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Problem 1 (Aluffi problem VI.4.7).

Let R be a commutative Noetherian ring, and let M be a finitely generated module over R. Prove that M
admits a finite series
(0O)=MoCM S C My CMyu=M

in which all quotients M;;1/M; are of the form R/p; for some prime ideal p; of R.

Solution. We first prove a few lemmas (see Exercises V1.4.4 - VI.4.6 in Aluffi).

Lemma 1 (Exercise VI.4.4). Let R be a commutative ring. Then Anng(M) is an ideal of R and Anng(m)
is an ideal of R for each m € M.

Proof. Let a € Anng(M), then am = 0 for all m € M. For all b € R we have (ab)m = (ba)m = b(am) =0
for all m, so ba € Anng(M). Similarly, if a,a’ € Anng(M) then (a + a’)m = am + a'm =0 for all m € M.
Hence Anng(M) C Ris an ideal. Now let m € M and consider Anng(m). Then (ab)ym = (ba)m = b(am) =0
for all b € R and (a + a’)m = am + a’'m = 0 for all a,a’ € Anng(m). So Anng(m) C R is an ideal. O

Lemma 2 (Exercise VI.4.5). Let R be a commutative ring and M an R-module. Then for an ideal I C R
we have I = Anng(m) for some m € M if and only if there is a submodule N C M such that N =2 R/I.

Proof. Suppose that I = Anng(m) for some m € M and define N = (m). Consider the R-module homo-
morphism

p: (m) — R/I
amv+— a+ 1,

which is well-defined since if a +1 = a’ + I then (a —a’) € I so (a — a’)m = 0 and thus am = a’m. This is
injective, since a + I = I if and only if a € I and thus am = 0. Tt is also surjective, since for alla+1 € R/I
we have am — a + I. So ¢ is an isomorphism and thus N = (m) = R/I.

Now suppose that M has a submodule N C M such that N = R/I for some I. Since R/I is generated
by 1+ I, we have that N = (m) for some m € N such that m —— 1+ I under the isomorphism N = R/I.
Then I = Anng(m). Indeed, we have am = 0 if and only if 0 = am —— a+ I = I and thus a € I. O

Lemma 3 (Exercise VI.4.6). Let R be a commutative ring and let M be an R-module. Consider the family
of ideals
Ag(M) := {Anng(m)|m € M, m # 0}.

Then the mazimal elements of Ar(M) are prime ideals of R.



Proof. Let m be maximal in the family Ag(M). Then m = Anng(m) for some m € M and if there is an
ideal T € Agr(M) such that m C I then m = I. Suppose that ab € m for some elements a,b € R such that
a ¢ m. Then we have abm = 0 and assume without loss of generality that am # 0. Then b(am) = 0 implies
that b € Anng(am). However, for all r € Anng(m) = m we have rm = 0 and thus r(am) = a(rm) =0
so r € Anng(am). This tells us that m C Anng(am), but m is maximal and thus m = Anng(am). Hence
bem.

So we have that ab € m if and only if a € m or b € m and thus m is a prime ideal in R. O

Definition (Associated prime). Let R be a commutative ring and M be an R-module. An ideal I C R is
an associated prime of M if I = Anng(m) for some nonzero m € M and I is a prime ideal of R. The set of
associated primes of M is denoted Assg(M).

Corollary 4 (Exercise V1.4.6). If R is a commutative Noetherian ring, then Assgp(M) # 0.

Proof. Suppose that there is no maximal element of Ag(M) := {Anng(m)|m € M, m # 0}. Then for every
element in A we can find a larger element that contains it and there is an ascending chain of ideals of R
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such that for each i there is an element m; € M with I, = Anng(m;), a contradiction to the fact that R
is Noetherian. Hence there is at least one maximal element m = Anng(m) of Ar(M). By the previous
lemma, m is a prime ideal of R and thus m € Assp(M). O

We also note the definition of a Noetherian module and make a few useful notes about Noetherian modules.

Definition (Noetherian module). Let R be a ring. An R-module M is Noetherian if every submodule is
finitely generated.

Proposition 5. Let R be a ring and M be a Noetherian R-module. Then M satisfies the ascending chain
condition. That is, if there is a sequence of submodules M; C M such that

Moy C M, CMyC---
then there is an n € N such that M; = M, for all i > n.

Proof. Suppose otherwise. Then without loss of generality we may assume that there is a sequence of
submodules of M
Mo C My C My Q-

Then N = J;2, M; is a submodule of M. Since M is Noetherian, it is finitely generated so there is a finite
set ai,...,a, of generators of M. But each a; must be contained in some Mj, so there is an n such that
Q1y...,0m € M,. But then M; = M for all i > n. O

Lemma 6. Let M be an R-module, and let N be a submodule of M. If N and M/N are both finitely
generated, then M is finitely generated.

