Assignment 1 PMAT 611

Mark Girard

3 February 2014

Problem 1 (Aluffi V.4 Problem 11). Let R be a commutative ring, and let \mathfrak{p} be a prime ideal of R. Prove that the set $S = R \setminus \mathfrak{p}$ is multiplicatively closed. Prove that there is an inclusion-preserving bijection between the prime ideals of $R_{\mathfrak{p}}$ and the prime ideals of R contained in \mathfrak{p} . Deduce that $R_{\mathfrak{p}}$ is a local ring.

Solution. We first show that S is multiplicatively closed. Indeed, if $s, s' \in S$, then $s, s' \notin \mathfrak{p}$. Since \mathfrak{p} is prime, $ss' \notin \mathfrak{p}$ and thus $ss' \in S$.

For convenience, I use the notation $\frac{r}{s}$ to denote the elements [s, r] of $S^{-1}R$. Let $\lambda : R \longrightarrow S^{-1}R$ be the localization homomorphism $r \stackrel{\lambda}{\longmapsto} \frac{r}{1}$. To prove the existence of the necessary bijection, we make use of the following lemmas.

Lemma 1. If I is an ideal of R such that $I \cap S = \emptyset$, then $S^{-1}I$ is a proper ideal of $S^{-1}R$.

Lemma 2. If J is a proper ideal of $S^{-1}R$, then $\lambda^{-1}(J)$ is an ideal of R such that $\lambda^{-1}(J) \cap S = \emptyset$.

Lemma 3. If J is an ideal of $S^{-1}R$, then $S^{-1}(\lambda^{-1}(J)) = J$.

Lemma 4. If I is an ideal of R such that $I \cap S = \emptyset$, then $\lambda^{-1}(S^{-1}I) = \{a \in R \mid \exists s \in S \text{ such that } sa \in I\}$.

First note that $I \cap S = \emptyset$ if and only if $I \subset \mathfrak{p}$.

Proof of Lemma 1: Let $\frac{a}{s}, \frac{a'}{s'} \in S^{-1}I$ such that $a, a' \in I$. Then sa', s'a and sa' + s'a are in I. So

$$\tfrac{a}{s} + \tfrac{a'}{s'} = \tfrac{sa' + s'a}{ss'} \in S^{-1}I.$$

For $\frac{r}{s} \in S^{-1}R$, we have $ra \in I$ so

$$\frac{r}{s'} \cdot \frac{a}{s'} = \frac{ra}{ss'} \in S^{-1}I.$$

Thus $S^{-1}I$ is an ideal of $S^{-1}R$.

Suppose $S^{-1}I$ is not a proper ideal of $S^{-1}R$. Then $S^{-1}I = S^{-1}R$ contains $\frac{1}{1}$, and thus $\frac{1}{1} = \frac{a}{s}$ for some $s \in S$ and $a \in I$. Thus ts = ta for some $t \in S$. Since $a \in I \subset \mathfrak{p}$, we have that $ts = ta \in \mathfrak{p}$, but neither s nor t are in \mathfrak{p} . This is a contradiction to the primality of \mathfrak{p} .

Proof of Lemma 2: Let $J \subset S^{-1}R$ be a proper ideal. Then

$$\lambda^{-1}(J) = \left\{ a \in R \mid \frac{a}{1} \in J \right\}.$$

Let $a, a' \in \lambda^{-1}(J)$ then

$$\frac{a}{1} + \frac{a'}{1} = \frac{a+a'}{1} \in J$$

so $a + a' \in \lambda^{-1}(J)$. Let $r \in R$, then

$$\frac{r}{1} \cdot \frac{a}{1} = \frac{ra}{1} \in J$$

so $ra \in \lambda^{-1}(J)$. Thus $\lambda^{-1}(J)$ is an ideal of R.

Finally, suppose that $\lambda^{-1}(J) \cap S \neq 0$. Then there exists an $a \in \lambda^{-1}(J)$ such that $a \in S$ and thus $\frac{1}{a} \cdot \frac{a}{1} = \frac{a}{a} = \frac{1}{1} \in J$. Since J includes the unit element, J comprises all of $S^{-1}R$, a contradiction to the properness of J.

