
Assignment 3
PMAT 611

Mark Girard

10 March 2014

Problem 1 (Aluffi problem VII.2.6). Let S be a multiplicative subset of a ring R and let M be an R-module.

i) Let N be an S−1R-module. Prove that (S−1M)⊗S−1R N ∼= M ⊗R N .

ii) Let A be an R-module. Prove that (S−1A)⊗RM ∼= S−1(A⊗RM).

Solution. .

i) Proof. First note that M ⊗R N has an S−1R-module structure given by r
s (m⊗ n) = m⊗ ( rs · n), where

r
s · n represents the given S−1R-action on N . Define an S−1R-module homomorphism

(S−1M)⊗S−1R N
ϕ−→M ⊗R N

m

s
⊗ n 7−→ m⊗ 1

s
· n

by extending this definition S−1R-linearly. The inverse of this mapping may be given by

(S−1M)⊗S−1R N
ψ←−M ⊗R N

m

1
⊗ n←− [ m⊗ n

by similarly extending this S−1R-linearly. Then ϕ(ψ(m ⊗ n)) = ϕ(m1 ⊗ n) = m ⊗ 1
1n = m ⊗ n and

conversely ψ(ϕ(ms ⊗ n)) = ψ(m⊗ 1
sn) = 1

sψ(m⊗ n) = 1
s (m1 ⊗ n) = m

s ⊗ n. Hence ψ and ϕ are mutual
inverses and (S−1M)⊗S−1R N ∼= M ⊗R N as desired.

ii) Note that both (S−1A)⊗RM and S−1(A⊗RM) are R-modules. Define an R-module homomorphism

(S−1A)⊗RM −→ S−1(A⊗RM)

a

s
⊗m 7−→ a⊗m

s

and extending R-linearly, and deifne its inverse by

(S−1A)⊗RM ←− S−1(A⊗RM)

a

s
⊗m←− [

a⊗m
s

.

Hence we obtain the desired isomorphism (S−1A)⊗RM ∼= S−1(A⊗RM).
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Problem 2 (Aluffi problem VII.2.7). Show that changing the base ring in a tensor may or may not make
a difference. Show that

(i) Q⊗Z Q ∼= Q⊗Q Q and

(ii) C⊗R C 6∼= C⊗C C.

Solution. .

(i) As Q-modules we have that Q⊗Z Q ∼= Q and Q⊗Q Q ∼= Q.

Clearly, we have that Q⊗Q Q ∼= Q. So it remains to show that Q⊗Z Q ∼= Q. As a Q-module, Q⊗Z Q
has Q-action given by a · (b⊗ c) = (ab)⊗ c. We can define an isomophism Q −→ Q⊗Z Q by

b 7−→ b⊗ 1.

Indeed, this is injective, since b⊗ 1 = 0⊗ 0 if and only if b = 0. It is also surjective since

p

q
⊗ r

s
= r

(
ps

qs
⊗ 1

s

)
= s

(
pr

qs
⊗ 1

s

)
=
pr

qs
⊗ s

s
=
pr

qs
⊗ 1

for all p
q ,

r
s ∈ Q and thus every element in Q⊗Z Q can be written as

∑
i

mi
pi
qi
⊗ ri
si

=

(∑
i

mipiri
qisi

)
⊗ 1.

It is also Q-linear, since ab 7−→ (ab)⊗ 1 = a · (b⊗ 1). Hence Q⊗Z Q ∼= Q ∼= Q⊗Q Q.

(ii) We note that C⊗R C ∼= R4 and C⊗C C ∼= R2 as R-modules. Indeed, every element in both C⊗C C and
C⊗R C can be written as linear combinations of the elements

{1⊗ 1, 1⊗ i, i⊗ 1, i⊗ i}. (1)

with real coefficients, so (1) is a spanning set for both C ⊗C C and C ⊗R C and thus they are both
R-vector spaces with dimension at most 4. However, the set in (1) is linearly independent and thus a
basis for C⊗R C, wheras C⊗C C as an R-vector space has a basis given by

{1⊗ 1, i⊗ 1}.

Indeed, in C⊗C C we have that 1⊗ 1 = ((−i)(i))⊗ 1 = (−i)(i⊗ 1) = i⊗ (−i) = −(i⊗ i) and similarly
we have i⊗ 1 = i(1⊗ 1) = 1⊗ i.
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Problem 3 (Aluffi problem VIII.2.24). Let R be a ring. Let P be a flat R-module and Let

0 M N P 0
µ ν

be an exact sequence R-modules.

