
Algebra III
Final Exam Review

Mark Girard

April 20, 2014

All exercises from Aluffi’s Algebra: Chapter 0.

Chapter VI questions

Section 6

Exercise 6.9

Prove the Cayley-Hamilton theorem as follows. Recall that every square matrix M has an adjoint
matrix, denoted by adj(M), such that adj(M) ·M = det(M)I. Applying this to M = tI − A (with
A a matrix realizaion of α ∈ EndR-Mod(F ) gives

adj(tI −A) · (tI −A) = Pα(t)I (∗)

where Pα(t) is the characteristic polynomial of α. Prove that there exist matrices Bk ∈Mn(R) such
that

adj(tI −A) =

n−1∑
k=0

Bkt
k,

then use (∗) to obtain Pα(A) = 0, proving Cayley-Hamilton.

Solution. Recall from the definition of the adjoint of a matrix that

adj(tI −A) =

(tI −A)(11) · · · (tI −A)(n1)

...
. . .

...
(tI −A)(1n) · · · (tI −A)(nn)


where each cofactor (tI − A)(ij) is equal to (−1)i+j times the determinant of the matrix of the
matrix produced from deleting the ith row and jth column of (tI − A). Note that each cofactor is
an (n− 1)-degree polynomial in t, which we may write as

(tI −A)(ij) = b
(ij)
0 + b

(ij)
1 t+ · · ·+ b

(ij)
n−1t

n−1

and thus we can write the adjoint matrix as a sum of matrices adj(tI −A) =

n−1∑
k=0

Bkt
k where

Bk =


b
(11)
k · · · b

(n1)
k

...
. . .

...

b
(1n)
k · · · b

(nn)
k

 .
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We can also write the characteristic polynomial as Pα(t) = c0+c1t+· · ·+cn−1tn−1+tn, so expanding
both sides of (∗) yields

n−1∑
k=0

Bkt
k(tI −A) = −B0A+ t(B2 −B1A) + t2(B3 −B2A) + · · ·+ tn−1(Bn−2 −Bn−3A) + tnBn−1

= c0I + c1tI + c2t
2I + · · ·+ cn−1t

n−1I + tnI. (†)

Hence we have the relations Bk = ck+1I + Bk−1A for 1 ≤ k ≤ n − 2, as well as Bn−1 = I and
B0A = −c0I. Clearly, B0 and Bn−1 commutes with A, and Bk commutes with A for k = 1, . . . , n−1
if Bk−1 does.

Finally, we see that plugging inA in the polynomial in (†) yields the zero matrix. Thus Pα(A) = 0.

Exercise 6.10

Let F1, F2 be free R-modules of finite rank and let α1 resp. α2 be linear transformations of F1 resp.
F2. Let F = F1 ⊕ F2 and let α = α1 ⊕ α2.

• Prove that Pα(t) = Pα1
(t)Pα2

(t).

• Find an example showing that the minimal polynomial is not multiplicative over sums.

Solution. .

• Note that if α1 is represented in some basis {e1, . . . , en1
} by a matrix A1 and α2 is represented

in some basis {f1, . . . , fn2
} a matrix by A2, then a matrix representation of α = α1 ⊕ α2 in

the basis {e1, . . . , en1 , f1, . . . , fn2} is the block matrix

A =

[
A1 0
0 A2

]
.

Then α has characteristic polynomial given by Pα(t) = det(tIn1+n2
−A), or

Pα(t) = det

[
tIn1
−A1 0
0 tIn2

−A2

]
,

but the determinant of a block matrix of this form is the product of the determinants of the
blocks. So Pα(t) = det(tIn1 −A1) det(tIn2 −A2) = Pα1(t)Pα2(t).

• For a counter example, consider the zero morphism on Z as a Z-module, which has minimal
polynomial p(t) = t. Then the direct sum of the zero morphism with itself acting on Z⊕Z = Z2

also has minimal polynomial p(t) = t 6= t2.

Exercise 6.12

Let α be a linear transformation of a finite dimensional C-vector space V . Prove the identity of
formal power series with coefficents in C:

1

det(1− αt)
= exp

( ∞∑
k=1

Trαk
tk

k

)
.

