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Problem 1 (Aluffi problem VI.4.7).

Let R be a commutative Noetherian ring, and let M be a finitely generated module over R. Prove that M
admits a finite series

〈0〉 = M0 (M1 ( · · · (Mm−1 (Mm = M

in which all quotients Mi+1/Mi are of the form R/pi for some prime ideal pi of R.

Solution. We first prove a few lemmas (see Exercises VI.4.4 - VI.4.6 in Aluffi).

Lemma 1 (Exercise VI.4.4). Let R be a commutative ring. Then AnnR(M) is an ideal of R and AnnR(m)
is an ideal of R for each m ∈M .

Proof. Let a ∈ AnnR(M), then am = 0 for all m ∈ M . For all b ∈ R we have (ab)m = (ba)m = b(am) = 0
for all m, so ba ∈ AnnR(M). Similarly, if a, a′ ∈ AnnR(M) then (a+ a′)m = am+ a′m = 0 for all m ∈ M .
Hence AnnR(M) ⊂ R is an ideal. Now let m ∈M and consider AnnR(m). Then (ab)m = (ba)m = b(am) = 0
for all b ∈ R and (a+ a′)m = am+ a′m = 0 for all a, a′ ∈ AnnR(m). So AnnR(m) ⊂ R is an ideal.

Lemma 2 (Exercise VI.4.5). Let R be a commutative ring and M an R-module. Then for an ideal I ⊂ R
we have I = AnnR(m) for some m ∈M if and only if there is a submodule N ⊂M such that N ∼= R/I.

Proof. Suppose that I = AnnR(m) for some m ∈ M and define N = 〈m〉. Consider the R-module homo-
morphism

ϕ : 〈m〉 −→ R/I

am 7−→ a+ I,

which is well-defined since if a+ I = a′ + I then (a− a′) ∈ I so (a− a′)m = 0 and thus am = a′m. This is
injective, since a+ I = I if and only if a ∈ I and thus am = 0. It is also surjective, since for all a+ I ∈ R/I
we have am 7−→ a+ I. So ϕ is an isomorphism and thus N = 〈m〉 ∼= R/I.

Now suppose that M has a submodule N ⊂ M such that N ∼= R/I for some I. Since R/I is generated
by 1 + I, we have that N = 〈m〉 for some m ∈ N such that m 7−→ 1 + I under the isomorphism N ∼= R/I.
Then I = AnnR(m). Indeed, we have am = 0 if and only if 0 = am 7−→ a+ I = I and thus a ∈ I.

Lemma 3 (Exercise VI.4.6). Let R be a commutative ring and let M be an R-module. Consider the family
of ideals

AR(M) := {AnnR(m) |m ∈M, m 6= 0} .

Then the maximal elements of AR(M) are prime ideals of R.
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Proof. Let m be maximal in the family AR(M). Then m = AnnR(m) for some m ∈ M and if there is an
ideal I ∈ AR(M) such that m ⊆ I then m = I. Suppose that ab ∈ m for some elements a, b ∈ R such that
a 6∈ m. Then we have abm = 0 and assume without loss of generality that am 6= 0. Then b(am) = 0 implies
that b ∈ AnnR(am). However, for all r ∈ AnnR(m) = m we have rm = 0 and thus r(am) = a(rm) = 0
so r ∈ AnnR(am). This tells us that m ⊆ AnnR(am), but m is maximal and thus m = AnnR(am). Hence
b ∈ m.

So we have that ab ∈ m if and only if a ∈ m or b ∈ m and thus m is a prime ideal in R.

Definition (Associated prime). Let R be a commutative ring and M be an R-module. An ideal I ⊂ R is
an associated prime of M if I = AnnR(m) for some nonzero m ∈M and I is a prime ideal of R. The set of
associated primes of M is denoted AssR(M).

Corollary 4 (Exercise VI.4.6). If R is a commutative Noetherian ring, then AssR(M) 6= ∅.