Proof. Since M /N is finitely generated there is a finite set of generators a;+N, ..., a,+ N of M/N. Similarly
there is a finite set of generators by,...,b; of N. Let m € M. Then

n n
m—i—N:Zri(ai—i—N) = (Zmai) + N.
i=1

=1



This implies that m — Z?:l ria; € N and thus

n
m—Zriai =510+ -+ s1b;
i=1
for some s; € R. Hence m = a1 + -+ rpan + 5101 4+ - - + s;b so M is generated by a1,...,an,b1,...,b
and thus is fintiely generated. O

Proposition 7. Let R be a ring, M an R-module and N C M a submodule. Then M is Noetherian if
both N and M/N are Noetherian.

Proof. Let P be a submodule of M, then we have to prove that P is finitely generated. Since P N N is
a submodule of M and N is Noetherian, we have that P N N C N is finitely generated. By the Second
Isomorphism Theorem for modules, we have that

P _P+N
PNN N

and hence PmLN is isomorphic to a submodule of M/N. Since M/N is Noetherian, we have that ﬁ is
finitely generated. Hence P is finitely generated since, by Lemma 6, P N N and ﬁ are both finitely
generated. O]

Proposition 8. Let R be a Noetherian ring. Then an R-module M is Noetherian if and only if it is finitely
generated.

Proof. If M is Noetherian then it is finitely generated since it is a submodule of itself and every submodule
of M is finitely generated. So suppose that M is finitely generated, say by elements aq,...,a, € M. Then
there is a surjection R®® — M. By the previous proposition, it suffices to show that R®™ is Noetherian as
an R-module.

We prove this by induction. Note that R®! = R is Noetherian by assumption. So suppose that R®" is
Noetherian for some n > 1. Since R®" may be viewed as a submodule of R®("*+1) such that

R@(n-‘rl)
Ron

1%

R,

which is Noetherian, and R®" is Noetherian by assumption, it follows from Proposition 7 that R®("+1 g
Noetherian as well. O

We can now prove the proposition of the problem.

Proposition 9 (Problem statement). Let R be a commutative Noetherian ring, and let M be a finitely
generated module over R. Then M admits a finite series

0)=MyCM S+ CMp_1 CM,=M

in which all quotients M;/M;_1 are of the form R/p; for some prime ideal p; of R.



Proof. First note that Assgr(M) # @ by the Corollary 4 above, so there exists a prime ideal p; C R such
that p; = Anng(mq) for some m; € M. By Lemma 2, there is a submodule M; C M such that M; & R/p;.
Furthermore, we have My /My = My = R/py where My = 0.

We follow by induction. Suppose that for some n > 1 we have a series of submodules My, M, ..., M,
of M such that

O0=MyC M C---C M, &M

such that for each ¢ = 1,...,n we have M;/M;_1 = R/p, where each p; is prime. If M/M, = p for some
prime ideal p then we are done. Otherwise M /M, # 0 and we have Assg(M/M,) # 0. So there is a
submodule M’ C M/M,, such that M’ = R/p,4+1 for some prime p,,+1. Set M, 11 as the inverse image of
M’ such that My, 1 /M, = M’ =2 R/ppi1.

Since R is Noetherian and M is finitely generated, M is Noetherian as an R-module. Thus by Proposi-
tion 5 we must have that the sequence

0=MyC M CMyC---

eventually terminates with M,,, = M for some m € N. This proves the claim. O



Problem 2 (Aluffi problem VI.4.13).

Let R be a commutative ring. A tuple (ay,...,a,) of elements in R is a reqular sequence if ay is a non-zero-
divisor in R and each a; is a non-zero-divisor modulo (aq,...,a;—1) for i > 1.
For a,b € R, consider the following complex of R-modules:

0—— R—"3 R&R—" R—" L 0 (*)

where 7 is the canonical projection, d;(r,s) = ra + sb and da(t) = (bt, —at). That is, d; and dy correspond
to the matrices
a
(e b) and <_ b) .

i) Prove that this is indeed a complex for every a and b.
ii) Prove that if (a,b) is a regular sequence, then this complex is exact.

The complex (*) is called the Kozul complez of (a,b). Thus, when (a,b) is a regular sequence, the Kozul
complex provides us with a free resolution of the module R/(a,b).

