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Problem 1 (Aluffi problem VIII.3.6). Let f : R −→ S be a ring homomorphism, and let ϕ : N1 −→ N2

be a homomorphism of S-modules. Prove that ϕ is an isomorphism if and only if f∗(ϕ) is an isomorphism.
(Functors with this property are said to be conservative.) In fact, prove that f∗ is faithfully exact: a sequence
of S-modules

0 L M N 0α β

is exact if and only if the sequence of R-modules

0 f∗(L) f∗(M) f∗(N) 0
f∗(α) f∗(β)

is exact. In particular, a sequence of R-modules is exact if and only if it is exact as a sequence of abelian
groups. (This is completely trivial, but useful nonetheless.)

Solution. As sets, we note that Forget(N) = Forget(f∗(N)) for all S-modules N , and so we denote n ∈
f∗(N) (as an R-module) for all n ∈ N (as an S-module).

• We first show that ϕ : N1 −→ N2, as a homomorphism of S-modules, is

(i) injective if and only if f∗(ϕ) is injective and

(ii) surjective if and only if f∗(ϕ) is surjective.

To show (i), first suppose that ϕ is injective and let n ∈ ker f∗(ϕ). Then

f∗(ϕ)(1R · n) = f(1R)︸ ︷︷ ︸
1S

ϕ(n) = 1sϕ(n) = 0

and thus n = 0. Analagously, suppose that f∗(ϕ) is injective and let n ∈ kerϕ. Then

ϕ(1sn) = 1R · f∗(ϕ)(n) = 0

and thus n = 0. So we have kerϕ = 0 if and only if ker f∗(ϕ) = 0. To show (ii), suppose ϕ is surjective
and let n ∈ f∗(N2) (as an R-module). Then n ∈ N2 as an S-module and thus there is a m ∈ N1

such that ϕ(m) = n. Hence f∗(ϕ)(m) = n. Similarly, suppose f∗(ϕ) is surjective and let n ∈ N2 as
an element of an S-module. Then n ∈ f∗(N2) as an R-module and there is an m ∈ f∗(N1) such that
f∗(ϕ)(m) = n, and thus ϕ(m) = n. Hence ϕ is an isomorphism if and only if f∗(ϕ) is an isomorphism.

in particular, we have shown that

– n ∈ kerϕ (as an element of the S-module N1) if and only if n ∈ ker f∗(ϕ) (as an element of the
R-module f∗(N1)),
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– n ∈ imϕ (as an element of the S-module N2) if and only if n ∈ im f∗(ϕ) (as an element of the
R-module f∗(N2)).

• Let L, M and N be S-modules and consider the complex

0 L M N 0.α β

of S-modules as well as the corresponding complex of R-modules

0 f∗(L) f∗(M) f∗(N) 0
f∗(α) f∗(β)

from applying f∗.

From the above analysis, we have that α is injective if and only if f∗(α) is injective, and that β is
surjective if and only of f∗(β) is surjective. Furthermore, we have

Forget(kerβ) = Forget ker f∗(β) and Forget(imα) = Forget im f∗(α).

Thus, kerβ = imα if and only if ker f∗(β) = im f∗(α). Hence, the first sequence is exact if and only if
the second one is.

• In particular, if R = Z then f∗(M) is just M as an abelian group where we forget the R-module
structure. Hence we get that a sequence of S-modules is an exact sequence if and if it is exact as a
sequence as abelian groups.
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Problem 2 (Aluffi problem VIII.3.14). Let f : R −→ S be an onto ring homomorphism; thus, S ∼= R/I for
some ideal I of R.

i) Prove that, for all R-modules M , f !(M) ∼= {m ∈M | ∀a ∈ I, am = 0}, while f∗(M) ∼= M/IM . (Exercise
III.7.7 may help.)

ii) Prove that, for all S-modules N , f !f∗(N) ∼= N and f∗f∗(N) ∼= N .

iii) Prove that f∗ is fully faithful (Definition VII.1.6).

iv) Deduce that if there is an onto homomorphism R −→ S, then S-Mod is equivalent to a full subcategory
of R-Mod.

Solution. (Note: Normally, I take great care in understanding and working on all of the problems, but I
was incredibly busy the past week and didn’t have the time to work on the homework as much as I usually
do. When I’m not so busy, I’d like to come back to this problem and spend some time on it..., but the
solution here is not complete.)

The following lemma will be useful (See Exercise III.7.7 in Aluffi – I’d give a proof if I had more time.).

Lemma 1. Given a short exact sequence of R-modules

0 M N P 0.

and an R-module L, there is an exact sequence of R-modules

0 HomR-Mod(P,L) HomR-Mod(P,L) HomR-Mod(M,L).

Note that we have a short exact sequence of R-modules

0 I R R/I ∼= S 0. (1)

i) Note that f !(M) = HomR-Mod(R/I,M) by definition. By the above lemma, we have an exact sequence

0 HomR-Mod(R/I,M) HomR-Mod(R,M) HomR-Mod(I,M).

I’m not quite sure what to do next, but I think we want to construct the following commutative diagram
with exact rows:

0 HomR-Mod(R/I,M) HomR-Mod(R,M) HomR-Mod(I,M)

0 {m ∈M | am = 0,∀a ∈ I} M ?