(i) Prove that M is flat if and only of N is flat.

(ii) Prove that for all R-modules Q, the induced sequence

0 M ⊗R Q N ⊗R Q P ⊗R Q 0

is exact.

Solution. We first prove part (ii) of the problem statement and use this to prove part (i).
(NOTE: I originally proved this using a very lengthy diagram chase, but later realized that the proof can be
greatly simplified by use of Tor. I spent so much time figuring it out and writing it up that I didn’t want to
just delete it, so I first present here my very long diagram chase. My shorter proof is given as an addendum
at the end of the solution to this problem.)

(ii) Proof (diagram chase method). Let Q′ be a free R-module that maps surjectively onto Q. For example

we could take the module Q′ = FreeR-Mod(Forget(Q)), and let Q′′
α−→ Q′ be the kernel of this mapping

such that the sequence

0 Q′′ Q′ Q 0α β

is exact. Then we have the commuting diagram

0 ker(idQ⊗µ)

Q′′ ⊗RM Q′ ⊗RM Q⊗RM 0

Q′′ ⊗R N Q′ ⊗R N Q⊗R N 0

0 Q′′ ⊗R P Q′ ⊗R P Q⊗R P 0

0 0 0

α⊗ idM

idQ′′ ⊗µ

β ⊗ idM

idQ′ ⊗µ idQ⊗µ

α⊗ idN

idQ′′ ⊗ν

β ⊗ idN

idQ′ ⊗ν idQ⊗ν

α⊗ idP β ⊗ idP

(*)

where the bottom row is exact by flatness of P and the middle column is exact since Q′ is free and
thus flat. Exactness of the remaining rows and columns comes from the right-exactness of the tensor
pruduct.

Let z ∈ ker(idQ⊗µ). By exactness of the top row, we have that β ⊗ idM is surjective and thus there
is a y ∈ Q′ ⊗R M such that (β ⊗ idM )(y) = z. Then let x = (idQ′ ⊗µ)(y) ∈ Q′ ⊗R N . However, by
commutativity of the top right square, we have that

(β ⊗ idN )(x) = (β ⊗ idN ) ((idQ′ ⊗µ)(y))
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= (idQ⊗µ) (β ⊗ idM (y))

= (idQ⊗µ)(z) = 0

since z ∈ ker(idQ⊗µ), and thus x ∈ ker(β ⊗ idN ). This implies, by exactness of the middle row, that
x is in the image of α ⊗ idN and thus there is a w ∈ Q′′ ⊗R N such that (α ⊗ idN )(w) = x. Let
v = (idQ′′ ⊗ν)(w), then v = 0. Indeed, by commutativity of the lower left square, we have that

(α⊗ idP )(v) = (α⊗ idP ) ((idQ′′ ⊗ν)(w))

= (idQ′ ⊗ν) (α⊗ idN (w))

= (idQ′ ⊗ν)(x)

= ((idQ′ ⊗ν) ◦ (idQ′ ⊗µ))︸ ︷︷ ︸
=0

(y)

= 0,

and thus v = 0 since α ⊗ idP is injective. Then w ∈ ker(idQ′′ ⊗ν) since (idQ′′ ⊗ν)(w) = 0, and thus
w is in the image of idQ′′ ⊗µ by exactness of the first column. So there is a u ∈ Q′′ ⊗R M such that
(idQ′′ ⊗µ)(u) = w, and let y′ = (α⊗ idM )(u) ∈ Q′⊗RM . We claim that (idQ′ ⊗µ)(y−y′) = 0. Indeed,
by commutativity of the upper left square, we have that

(idQ′ ⊗µ)(y′) = (idQ′ ⊗µ)((α⊗ idM )(u))

= (α⊗ idN )(idQ′′ ⊗µ)(u)

= (α⊗ idN )(w)

= x

= (idQ′ ⊗µ)(y),

and thus (idQ′ ⊗µ)(y′) = (idQ′ ⊗µ)(y). But (idQ′ ⊗µ) is injective, by exactness of the middle column,
so y − y′ = 0 and thus y = y′. Finally, note that

z = (β ⊗ idM )(y) = ((β ⊗ idM ) ◦ (α⊗ idM )︸ ︷︷ ︸
=0

)(w) = 0,

hence z = 0 for an arbirtary z ∈ ker(idQ⊗µ) and thus ker(idQ⊗µ) = 0.