Proof. Suppose that there is no maximal element of AR(M) := {AnnR(m) |m ∈M, m 6= 0}. Then for every
element in A we can find a larger element that contains it and there is an ascending chain of ideals of R

I1 ( I2 ( I3 ( · · ·

such that for each i there is an element mi ∈ M with Ii = AnnR(mi), a contradiction to the fact that R
is Noetherian. Hence there is at least one maximal element m = AnnR(m) of AR(M). By the previous
lemma, m is a prime ideal of R and thus m ∈ AssR(M).

We also note the definition of a Noetherian module and make a few useful notes about Noetherian modules.

Definition (Noetherian module). Let R be a ring. An R-module M is Noetherian if every submodule is
finitely generated.

Proposition 5. Let R be a ring and M be a Noetherian R-module. Then M satisfies the ascending chain
condition. That is, if there is a sequence of submodules Mi ⊆M such that

M0 ⊆M1 ⊆M2 ⊆ · · ·

then there is an n ∈ N such that Mi = Mn for all i ≥ n.

Proof. Suppose otherwise. Then without loss of generality we may assume that there is a sequence of
submodules of M

M0 (M1 (M2 ( · · · .

Then N =
⋃∞
i=0Mi is a submodule of M . Since M is Noetherian, it is finitely generated so there is a finite

set a1, . . . , am of generators of M . But each ai must be contained in some Mj , so there is an n such that
a1, . . . , am ∈Mn. But then Mi = M for all i ≥ n.

Lemma 6. Let M be an R-module, and let N be a submodule of M . If N and M/N are both finitely
generated, then M is finitely generated.

Proof. Since M/N is finitely generated there is a finite set of generators a1+N, . . . , an+N of M/N . Similarly
there is a finite set of generators b1, . . . , bl of N . Let m ∈M . Then

m+N =

n∑
i=1

ri(ai +N) =
( n∑
i=1

riai
)

+N.
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This implies that m−
∑n
i=1 riai ∈ N and thus

m−
n∑
i=1

riai = s1b1 + · · ·+ slbl

for some sj ∈ R. Hence m = r1a1 + · · ·+ rnan + s1b1 + · · ·+ slbl so M is generated by a1, . . . , an, b1, . . . , bl
and thus is fintiely generated.

Proposition 7. Let R be a ring, M an R-module and N ⊂ M a submodule. Then M is Noetherian if
both N and M/N are Noetherian.

Proof. Let P be a submodule of M , then we have to prove that P is finitely generated. Since P ∩ N is
a submodule of M and N is Noetherian, we have that P ∩ N ⊂ N is finitely generated. By the Second
Isomorphism Theorem for modules, we have that

P

P ∩N
∼=
P +N

N

and hence P
P∩N is isomorphic to a submodule of M/N . Since M/N is Noetherian, we have that P

P∩N is

finitely generated. Hence P is finitely generated since, by Lemma 6, P ∩ N and P
P∩N are both finitely

generated.

Proposition 8. Let R be a Noetherian ring. Then an R-module M is Noetherian if and only if it is finitely
generated.

Proof. If M is Noetherian then it is finitely generated since it is a submodule of itself and every submodule
of M is finitely generated. So suppose that M is finitely generated, say by elements a1, . . . , an ∈ M . Then
there is a surjection R⊕n � M . By the previous proposition, it suffices to show that R⊕n is Noetherian as
an R-module.

We prove this by induction. Note that R⊕1 = R is Noetherian by assumption. So suppose that R⊕n is
Noetherian for some n ≥ 1. Since R⊕n may be viewed as a submodule of R⊕(n+1) such that

R⊕(n+1)

R⊕n
∼= R,

which is Noetherian, and R⊕n is Noetherian by assumption, it follows from Proposition 7 that R⊕(n+1) is
Noetherian as well.

We can now prove the proposition of the problem.