Solution. Since C is an algebraically closed field, every polynomial factors completely into linear
terms. Hence, every linear transformation of a complex vector space has a Jordan canonical form
and instead of considering a linear transformation α we may consider its Jordan form

A =


Jλ1,r1

Jλ2,r2

. . .

Jλm,rm

 ,
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where each Jordan block is of the form

Jλi,ri =


λi 1

λi
. . .

. . . 1
λi


︸ ︷︷ ︸

ri

Note that TrAk =
∑
i Tr Jkλi,ri

=
∑
i riλ

k
i . That is, the trace of Ak is the sum of the traces of the

Jordan blocks to the power k. Noting that
∑∞
k=1

λktk

k is the Taylor expansion for − ln(1− λt), this
gives us

exp

( ∞∑
k=1

TrAk
tk

k

)
= exp

(∑
i

ri

∞∑
k=1

tkλki
k

)

= exp

(∑
i

ri
(
− ln(1− tλi)

))

=
∏
i

1

(1− tλi)ri

=
1∏

i

det(I − tJλi,ri)

=
1

det(I −At)
as desired.

Exercise 6.14

Let λ be an eigenvalue of two similar transformations α, β. Prove that the geometric multiplicities
of λ with respect to α and β coincide.

Solution. Since α and β are similar, there is an automorphism π such that β = π ◦απ−1. Suppose
that dim

(
ker(λI − α)

)
= n such that there is a basis {e1, . . . , en} of ker(λI − α). Then the set

{π(e1), . . . , π(en)} is a linearly independent set in ker(λI − β). Indeed, we have

0 = r1π(e1) + · · ·+ rnπ(en) = π(r1e1 + · · · rnen)

implies r1e1 + · · · rnen = 0 and thus ri = 0 for all i. So the dimension of ker(λI − β) is at least
n. However, we may analogously suppose that dim

(
ker(λI − α)

)
= m such that there is a basis

{f1, . . . , fm} of ker(λI−β). Then {π−1(f1), . . . , π−1(fn)} is a linearly independent set in ker(λI−α).
So the dimension of ker(λI − β) is at most n, thus the dimensions coincide. Hence the geometric
multiplicities of λ with respect to α and β coincide.

Exercise 6.15

Let α be a linear transformation on a free R-module F and let v1, . . . ,vn be eigenvectors corre-
sponding to pairwise distinct eigenvalues λ1, . . . , λn. Prove that v1, . . . ,vn are linearly independent.

Solution. Suppose otherwise that v1, . . . ,vn are not linearly independent. Then there is a shortest
linear combination of elements of {v1, . . . ,vn} given by v = r1vi1 + · · · + rmvim = 0 with rj ∈ R
and all rj 6= 0. Then application of α yields

α(v) = λi1r1vi1 + λi2r2vi2 + · · ·+ λimrmvim = 0.
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However, multiplication of v by λi1 yields

λi1r1vi1 + λi1r2vi2 + · · ·+ λi1rmvim = 0

and subtracting the first equation from the second yields a shorter linear combination

(λi1 − λi2)r2vi2 + · · ·+ (λi1 − λim)rmvim = 0.

Hence we must have (λi1 − λik)rik = 0 for some k ∈ {2, . . . ,m}. Since we are working over integral
domains in this chapter, we must have λi1 − λik = 0, a contradiction to the assumption that all of
the eigenvalues are distinct.

Section 7

Exercise 7.9

What is the number of distinct similarity classes of linear transformations on an n-dimensional vector
space, with one fixed eigenvalues λ with algebraic multiplicity n?

Solution. This is equal to the number of partitions of n. There is no closed formula for this (as far
as I know).

Exercise 7.10

Let k be a field. Classify all matrices A ∈ Mn(k) such that A2 = A, up to similarity. Describe the
action of such matrices ‘geometrically’.

Solution. Note that we have A2 − A = 0, so the minimal polynomial must divide the polynomial
t2− t, which factors completely into t(t− 1) since this is a field. So the eigenvalues of A can only be
0 or 1. Furthermore, the blocks of the Jordan canonical form can have size no greater than 1. So the
Jordan canonical form of A must have only 1s and 0s on its diagonal. Thus there are n−1 similarity
classes of matrices such that A2 = A, where the similarity class is determined by the number of 1s
on the diagonal of its Jordan canonical form.