Solution. Proof. .

i) Note that di(r,s) = ar + sb € (a,b) for all r,s € R, hence m(dy(r,s)) = 0 and thus im(d;) C ker.
Similarly,
d1 (dz(t)) = dl(bt, —at) =bta—atb=0
for all ¢ and thus im(dz) C ker(dy). So (*) is indeed a complex.

ii) We examine the complex at each spot to determine exactness. Since the sequence (a,b) is regular, we
have that a is a non-zero-divisor and b is a non-zero-divisor modulo (a). That is, bc & (a) for all ¢ € (a).

e The complex is clearly exact at R — ﬁ — 0 by surjectivity of 7.

o Let t € kerm = (a,b), then t = ra+ sb for some r, s € R. Hence t = dy(r, s) and thus im(d;) = ker 7
so the complex is exact in the second spot.

e Let (r,s) € ker(dy). Then dy(r,s) = ra + sb = 0 such that sb = —ra and thus sb € (a). But b is a
non-zero-divisor modulo (a). Hence sb € (a) implies s € (a) and thus s = t'a for some ¢’ € R. So
we have

ra+ (t'a)p=0 = a(r+t'b)=0.
But a is a non-zero-divisor and thus (r + t'b) = 0, so r = —t'b. Setting t = —t' € R yields
(r,s) = (bt, —at) and thus (r,s) € im(dz). Hence im(dy) = ker(ds) so we have that the complex is
exact at R -2 Re& R 2% R,

e Finally, the complex is exact in the last spot since ds is injective. Indeed, for some ¢ € R suppose
that da(t) = (bt, —at) = (0,0). Then at = 0, but a is a non-zero-divisor and thus ¢ = 0.

O



Problem 3 (Aluffi problem VI.5.5).

Recall that a commutative ring is local if it has a single maximal ideal m. Let R be a local ring and let M
be the direct summand of a finitely generated free R-module. That is, there exists an R-module N such that
M @ N is a free R-module.

i) Choose elements myq,...,m, € M whose cosets mod mM are a basis of M/mM as a vector space over
the field R/m. By Nakayama’s lemma, M = (my,...,m,).

ii) Obtain a surjective homomorphism 7: R®" — M.

)
iii) Show that 7 splits, giving an isomorphism R®" = M & ker 7.
iv) Show that ker 7/mkerm = 0. Use Nakayama’s lemma to deduce that ker 7w = 0.
v) Conclude that M = R®" and this M is in fact free.

Summarizing, over a local ring, every direct summand of a finitely generated free R-module is free. (Contrast
this fact with Proposition VI.5.1, which shows that every submodule of a finitely generated free module is
free.)

Solution. Recall the two statements of Nakayama’s Lemma that we will use:

Lemma 10 (Nakayama). Let R be a commutative ring and M an R-module. Suppose I C J is an ideal
of R that is contained in the Jacobson radical J of R.

(1) If mq,...,m, have images in M/IM that generate it as an R/I-module, then my,...,m, generate M
as an R-module.

(2) If M/IM =0 then M = 0.

Since the Jacobson radical is the intersection of all maximal ideals of R, in this case we have that J = m.
We now prove the problem statement.

i) First note that M is finitely generated. Indeed, since there is an R-module N such that R®" =~ M @ N,
there is a surjective map R®" — M given by the projection map

R®" >~ M N 25 M.

Since m C R is maximal, R/m is a field. Note that M/mM has an R/m-module structure given by
(r4+m)(m+mM) =rm+mM

and thus M/mM is an R/m-vector space. Also note that M/mM is finitely generated since M is. So
M/mM = (R/m)®" for some integer r and thus has a basis given by m; + mM, ..., m, + mM. By
Nakayama’s lemma, myq, ..., m, also generates M.

ii) Since my,..., m, generate M, we have a surjective homomorphism

m: RO — M

(a1y...,a.) — aymy + -+ + apm.



iii)

iv)

Since 7 is surjective and M®N = R®™ is free (and thus projective), there is an R-module homomorphism
R®" 24 R®" uch that the diagram

RO — ™ )

R~ MeN

M,

commutes (see Exercise II1.6.9 in Aluffi), where M & N — M is the projection that maps the direct
sum onto M. Note that 7y, has the natural right-inverse given by M -2 M & N such that the diagram

0 ker 7 RO al M 0

S

R~ M & N
commutes. Hence 7 has a right-inverse with 7w o 8 o tp; = id); and thus the exact sequence

0 ker R®" ™y M 0 (**)

splits. This is equivalent to saying that R®" = M & ker 7.
Tensoring — @ R/m with R®" and M & ker 7 yields the R-modules

R®"@gr R/m= (R/m)®" and (M @kerm)®g R/m=(M/mM)® (ker/mker),
which all finite-dimensional as R/m-vector spaces. We have the exact sequence

s

0 — kerm/mkerm —— (R/m)®" —— M/mM —— 0.

But M/mM = (R/m)®" as an (R/m)-vector space, so we have that ker 7/mkerm = 0. Thus kerm = 0
by Nakayama’s lemma.

Since ker m = 0, we have the exact sequence

0 R®" — X M 0

and thus M = R®" so M is free as desired.