Proposition 9 (Problem statement). Let R be a commutative Noetherian ring, and let M be a finitely
generated module over R. Then M admits a finite series

〈0〉 = M0 (M1 ( · · · (Mm−1 (Mm = M

in which all quotients Mi/Mi−1 are of the form R/pi for some prime ideal pi of R.
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Proof. First note that AssR(M) 6= ∅ by the Corollary 4 above, so there exists a prime ideal p1 ⊂ R such
that p1 = AnnR(m1) for some m1 ∈M . By Lemma 2, there is a submodule M1 ⊂M such that M1

∼= R/p1.
Furthermore, we have M1/M0 = M1

∼= R/p1 where M0 = 0.
We follow by induction. Suppose that for some n ≥ 1 we have a series of submodules M0,M1, . . . ,Mn

of M such that
0 = M0 (M1 ( · · · (Mn (M

such that for each i = 1, . . . , n we have Mi/Mi−1 ∼= R/pi where each pi is prime. If M/Mn
∼= p for some

prime ideal p then we are done. Otherwise M/Mn 6= 0 and we have AssR(M/Mn) 6= ∅. So there is a
submodule M ′ ⊂ M/Mn such that M ′ ∼= R/pn+1 for some prime pn+1. Set Mn+1 as the inverse image of
M ′ such that Mn+1/Mn = M ′ ∼= R/pn+1.

Since R is Noetherian and M is finitely generated, M is Noetherian as an R-module. Thus by Proposi-
tion 5 we must have that the sequence

0 = M0 (M1 (M2 ( · · ·

eventually terminates with Mm = M for some m ∈ N. This proves the claim.
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Problem 2 (Aluffi problem VI.4.13).

Let R be a commutative ring. A tuple (a1, . . . , an) of elements in R is a regular sequence if a1 is a non-zero-
divisor in R and each ai is a non-zero-divisor modulo (a1, . . . , ai−1) for i > 1.

For a, b ∈ R, consider the following complex of R-modules:

0 R R⊕R R R
(a,b) 0

d2 d1 π (*)

where π is the canonical projection, d1(r, s) = ra+ sb and d2(t) = (bt,−at). That is, d1 and d2 correspond
to the matrices (

a b
)

and

(
a
−b

)
.

i) Prove that this is indeed a complex for every a and b.

ii) Prove that if (a, b) is a regular sequence, then this complex is exact.

The complex (*) is called the Kozul complex of (a, b). Thus, when (a, b) is a regular sequence, the Kozul
complex provides us with a free resolution of the module R/(a, b).

Solution. Proof. .

i) Note that d1(r, s) = ar + sb ∈ (a, b) for all r, s ∈ R, hence π(d1(r, s)) = 0 and thus im(d1) ⊂ kerπ.
Similarly,

d1(d2(t)) = d1(bt,−at) = bta− atb = 0

for all t and thus im(d2) ⊂ ker(d1). So (*) is indeed a complex.

ii) We examine the complex at each spot to determine exactness. Since the sequence (a, b) is regular, we
have that a is a non-zero-divisor and b is a non-zero-divisor modulo (a). That is, bc 6∈ (a) for all c 6∈ (a).

• The complex is clearly exact at R
π−→ R

(a,b) −→ 0 by surjectivity of π.

• Let t ∈ kerπ = (a, b), then t = ra+sb for some r, s ∈ R. Hence t = d1(r, s) and thus im(d1) = kerπ
so the complex is exact in the second spot.

• Let (r, s) ∈ ker(d1). Then d1(r, s) = ra+ sb = 0 such that sb = −ra and thus sb ∈ (a). But b is a
non-zero-divisor modulo (a). Hence sb ∈ (a) implies s ∈ (a) and thus s = t′a for some t′ ∈ R. So
we have

ra+ (t′a)b = 0 =⇒ a(r + t′b) = 0.

But a is a non-zero-divisor and thus (r + t′b) = 0, so r = −t′b. Setting t = −t′ ∈ R yields
(r, s) = (bt,−at) and thus (r, s) ∈ im(d2). Hence im(d2) = ker(d2) so we have that the complex is

exact at R
d2−→ R⊕R d1−→ R.

• Finally, the complex is exact in the last spot since d2 is injective. Indeed, for some t ∈ R suppose
that d2(t) = (bt,−at) = (0, 0). Then at = 0, but a is a non-zero-divisor and thus t = 0.