Geometrically, such an automorphism of a vector space is a projection onto a subspace.

Exercise 7.11

A square matrix A ∈Mn(k) is nilpotent if Ar = 0 for some integer r.

• Characterize nilpotent matrices in terms of their Jordan canonical form.

• Prove that if Ar = 0 for some integer r, then Ar
′

= 0 for some integer r′ no larger than n.

• Prove that the trace of a nilpotent matrix is zero.

Solution. Note that the minimal polynomial of A must divide the polynomial tr. That is, the
minimial polynomial must be tm for some integer m ≤ r. Furthermore, the only eigenvalue of A
must be zero. So the characteristic polynomial of A is pA(t) = tn. Since the minimal polynomial
must divide the characteristic polynomial, we must have m ≤ n. Putting this all together, the Jordal
normal form of A must be

PAP−1 =


J0,r1

J0,r2
. . .

J0,rl
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where the r′is are the size of the Jordan blocks

J0,ri =


0 1 0 0

0 0
. . . 0

...
...

. . . 1
0 0 · · · 0


︸ ︷︷ ︸

ri

and the degree of the minimal polynomial is r = maxi ri, i.e. the size of the largest Jordan block.
Hence, we see from the previous problem that the number of similarity classes of nilpotent matrices
of size n is equal to the number of partitions of n. Two nilpotent matrices are similar if the sizes of
all of their Jordan blocks are the same.

Finally, for each block we see that Tr J0,ri = 0, since all of the elements on the diagonal are zero.
So TrA = 0 for any nilpotent matrix, since the trace of A will be equal to the sum of the traces of
its Jordan blocks.

Exercise 7.15

A complte flag of subspaces of a vector space V of dimension n is a sequence of nested subspaces

0 = V0 ( V1 ( · · · ( Vn−1 ( Vn = V

with dimVi = i.
Let V be a finite dimensional vector space over an algebraically closed field. Prove that every

linear transformation α of V preserves a complete flag. That is, there is a complete flag such that
α(Vi) ⊂ Vi. Find a linear transformation that does not preserve a complete flag.

Solution. Given a basis {e1, . . . , en} of a vector space we can define a complete flag of V by
Vi = span{e1, . . . , ei}. Any matrix that is upper triangular in this basis will preserve this complete
flag. Hence, if a linear transformation can be represented by a matrix that is upper triangular in
some basis, then it preserves some complete flag (where the flag is defined by the basis in which it is
upper triangular). Since we are working over an algebraically closed field, every polynomial factors
completely. So every linear transformation as a Jordan canonical representation in some basis and
this matrix is upper triangular.

Chapter VIII questions

Section 3

Exercise 3.1

Verify that a combination of pure tensors
∑
i(mi⊗ ni) is zero in the tensor product M ⊗RN if and

only if
∑
i(mi, ni) ∈ Z⊕(M×N) is a combination of the elements

(m,n1 + n2)− (m,n1)− (m,n2)

(m1 +m2, n)− (m1, n)− (m2, n)

(rm, n)− (m, rn)

with m,m1,m2 ∈M , n, n1, n2 ∈ N and r ∈ R.

Solution. ???
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Exercise 3.2

If f : R→ S is a ring homomorphism and M and N are S-modules (hence R-modules by restrction
of scalars), prove that there is a canonical homomorphism of R-modules M ⊗R N →M ⊗S N .

Solution. Let ϕ : M ×N −→M ⊗S N be the map ϕ(m,n) = m⊗ n. This is R-biliear since

ϕ(r1 ·m1 + r2 ·m2, n) = (r1 ·m1 + r2 ·m2)⊗ n
= (f(r1)m1 + f(r2)m2)⊗ n
= f(r1)(m1 ⊗ n) + f(r2)(m2 ⊗ r)
= r1ϕ(m1, n) + r2ϕ(m2, n),

and analogously in the second spot. Then there is a unique R-module homomorphism given by the
universal property of the tensor product

M ×N M ⊗S N

M ⊗R N

ϕ

⊗R
∃!ϕ̃

such that the above diagram commutes.

