element m1 ∈M such that m = am1.
Similarly, since am1 ∈ M , there is an m2 ∈ M such that m1 = am2, and thus m = a2m2. Continuing this
process, we eventually find m = anmn = 0 for some mn ∈M , so m = 0 for all m ∈M . Thus M = {0}.
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Problem 4 (Aluffi III.6 Problem 18). Let M be an R-module, and let N be a submodule of M . Prove that
if N and M/N are both finitely generated, then M is finitely generated.

Solution. Since N and M/N are finitely generated, there exist numbers n, k ≥ 1 and surjective R-module
homomorphisms

R⊕n
ν
−� N and R⊕k

κ
−�M/N.

Define the maps i : R⊕n−→R⊕(k+n) and p : R⊕(k+n)−→R⊕k by i : (r1, . . . , rn) 7→ (r1, . . . , rn, 0, . . . , 0) and
p : (r1, . . . , rn, s1, . . . , sm) 7→ (s1, . . . , sm). Then the sequence

R⊕n R⊕(k+n) R⊕k 0i p

is exact.
Define a map µ : R⊕(k+n) −→M in the following manner. For each j = 1, . . . , k, consider κ(0, . . . , 1, . . . , 0)

(with a one in the jth position and zeros elsewhere) as an element in M/N and pick a representative mj ∈M
such that κ(0, . . . , 1, . . . , 0) = mj +N . Then define

µ(r1, . . . , rn, s1, . . . , sm) = ν(r1, . . . , rn) +

k∑
j=1

sjmj ,

where ν(r1, . . . , rn) ∈ N ⊂M . This is a homomorphism of R-modules. Indeed,

µ(r1 + r′1, . . . , rn + r′n, s1 + s′1, . . . , sk + s′k) = ν(r1 + r′1, . . . , rn + r′n) +

k∑
j=1

(sj + s′j)mj

= ν(r1, . . . , rn) +

k∑
j=1

sjmj + ν(r′1, . . . , r
′
n) +

k∑
j=1

s′jmj

= µ(r1, . . . , rn, s1, . . . , sk) + µ(r′1, . . . , r
′
n, s
′
1, . . . , s

′
k)

and for t ∈ R

µ(tr1, . . . , trn, ts1, . . . , tsk) = tν(r1, . . . , rn) + t

k∑
j=1

sjmj

= tµ(r1, . . . , rn, s1, . . . , sk).

Consider the following diagram.

R⊕n R⊕(k+n) R⊕k 0

N M M/N 0

i

ν

p

µ κ

ι π

The rows are clearly exact. Furthermore, the diagram commutes. Indeed, µ ◦ i(r1, . . . , rn) = ν(r1, . . . , rn)
by definition of µ so the left square commutes. For the right square,

π ◦ µ(r1, . . . , rn, s1, . . . , sk) = π

 k∑
j=1

sjmj


=

k∑
j=1

sjπ(mj)

6



=

k∑
j=1

sjκ(0, . . . , 1, . . . 0)

= κ(s1, . . . , sk)

= κ ◦ p(r1, . . . , rn, s1, . . . , sk).

By the surjective four lemma, µ is also a surjection. So M is finitely generated.
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