5



Problem 3 (Aluffi problem VI.5.5).

Recall that a commutative ring is local if it has a single maximal ideal m. Let R be a local ring and let M
be the direct summand of a finitely generated free R-module. That is, there exists an R-module N such that
M ⊕N is a free R-module.

i) Choose elements m1, . . . ,mr ∈ M whose cosets mod mM are a basis of M/mM as a vector space over
the field R/m. By Nakayama’s lemma, M = 〈m1, . . . ,mr〉.

ii) Obtain a surjective homomorphism π : R⊕r −→M .

iii) Show that π splits, giving an isomorphism R⊕r ∼= M ⊕ kerπ.

iv) Show that kerπ/m kerπ = 0. Use Nakayama’s lemma to deduce that kerπ = 0.

v) Conclude that M ∼= R⊕r and this M is in fact free.

Summarizing, over a local ring, every direct summand of a finitely generated free R-module is free. (Contrast
this fact with Proposition VI.5.1, which shows that every submodule of a finitely generated free module is
free.)

Solution. Recall the two statements of Nakayama’s Lemma that we will use:

Lemma 10 (Nakayama). Let R be a commutative ring and M an R-module. Suppose I ⊂ J is an ideal
of R that is contained in the Jacobson radical J of R.

(1 ) If m1, . . . ,mr have images in M/IM that generate it as an R/I-module, then m1, . . . ,mr generate M
as an R-module.

(2 ) If M/IM = 0 then M = 0.

Since the Jacobson radical is the intersection of all maximal ideals of R, in this case we have that J = m.
We now prove the problem statement.

i) First note that M is finitely generated. Indeed, since there is an R-module N such that R⊕n ∼= M ⊕N ,
there is a surjective map R⊕n −→M given by the projection map

R⊕n ∼= M ⊕N M.
πM

Since m ⊂ R is maximal, R/m is a field. Note that M/mM has an R/m-module structure given by

(r + m)(m+ mM) = rm+ mM

and thus M/mM is an R/m-vector space. Also note that M/mM is finitely generated since M is. So
M/mM ∼= (R/m)⊕r for some integer r and thus has a basis given by m1 + mM, . . . ,mr + mM . By
Nakayama’s lemma, m1, . . . ,mr also generates M .

ii) Since m1, . . . ,mr generate M , we have a surjective homomorphism

π : R⊕r −→M

(a1, . . . , ar) 7−→ a1m1 + · · ·+ armr.
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iii) Since π is surjective and M⊕N = R⊕n is free (and thus projective), there is an R-module homomorphism

R⊕n
β−→ R⊕r such that the diagram

R⊕r M

R⊕n ∼= M ⊕N

π

β
πM

commutes (see Exercise III.6.9 in Aluffi), where M ⊕ N πM−→ M is the projection that maps the direct

sum onto M . Note that πM has the natural right-inverse given by M
ιM−→M ⊕N such that the diagram

0 kerπ R⊕r M 0

R⊕n ∼= M ⊕N

π

ιM
β

πM

commutes. Hence π has a right-inverse with π ◦ β ◦ ιM = idM and thus the exact sequence

0 kerπ R⊕r M 0π (**)

splits. This is equivalent to saying that R⊕r ∼= M ⊕ kerπ.

iv) Tensoring −⊗R R/m with R⊗r and M ⊕ kerπ yields the R-modules

R⊗r ⊗R R/m ∼= (R/m)⊕r and (M ⊕ kerπ)⊗R R/m ∼= (M/mM)⊕ (kerπ/m kerπ),

which all finite-dimensional as R/m-vector spaces. We have the exact sequence

0 kerπ/m kerπ (R/m)⊕r M/mM 0.π

But M/mM ∼= (R/m)⊕r as an (R/m)-vector space, so we have that kerπ/m kerπ = 0. Thus kerπ = 0
by Nakayama’s lemma.

v) Since kerπ = 0, we have the exact sequence

0 R⊕r M 0π

and thus M ∼= R⊕r so M is free as desired.
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