Exercise 3.3

Let R and S be commutative rings and let M be an R-module, N an (R,S)-bimodule and P an
S-module. Prove that there is an isomorphism of R-modules

M ⊗R (N ⊗S P ) ∼= (M ⊗R N)⊗S P.

Solution. First note that (M ⊗R N)⊗S P is an R-module with R-action given by

r ·

[(∑
i

mi ⊗ ni
)
⊗p

]
=

(∑
i

rmi ⊗ ni
)
⊗p.

Let ϕ : M ⊗R (N ⊗S P ) −→ (M ⊗R N)⊗S P be the map defined on pure tensors as

m⊗
(∑

i

ni ⊗ pi
)

ϕ7−→
∑
i

(m⊗ ni)⊗ pi,

and we can extend this to all of (M ⊗R N) ⊗S P by R-linearity. Similarly, we can define another
map ψ : (M ⊗R N)⊗S P −→M ⊗R (N ⊗S P ) be the map defined on pure tensors as(∑

i

mi ⊗ ni
)
⊗ p ψ7−→

∑
i

mi ⊗ (ni ⊗ p)

and extend by R-linearity.
Composing ϕ ◦ ψ and acting on pure tensors yields

ϕ

(
ψ

((∑
i

mi ⊗ ni
)
⊗ p

))
= ϕ

(∑
i

mi ⊗ (ni ⊗ p)

)
=
∑
i

ϕ
(
mi ⊗ (ni ⊗ p)

)
=
∑
i

(mi ⊗ ni)⊗ p

=

(∑
i

mi ⊗ ni
)
⊗ p
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and thus ϕ ◦ ψ = id(M⊗RN)⊗SP . Similarly, composing ψ ◦ ϕ and acting on pure tensors yields

ψ

(
ϕ

(
m⊗

(∑
i

ni ⊗ pi
)))

= ψ

(∑
i

(m⊗ ni)⊗ pi

)
=
∑
i

ψ
(
(m⊗ ni)⊗ pi

)
=
∑
i

m⊗ (ni ⊗ pi)

= m⊗

(∑
i

ni ⊗ pi

)
.

Hence ψ ◦ ϕ = idM⊗R(N⊗SP ). Thus, these maps give us the desired isomorphism.

Exercise 3.4

Use the associativity of the tensor product to prove the formula below. Let R be a commutative
ring, S a multiplicative subset of R, and M an R-module.

• Let N be an S−1R-module. Prove that (S−1M)⊗S−1R N ∼= M ⊗R N .

• Let A be an R-module. Prove that (S−1A)⊗RM ∼= S−1(A⊗RM)

Solution. Recall that, for any R-module M , we have M ⊗R R ∼= M . Also, given a multiplicative
subset of R, we have M ⊗R (S−1R) ∼= S−1M .

• First note that N is also an R-module with canonical R-action given by r · n = r
1n. Noting

that (S−1M) ∼= (S−1R)⊗RM , by the associativity of the tensor product we have

(S−1M)⊗S−1R N ∼=
(
M ⊗R (S−1R)

)
⊗S−1R N

∼= M ⊗R
(
(S−1R)⊗S−1R N

)
∼= M ⊗R N.

• Similarly, we have

(S−1A)⊗RM ∼=
(
S−1R⊗R A

)
⊗RM

∼= (S−1R)⊗R (A⊗RM)

∼= S−1(A⊗RM).

Exercise 3.5

(Limits and colimits?)

Exercise 3.6

Let f : R → S be a ring homomorphism and let ϕ : N1 → N2 be a homomorphism of S-modules.
Prove that ϕ is an isomorphism if and only if f∗(ϕ) is an isomorphism. In fact, prove that f∗ is
faithfully exact: a sequence of S-modules

0 L M N 0

is exact if and only if the sequence of R-modules

0 f∗(L) f∗(M) f∗(N) 0

is exact.

7



Solution. First note that, for any S-module P , the R-module f∗(P ) and the S-module P have
the same underlying sets and abelian group structure. Let ϕ : P −→ Q be a homomorphism of
S-modules. Then as abelian groups we have kerϕ = ker f∗(ϕ) and imϕ = im f∗(ϕ).