Proof of Lemma 3: Let J be an ideal of $S^{-1}R$. Then by definition we have

$$S^{-1}\left(\lambda^{-1}(J)\right) = \left\{\frac{a}{s} \mid s \notin \mathfrak{p}, a \in R \text{ such that } \frac{a}{1} \in J\right\}.$$

Let $\frac{a}{s} \in J$, then $\frac{a}{1} = \frac{s}{1} \cdot \frac{a}{s} \in J$ since J is an ideal. Therefore $\frac{a}{s} \in S^{-1}(\lambda^{-1}(J))$, and thus $J \subset S^{-1}(\lambda^{-1}(J))$.

Similarly, let $\frac{a}{s} \notin J$. Then $\frac{a}{s} = \frac{1}{s} \cdot \frac{a}{1} \notin J$ and thus $\frac{a}{1} \notin J$. Hence $\frac{a}{s} \notin S^{-1}(\lambda^{-1}(J))$. \Box

Proof of Lemma 4: Let $I \subset \mathfrak{p}$ be an ideal of R. We first claim that $\frac{a}{1} \in S^{-1}I$ if and only if there exists an $s \in S$ such that $sa \in I$. Indeed, if $sa \in I$ for some $s \in S$, then $\frac{a}{1} = \frac{sa}{s} \in S^{-1}I$. Conversely, if $\frac{a}{1} \in S^{-1}I$ then $\frac{a}{1} = \frac{b}{t}$ for some $b \in I$ and $t \in S$, and thus s'ta = s'b for some $s' \in S$. Since $b \in I$, we have $s'ta = s'b \in I$, so take s = s't.

By the claim, we have

$$\lambda^{-1} \left(S^{-1}I \right) = \left\{ a \in R \mid \frac{a}{1} \in S^{-1}I \right\}$$
$$= \left\{ a \in R \mid \exists s \in S \text{ such that } sa \in I \right\}$$

as desired.

Proposition 1. If $I \subset \mathfrak{p}$ is a prime ideal of R, then $S^{-1}I$ is a prime ideal of $S^{-1}R$ and $\lambda^{-1}(S^{-1}I) = I$.

Proof. From Lemma 1, $S^{-1}I$ is a proper ideal of $S^{-1}R$, so we need to show that it is prime. Suppose $\frac{r}{t}, \frac{r'}{t'} \in S^{-1}R$ such that $\frac{r}{t} \cdot \frac{r'}{t'} \in S^{-1}I$. Then

$$\frac{rr'}{tt'} = \frac{a}{s}$$
 for some $s \in S$ and $a \in I$,

and there exists an $s' \in S$ such that $s'srr' = s'tt'a \in I$. Since I is prime and $s, s' \in S$ and thus $s, s' \notin I$, either r or r' must be in I. Hence either $\frac{r}{t}$ or $\frac{r'}{t'}$ is in $S^{-1}I$. So $S^{-1}I$ is prime. Finally, since I is prime, if $sa \in I$ for some $a \in R$ and $s \notin \mathfrak{p}$ then $a \in I$. From Lemma 4, we have

$$\lambda^{-1} \left(S^{-1}I \right) = \{ a \in R \mid \exists s \in S \text{ such that } sa \in I \}$$
$$= \{ a \in R \mid a \in I \}$$
$$= I.$$

Proposition 2. If J is a prime ideal of $S^{-1}R$, then $\lambda^{-1}(J)$ is a prime ideal of R.

Proof. From Lemma 2, $\lambda^{-1}(J)$ is an ideal of R and $\lambda^{-1}(J) \subset \mathfrak{p}$, so it remains to show that $\lambda^{-1}(J)$ is prime. Let $r, r' \in R$ such that $rr' \in \lambda^{-1}(J)$. Then $\frac{r}{1} \cdot \frac{r'}{1} = \frac{rr'}{1} \in J$. Since J is prime, either $\frac{r}{1}$ or $\frac{r'}{1} \in J$, hence either r or r' is in $\lambda^{-1}(J)$.