The diagram chase contained in above arguments may be summarized in the following schematic:

0

u y′ = y z 0

w x 0 0

0 v 0 0

0 0 0

α⊗ idM

idQ′′ ⊗µ

β ⊗ idM

idQ′ ⊗µ

α⊗ idN

idQ′′ ⊗ν idQ′ ⊗ν

α⊗ idP
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Hence the right-most column in the diagram (*) above, which we may repeat here as

0 Q⊗RM Q⊗R N Q⊗R P 0,

is exact. This is naturally isomorphic to the sequence

0 M ⊗R Q N ⊗R Q P ⊗R Q 0,

which is exact as desired.

We can now prove the first part of the problem statement.

(i) Proof. Let 0 −→ A
α−→ B

β−→ C −→ 0 be an exact sequence of R-modules. Then we have the following
commutative diagram

0

0 A⊗RM A⊗R N A⊗R P 0

0 B ⊗RM B ⊗R N B ⊗R P 0

0 C ⊗RM C ⊗R N C ⊗R P 0

0 0 0

α⊗ idM α⊗ idN α⊗ idP

where the right-most column is exact by flatness of P and the rows are all exact from part (ii) of the
problem. Then the Snake Lemma gives us the exact sequence

0 ker(α⊗ idM ) ker(α⊗ idN ) ker(α⊗ idP )

coker(α⊗ idM ) coker(α⊗ idN ) coker(α⊗ idP ) 0.

But ker(α ⊗ idP ) = 0 by exactness of the right-most column. Considering only the top half of the
sequence above, we get the exact sequence

0 ker(α⊗ idM ) ker(α⊗ idN ) 0

and therefore ker(α⊗ idM ) ∼= ker(α⊗ idN ). Hence the functor −⊗RM is exact if and only if −⊗R N
is, and thus M is flat if and only if N is flat, as desired.
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Addendum: Proof of part (ii) of Problem 2 using Tor.

Proof. For all R-modules Q, the short exact sequence

0 M N P 0

induces the long exact sequence

· · · TorR1 (N,Q) TorR1 (P,Q) M ⊗R Q N ⊗R Q P ⊗R Q 0.

However, TorR1 (P,Q) ∼= 0 since P is flat. Hence the final part of the long exact sequence above gives the
desired short exact sequence

0 M ⊗R Q N ⊗R Q P ⊗R Q 0.
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Problem 4 (Aluffi problem VIII.2.24). Let R ba a commutative Noetherian ring with a (single) maximal
ideal m, and let M be a finitely generated flat R-module.

(i) Choose elements m1, . . . ,mr ∈M whose cosets mod mM are a basis of M/mM as a vector space over
the field R/m. By Nakayama’s lemma, M = 〈m1, . . . ,mr〉.

(ii) Obtain an exact sequence

0 N R⊕r M 0

where N is finitely generated.

(iii) Deduce that N = 0. (Nakayama.)

(iv) Conclude that M is free.

Thus, a finitely generated R-module over a (Noetherian) local ring is flat if and only if it is free.

Solution. (i) Since M is finitely generated, M/mM is a finite dimensional vector space. So we can pick a
basis {m1 +mM, . . . ,mr+mM}. This gives us the desired elements {m1, . . . ,mr} that, by Nakayama’s
lemma (see Aluffi problem VI.3.10 – I’m guessing we’ll cover this later in the semester?), generate M .

(ii) We have a surjection R⊕r −→ M , so let N −→ R⊕r be the kernel of this mapping. This gives us an
exact sequence

0 N R⊕r M 0. (1)

Since R is Noetherian, M is finitely presented (Lemma VI.4.8 in Aluffi) so N is finitely generated.

(iii) From part (ii) in Problem 3, since M is flat, tensoring the exact sequence in (1) with R/mR yields an
exact sequence

0 N ⊗R R/mR R⊕r ⊗R R/mR M ⊗R R/mR 0.

However, these tensor products give us the modules N⊗RR/mR ∼= N/mN , R⊕r⊗RR/mR ∼= (R/mR)⊕r

and M ⊗R R/mR ∼= M/mM , which are all (R/mR)-vector spaces. So this is the exact sequence of
vector spaces

0 N/mN (R/mR)⊕r M/mM 0.

Since these are vector spaces and dim(R/mR)⊕r = dimM/mM = r, we must have that dimN/mN = 0.
By Nakayama’s lemma, we have that N = 0. Hence the exact sequence in (1) reduces to

0 R⊕r M 0,

and thus M ∼= R⊕r so M is free.
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