Hence, given the sequence of S-modules

0 L M N 0α β (∗)

we have that kerα = 0 if and only if ker f∗(α) = 0. So the sequence (∗) is exact at L if and only if
the sequence

0 f∗(L) f∗(M) f∗(N) 0
f∗(α) f∗(β) (∗∗)

is exact at f∗(L). Similarly, we have that imβ = N if and only if im f∗(β) = f∗(N) and N and f∗(N)
are the same as abelian groups, so the sequence (∗) is exact at N if and only if the sequence (∗∗)
is exact at f∗(N). Finally, we have imα = kerβ if and only if im f∗(α) = ker f∗(β), since we have
imα = im f∗(α) and kerβ = ker f∗(β) as abelian groups. Hence the sequence (∗) is exact at M if
and only if the sequence (∗∗) is exact at f∗(M).

Exercise 3.9

Let f : R→ S be a ring homomorphism and let M be an R-module. Prove that the extension f∗(M)
satisfies the following universal property: if N is an S-module and ϕ : M → N is an R-linear map,
then there is a unique S-linear map ϕ̃ : f∗(M)→ N making the diagram

M N

f∗(M)

ϕ

ι
∃!ϕ̃

commute, where ι : M → f∗(M) = M ⊗R S is defined by m 7→ m⊗ 1.

Solution. Define ϕ̃ : f∗(M)→ N through ϕ̃(m⊗s) = mϕ(s) end extend by S-linearity. This indeed
makes the diagram commute. Suppose there is another S-linear map ψ : f∗(M) → N that makes
the diagram commute. That is, ψ(ι(m)) = ψ(m ⊗ 1) = ϕ(m) for all m ∈ M . Then for all m ∈ M
and s ∈ S we have

ψ(m⊗ s) = ψ
(
s(m⊗ 1)

)
= sψ(m⊗ 1) = sϕ(m) = sϕ̃(m⊗ 1) = ϕ̃(m⊗ s)

and thus ψ = ϕ̃.

Exercise 3.11

Let f : R → S be a ring homomorphism and let M be a flat R-module. Prove that f∗(M) is a flat
S-module.

Solution. Recall that f∗(M) = S ⊗RM is an S-module and let 0 −→ A −→ B −→ C −→ 0 be an
exact sequence of S-modules. Tensoring this sequence with f∗(M) yields the sequence

0 A⊗S (S ⊗RM) B ⊗S (S ⊗RM) C ⊗S (S ⊗RM) 0.

Any S-module N is also an R-module by restriction of scalars, so by associativity of the tensor
product we have N ⊗S (S ⊗RM) ∼= (N ⊗S S)⊗RM ∼= N ⊗RM . This gives the exact sequence of
S-modules

0 A⊗RM B ⊗RM C ⊗RM 0.
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Since each N ⊗RM is an R-module by restriction of scalars, this sequence is exact as S-modules if
and only if it is exact as a sequence of R-modules (from the previous problem). But this is indeed
exact since M is a flat R-module.

Chapter IX questions

Exercise 1.1

Prove that if ψ ◦ϕ is an epimorphism, then ψ is an epimorphism. Prove that if ψ ◦ϕ is a monomor-
phism, then ϕ is a monomorphism.

Solution. .

• Let α and β be morphisms such that α ◦ ψ = β ◦ ψ. Then composition with ϕ yeilds that
α ◦ ψ ◦ ϕ = β ◦ ψ ◦ ϕ. But ψ ◦ ϕ is an epimorphism, so this implies α = β.

A B C D
ϕ ψ α

β

Hence α ◦ ψ = β ◦ ψ implies α = β, so ψ is an epimorphism.

• Let α and β be morphisms such that ϕ ◦ α = ϕ ◦ β. Then composition with ψ yeilds that
ψ ◦ ϕ ◦ α = ψ ◦ ϕ ◦ β. But ψ ◦ ϕ is an monomorphism, so this implies α = β.

Z A B C
α

β

ϕ ψ

Hence ϕ ◦ α = ϕ ◦ β implies α = β, so ϕ is an monomorphism.

Exercise 1.3

A preaditive category is a category in which each Hom set is endowed with a structure of abelian
group in such a way that composition maps are bilinear. Prove that a ring is ‘the same as’ a
preadditive category with a single object.