Proposition 3. There is an inclusion-preserving bijection between the prime ideals of $R_{\mathfrak{p}}$ and the prime ideals of R contained in \mathfrak{p} .

Proof. From Lemma 3 and Propositions 1 and 2, we clearly see that there is a bijection between the prime ideals of $R_{\mathfrak{p}} = S^{-1}R$. This is induced by $S^{-1}(\cdot)$ and $\lambda^{-1}(\cdot)$. It remains to show that this bijection is inclusion preserving. Suppose $I \subset I' \subset \mathfrak{p}$ are prime ideals in R. Then

$$S^{-1}I = \left\{ \frac{a}{s} \mid s \in S, \, a \in I \right\} \subset \left\{ \frac{a}{s} \mid s \in S, \, a \in I' \right\} = S^{-1}I$$

so $S^{-1}I \subset S^{-1}I'$. Now suppose $J \subset J'$ are prime ideals in $S^{-1}R$. Then

$$\lambda^{-1}(J) = \left\{ a \in R \mid \frac{a}{1} \in J \right\} \subset \left\{ a \in R \mid \frac{a}{1} \in J' \right\} = \lambda^{-1}(J')$$

so $\lambda^{-1}(J) \subset \lambda^{-1}(J')$.

Proposition 4. $S^{-1}R$ is a local ring. That is, it has a unique maximal ideal.

Proof. For each ideal $I \subseteq \mathfrak{p}$ in $R, S^{-1}I$ is proper ideal of $S^{-1}R$ by Lemma 1. Since $I \subset \mathfrak{p}$, note that

$$S^{-1}I = \left\{ \frac{a}{s} \mid s \in S, \, a \in I \right\} \subset \left\{ \frac{a}{s} \mid s \in S, \, a \in \mathfrak{p} \right\} = S^{-1}\mathfrak{p},$$

so $S^{-1}I \subset S^{-1}\mathfrak{p}$. By Lemma 2, every proper ideal J of $S^{-1}R$ is of the form $J = S^{-1}I$ for some ideal $I \subseteq \mathfrak{p}$ in R. So every proper ideal J of $S^{-1}R$ is contained in $S^{-1}\mathfrak{p}$. Since $S^{-1}\mathfrak{p}$ is a proper ideal, it is the unique maximal ideal of $S^{-1}R$.

Problem 2 (Aluffi III.5 Problem 4). Let R be a ring. A nonzero R-module M is simple (or irreducible) if its only submodules are $\{0\}$ and M. Let M, N be simple modules, and let $\varphi : M \to N$ be a homomorphism of R-modules. Prove that either $\varphi = 0$, or φ is an isomorphism.

Solution. Suppose that $\varphi \neq 0$. Then $\operatorname{im} \varphi \neq \{0\}$ and $\operatorname{ker} \varphi \neq M$, otherwise φ is the zero map. By the discussion in class, $\operatorname{im} \varphi$ is a submodule of N and $\operatorname{ker} \varphi$ is a submodule of M. Since N is simple and $\operatorname{im} \varphi \neq \{0\}$, we have $\operatorname{im} \varphi = N$ and thus φ is a surjection. Similarly, $\operatorname{ker} \varphi = \{0\}$ since M is simple and $\operatorname{ker} \varphi \neq M$, so φ is an injection. Thus φ is a bijection and hence an isomorphism, since bijections and isomorphisms are the same in R-Mod.

Problem 3 (Aluffi III.5 Problem 16). Let R be a commutative ring, M an R-module, and let $a \in R$ be a nilpotent element determining a submodule aM of M. Prove that $M = 0 \iff aM = M$.

Solution. Since a is nilpotent, there exists an integer n > 1 such that $a^n = 0$. If $M = \{0\}$ then clearly $aM = M = \{0\}$, so suppose aM = M. Let $m \in M$. Then there is an element $m_1 \in M$ such that $m = am_1$. Similarly, since $am_1 \in M$, there is an $m_2 \in M$ such that $m_1 = am_2$, and thus $m = a^2m_2$. Continuing this process, we eventually find $m = a^nm_n = 0$ for some $m_n \in M$, so m = 0 for all $m \in M$. Thus $M = \{0\}$.