∼=

and use the five lemma to show that f !(M) = HomR-Mod(R/I,M) ∼= {m ∈M | am = 0,∀a ∈ I}.
Note that f∗(M) = M ⊗RR/I by definition. Since the functor M ⊗R− is right-exact for any R-module
M , applying M ⊗− to the exact sequence in (1) yields the exact sequence

M ⊗R I M ⊗R R M ⊗R R/I 0.
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Again, not quite sure what to do, but I think we want to show a commutative diagram with exact rows

M ⊗R I M ⊗R R M ⊗R R/I 0

IM M M/IM 0,

∼= ∼=

and use the five lemma to show that f∗(M) = M ⊗R R/I ∼= M/IM .

ii)

iii) (Didn’t have time for the rest... I’d like to try these in the future and ask you for help. Sorry there’s
nothing here now!)

iv)
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Problem 3 (Aluffi problem VI.2.13). The set of subspaces of given dimension in a fixed vector space is
called a Grassmannian. In Exercise VI.2.12 you have constructed a bijection between the Grassmannian of
r-dimensional subspaces of kn and the set of reduced row echelon matrices with n columns and r nonzero
rows.

For r = 1, the Grassmannian is called the projective space. For a vector space V , the corresponding
projective space PV is the set of ’lines (1-dimensional subspaces) in V . For V = kn, PV may be denoted Pn−1k ;
and the field k may be omitted if it is clear from the context. Show that Pn−1 may be written as a union
kn−1 ∪ kn−2 ∪ · · · ∪ k1 ∪ k0, and describe each of these subsets ‘geometrically’. Thus, Pn−1 is the union
of n ‘cells’, the largest one having dimension n − 1 (accounting for the choice of notation). Similarly, all
Grassmannians may be written as unions of cells. These are called Schubert cells.

Prove that the Grassmannian of (n−1)-dimensional subspaces of kn admits a cell decomposition entirely
analogous to that of Pn−1k .

Solution. First consider the set of 1-dimensional subspaces of kn. Each subspace is a line and each line
may be defined by a non-zero vector v = (v1, . . . , vn). Two vectors v, v′ ∈ kn define the same line if v = zv′

for some non-zero z ∈ k, i.e.

(v1, . . . , vn) = z(v′1, . . . , v
′
n) = (zv′1, . . . , zv

′
n).

So we may define an equivalence relation on the set of non-zero vectors in kn by

v ∼ v′ if and only if v = zv′ for some z ∈ k.

Then the projective space Pn−1 may be given by

Pn−1k = (kn r {0})/ ∼ .

Each line in kn is given by an equivalence class of vectors, and for each class we may choose a representative
of the form [z1, z2, . . . , zn].

Each vector (z1, z2, . . . , zn) whose first entry is non-zero is equivalent to the vector(
1,
z2
z1
, . . . ,

zn
z1

)
= (1, z′2, . . . z

′
n)

which has a one in its first entry. Note that the vectors

(1, z2, z3, . . . zn) and (1, z′2, z
′
3, . . . z

′
n)

define the same line in kn if and only if zk = z′k for all k = 2, . . . , n. So the space of lines in kn that may
given by vectors whose first entry is non-zero is the set

{[1, z2, . . . , zn] | zk ∈ k} ∼= kn−1,

and thus isomorphic to kn−1. The set of lines that are defined by vectors whose first entry is zero and second
entry is non-zero is the set

{[0, 1, z3, . . . , zn] | zk ∈ k} ∼= kn−2.

Similarly, the set of lines in kn that are defined by vectors whose first two entries are zero and third entry
is non-zero is

{[0, 0, 1, z4, . . . , zn] | zk ∈ k} ∼= kn−3.

Continuing this process, we see that

Pn−1 ∼= kn−1 ∪ kn−2 ∪ · · · ∪ k1 ∪ {0}

as desired.
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Using the observation that the Grassmannian of n − 1 dimensional spaces Grk(n − 1, n) is isomorphic
to the set of n × n matrices over k in reduced row echelon form with n − 1 non-zero rows, we have that
Grk(n− 1, n) is isomorphic to the union sets of the following form:


1 0 . . . . . . z1
0 1 0 . . . z2
...

...
. . .

...
0 0 . . . 1 zn−1
0 0 . . . 0 0



∣∣∣∣∣∣∣∣∣∣∣
z1, . . . , zn−1 ∈ k


∼= kn−1





1 0 . . . 0 z1 0
0 1 . . . 0 z2 0
...

...
. . .

...
0 0 . . . 1 zn−2
0 0 . . . 0 0 1
0 0 . . . 0 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣
z1, . . . , zn−2 ∈ k


∼= kn−2

...

...