Solution. Let R be a ring. We can build a category with a single object C = {∗} where there is
only hom set we need to worry about, and we define it as Hom(∗, ∗) = R where it retains the abelian
group structure of R. Define composition of morphisms as α ◦ β = αβ where multiplication is in R.
Since multiplication distributes in R, we have

α ◦ (β + γ) = α(β + γ) = αβ + αγ = α ◦ β + α ◦ γ

and similarly
(α+ β) ◦ γ = (α+ β)γ = αγ + βγ = α ◦ γ + β ◦ γ

for all α, β, γ ∈ Hom(∗, ∗). Hence, the composition maps are biliear with respect to the abeliean
group structure. So this category is preadditive.

Exercise 1.4

Let A be an additive category and let A be an object of A. Show that EndA(A) has the natural
structure of a ring.

Solution. Since A is an additive category, we have that EndA(A) is an abelian group with some
binary operation + such that α + β = β + α ∈ EndA(A) whenever α, β ∈ EndA(A). As a hom set,
there is a binary operation on EndA(A) given by composition α◦β ∈ EndA(A) for all α, β ∈ EndA(A),
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such that there is an identity morphism idA ∈ EndA(A) with the property idA ◦ α = α ◦ idA = α
and such that composition is associative, i.e. α ◦ (β ◦ γ) = (α ◦ β) ◦ γ for all α, β, γ ∈ EndA(A).
Furthermore, the fact that A is an additive category says that composition of maps is bilinear. That
is, it distributes over + such that α ◦ (β + γ) = α ◦ β + α ◦ γ and (α+ β) ◦ γ = α ◦ γ + β ◦ γ for all
α, β, γ ∈ EndA(A).

These are all the requirements for
(
EndA(A),+, ◦

)
to be a ring.

Exercise 1.5

Let A and B be objects of an additive category A with a zero-object 0. Since 0 is both final and
initial, HomA(A, 0) and HomA(0, B) are both singletons. So the image of the composition

A −→ 0 −→ B

is a single element e of HomA(A,B). Prove that this is the identity of the abelian group HomA(A,B).
(Hint: Prove e+ e = e.) This is the zero element, denoted 0.

Prove that for every morphism ϕ in A, ϕ ◦ 0 = 0 and 0 ◦ ϕ = 0.

Solution. Let A and B be objects in this category, and denote eAB as the unique element in
HomA(A,B) given by the composition A

eA0−→ 0
e0B−→ B. But HomA(A, 0) is a singleton set, so eA0 is

the only element of this group and thus eA0 + eA0 = eA0. So we have

eAB + eAB = e0B ◦ eA0 + e0B ◦ eA0

= e0B ◦ (eA0 + eA0)

= e0B ◦ eA0

= eAB .

Hence eAB is the zero element in the abelian group HomA(A,B), which we will denote eAB = 0AB .
Let C be another object in A and ϕ ∈ HomA(B,C). Then

ϕ ◦ 0AB = ϕ ◦ (0AB + 0AB) = ϕ ◦ 0AB + ϕ ◦ 0AB

and thus ϕ◦0AB = 0AC . Similarly, if Z is another object in the category and ψ ∈ HomA(Z,A), then

0AB ◦ ψ = (0AB + 0AB) ◦ ψ = 0AB ◦ ψ + 0AB ◦ ψ

and thus 0AB ◦ ψ = 0ZB .

Exercise 1.8

Let ϕ : A → B be a morphism in an additive category A. Prove that ι : K → A is a kernel of ϕ if
and only if for all objects Z the induced sequence

0 HomA(Z,K) HomA(Z,A) HomA(Z,B)

is exact. Formulate an analogous result for cokernels.

Solution. Note that, for all objects Z, the morphisms K
ι−→ A

ϕ−→ B induce a sequence

0 HomA(Z,K) HomA(Z,A) HomA(Z,B)ι◦ ϕ◦

if and only if ϕ◦ ι = 0 (otherwise it is not a valid sequence), where the first map is post-composition
with ι and the second map is post-composition with ϕ.