Problem 4 (Aluffi III.6 Problem 18). Let M be an R-module, and let N be a submodule of M. Prove that if N and M/N are both finitely generated, then M is finitely generated.

Solution. Since N and M/N are finitely generated, there exist numbers $n, k \ge 1$ and surjective R-module homomorphisms

$$R^{\oplus n} \xrightarrow{\nu} N$$
 and $R^{\oplus k} \xrightarrow{\kappa} M/N$.

Define the maps $i: R^{\oplus n} \longrightarrow R^{\oplus(k+n)}$ and $p: R^{\oplus(k+n)} \longrightarrow R^{\oplus k}$ by $i: (r_1, \ldots, r_n) \mapsto (r_1, \ldots, r_n, 0, \ldots, 0)$ and $p: (r_1, \ldots, r_n, s_1, \ldots, s_m) \mapsto (s_1, \ldots, s_m)$. Then the sequence

$$R^{\oplus n} \stackrel{i}{\longrightarrow} R^{\oplus (k+n)} \stackrel{p}{\longrightarrow} R^{\oplus k} \longrightarrow 0$$

is exact.

Define a map $\mu : \mathbb{R}^{\oplus (k+n)} \longrightarrow M$ in the following manner. For each $j = 1, \ldots, k$, consider $\kappa(0, \ldots, 1, \ldots, 0)$ (with a one in the j^{th} position and zeros elsewhere) as an element in M/N and pick a representative $m_j \in M$ such that $\kappa(0, \ldots, 1, \ldots, 0) = m_j + N$. Then define

$$\mu(r_1, \dots, r_n, s_1, \dots, s_m) = \nu(r_1, \dots, r_n) + \sum_{j=1}^k s_j m_j,$$

where $\nu(r_1, \ldots, r_n) \in N \subset M$. This is a homomorphism of *R*-modules. Indeed,

$$\mu(r_1 + r'_1, \dots, r_n + r'_n, s_1 + s'_1, \dots, s_k + s'_k) = \nu(r_1 + r'_1, \dots, r_n + r'_n) + \sum_{j=1}^k (s_j + s'_j)m_j$$
$$= \nu(r_1, \dots, r_n) + \sum_{j=1}^k s_j m_j + \nu(r'_1, \dots, r'_n) + \sum_{j=1}^k s'_j m_j$$
$$= \mu(r_1, \dots, r_n, s_1, \dots, s_k) + \mu(r'_1, \dots, r'_n, s'_1, \dots, s'_k)$$

and for $t \in R$

$$\mu(tr_1, \dots, tr_n, ts_1, \dots, ts_k) = t\nu(r_1, \dots, r_n) + t\sum_{j=1}^k s_j m_j$$
$$= t\mu(r_1, \dots, r_n, s_1, \dots, s_k).$$

Consider the following diagram.

$$\begin{array}{cccc} R^{\oplus n} & \stackrel{i}{\longrightarrow} & R^{\oplus (k+n)} & \stackrel{p}{\longrightarrow} & R^{\oplus k} & \longrightarrow 0 \\ \nu & & \mu & & & & \\ \nu & & & \mu & & & & \\ N & \stackrel{\iota}{\longleftarrow} & M & \stackrel{\pi}{\longrightarrow} & M/N & \longrightarrow 0 \end{array}$$

The rows are clearly exact. Furthermore, the diagram commutes. Indeed, $\mu \circ i(r_1, \ldots, r_n) = \nu(r_1, \ldots, r_n)$ by definition of μ so the left square commutes. For the right square,

$$\pi \circ \mu(r_1, \dots, r_n, s_1, \dots, s_k) = \pi \left(\sum_{j=1}^k s_j m_j \right)$$
$$= \sum_{j=1}^k s_j \pi(m_j)$$

$$= \sum_{j=1}^{k} s_j \kappa(0, \dots, 1, \dots 0)$$
$$= \kappa(s_1, \dots, s_k)$$
$$= \kappa \circ p(r_1, \dots, r_n, s_1, \dots, s_k).$$

By the surjective four lemma, μ is also a surjection. So M is finitely generated.