1 z1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1


∣∣∣∣∣∣∣∣∣ z1
 ∼= k1




0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 1


 ∼= k0

and thus we have
Grk(n− 1, n) ∼= kn−1 ∪ kn−2 ∪ · · · ∪ k1 ∪ {0}.
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Problem 4 (Aluffi problem VI.2.14). Ahow that the Grassmannian Grk(2, 4) of 2-dimensional subspaces of
k4 is the union of 6 Schubert cells: k4 ∪ k3 ∪ k2 ∪ k2 ∪ k1 ∪ k0.

Solution. We list the forms of all of the possible reduced row echelon forms of 4 × 4 matrices over k with
2 non-zero rows. First, there are all matrices whose leading entry is a one. This is all matrices of one of the
following forms:


1 0 z1 z2
0 1 z3 z4
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣ z1, z2, z3, z4 ∈ k

 ,




1 z1 0 z2
0 0 1 z3
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣ z1, z2, z3 ∈ k

 ,




1 z1 z2 0
0 0 0 1
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣ z1, z2 ∈ k

 ,

and clearly these sets are isomorphic to k4, k3 and k2 respectively.
Next are all matrices whose leading entry is a zero and second entry is a one. This is all matrices of one

of two forms: 


0 1 0 z1
0 0 1 z2
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣ z1, z2 ∈ k

 or




0 1 z1 0
0 0 0 1
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣ z1 ∈ k


which are clearly isomorphic to k2 and k1 respectively.

Finally, there is only one matrix in reduced row echelon form whose leading two entry is zero and third
entry is a one. This is 


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




and this set is isomorphic to k0.
Hence, we have that Grk(2, 4) ∼= k4 ∪ k3 ∪ k2 ∪ k2 ∪ k1 ∪ k0 as desired.
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Problem 5 (Aluffi problem VI.3.8). Let R be a commutative ring, M be a finitely-generated R-module, and
let J be an ideal of M contained in the Jacobson radical of R. Prove that M = 0 if and only if JM = M .

Solution. We first prove the following lemmas (see Exercises VI.3.6 and VI.3.7 in Aluffi).

Lemma 1. Let R be a commutative ring and M = 〈m1, . . . ,mr〉 a finitely-generated R-module. Let A ∈
Mr(R) be a matrix such that

A ·

m1

...
mr

 =

0
...
0

 . (1)

Then det(A)m = 0 for all m ∈M .

Proof (of Lemma 1 ). Denote by adj(A) the matrix that is the adjoint of A,

adj(A) =

A
(11) . . . A(r1)

...
. . .

...
A(1r) . . . A(rr)

 .
From Corollary VI.3.5 in Aluffi, we have that adj(A) · A = A · adj(A) = det(A)Ir. Multiplying both sides
of (1) above by adj(A)t yields

(adj(A)t ·A)

m1

...
mr

 = det(A)

m1

...
mr

 =

0
...
0

 .
Hence det(A)mi = 0 for each generator mi of M , and thus det(A)M = 0.

Lemma 2. Let R be a commutative ring, M a finitely-generated R-module, and let I be an ideal of R.
Assuume that IM = M . Then there exists an element b ∈ I such that (1 + b)M = 0.

Proof (of Lemma 2 ). Since IM = M , for each generator mi ∈M there is a bi ∈ J such that

ci(ai1m1 + · · ·+ airmr) = mi

for some aij ∈ R. Since J is an ideal and ci ∈ J , we have that bij := ciaij ∈ J for all i, j. So we have a
r × r-matrix B with elements in J

B =

b11 . . . b1r
...

. . .
...

br1 . . . brr

 such that B ·

m1

...
mr

 =

m1

...
mr

 .
Subtracting both sides of the above equation by Ir ·

[
m1

...
mr

]
yields

(Ir −B) ·

m1

...
mr

 =

0
...
0

 ,
and by the previous lemma we have det(Ir − B)m = 0 for all m ∈ M . Since the elements of B are in J ,
expanding the determinant of det(Ir −B) we find that this is a polynomial in the entries of B

det(Ir −B) =
∑
σ∈Sr

(−1)σ
r∏
i=1

(δiσ(i) − biσ(i)).

Hence det(Ir − B) = (1 + b) for some b ∈ J since each entry of B is in J . Thus there is an element b ∈ J
such that (1 + b)mi = 0 for all generators mi ∈M , and thus bm = 0 for all m ∈M , as desired.
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Recall that, for all elements b in the Jacobson radical of R, we have that 1 + b is a unit of R. Finally, we
prove the desired proposition.

Proposition 3. Let R be a commutative ring and M a finitely generated R-module. Let J be an ideal of R
that is contained in the Jacobson radical. Then JM = M if and only if M = 0.

Proof. Clearly if M = 0 then JM = 0 = M . So suppose that JM = M . From the previous lemma, we have
that there exists an element b ∈ J such that (1 + b)m = 0 for all m ∈M . But 1 + b is a unit in R and thus

m = (1 + b)−10 = 0

for all m ∈M and thus M = 0.

9