10



First suppose ι : K → A is a kernel of ϕ. Then ϕ ◦ ι = 0 and for all other morphisms ψ : Z → A
such that ϕ ◦ψ = 0 the universal property tells us there is a unique morphism ψ̃ : Z → K such that
the diagram

Z

K A B

ψ 0∃!ψ̃

ι ϕ

commutes. Suppose f1 : Z → K and f2 : Z → K are two morphisms such that ι ◦ f1 = ι ◦ f2. Then
ϕ◦ ι◦f1 = ϕ◦ ι◦f2 = 0 and thus there is a unique morphism from Z to K such that this commutes.
But both f1 and f2 make it commute, so f1 = f2. Hence ι◦ is injective and thus the sequence in
question is exact at HomA(Z,K). Now let g ∈ HomA(Z,A) such that ϕ ◦ g = 0. The universal
property says that there is a unique morphism g̃ : Z → K such that ι ◦ g̃ = g. Hence g in the kernel
of the map ϕ◦ is also in the image of map ι◦. So the sequence is exact at HomA(Z,A), and thus
the whole sequence is exact.

Now suppose that the sequence in question is exact for all objects Z. Since it is exact, we must
have ϕ ◦ ι = 0. Now for any morphism ψ : Z → A such that ϕ ◦ ψ = 0 (that is, ψ is in the kernel of
the second map), exactness tells us that it is in the image of the first map. So there is a morphism
ψ̃ : Z → K such that ι ◦ ψ̃ = ψ. But injectivity of ι◦ in the sequence tells us, in addition, that this
is the unique morphism that fulfils this property. This is exactly the universal property that we are
looking for, so ι : K → A is a kernel of ϕ.

The analogous statement for cokernels is: π : B → C is a cokernel of ϕ if and only if the induced
sequence

0 HomA(C,Z) HomA(A,Z) HomA(B,Z)◦π ◦ϕ

is exact for all objects Z. Indeed, recall the universal property of the cokernel: if ψ : B → Z is a
morphism such that ψ ◦ ϕ = 0, then there is a unique morphism ψ̃ : C → Z such that the diagram

A B C

Z

ϕ

0
ψ

π

∃!ψ̃

commutes.

Exercise 1.9

Let A be an additive category.

• Let ι : K → A be a kernel in A. Prove that ι is a monomorphism.

• Let ϕ : A → B be a morphism in A. If ϕ has a cokernel, prove that ϕ is an epimorphism if
and only if B → 0 is its cokernel.

• If A is abelian, prove that every kernel in A is the kernel of its own cokernel.

Solution. .

• Let Z be an object and α, β : Z −→ K be two morphisms such that ψ = ι ◦ α = ι ◦ β. Then
ψ : Z −→ A is a morphism such that ϕ ◦ ψ = ϕ ◦ ι ◦ α = 0 since ϕ ◦ ι = 0. By the universal
property of the kernel, there is a unique map ψ̃ : Z −→ K such that the diagram

Z

K A B

ψ 0∃!ψ̃

ι ϕ

11



commutes. But both α and β make this diagram commute, so we must have α = β.

• Let π : B −→ C be a cokernel of ϕ. Then π ◦ ϕ = 0 = 0 ◦ ϕ and thus π = 0 since ϕ is an
epimorphism. Let ψ be any other morphism such that ψ ◦ ϕ = 0. Then ψ = 0 and this must

factor uniquely through B
0−→ C. Hence C = 0.

Conversely, suppose B −→ 0 is a cokernel of ϕ, and let α and β be two morphisms such that
α ◦ ϕ = β ◦ ϕ. Since this is an additive category, we have (α− β) ◦ ϕ = 0. Then α− β factors
uniquely through 0, which implies α− β = 0 and thus α = β.

• Let ι : K −→ A be a kernel of some morphism ϕ : A −→ B, and let g : A −→ D be a cokernel
of ι. Then g ◦ ι = 0 and ϕ ◦ ι = 0. By the universal property of the cokernel, there is a unique
morphism h : D −→ B such that the diagram

K A D

B

ι

ϕ

g

∃!h

commutes, i.e. h◦g = ϕ. Now let ψ : Z −→ A be another morphism such that g ◦ψ = 0. Then

0 = h ◦ g ◦ ψ = ϕ ◦ ψ.

Since ι is a cokernel of ϕ, there is a unique morphism ψ̃ such that the diagram

Z

K A D

B

ψ
ψ̃

ι

ϕ

g

h

commutes, and thus ι is the kernel of g.
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