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Problem 1 (Problem 1 (d), Chapter I.7, p. 27).
Find all possible values and plot (1 + i

√
3)(1−i).

Solution. Set z = 1 + i
√

3, which is z = 2ei
π
3 in polar form. We have Log z = ln 2 + i

(
π
3 + 2πn

)
for all

n ∈ Z. The expression in question becomes

z(1−i) = e(1−i) Log z = e(1−i)(ln 2+iπ3 +i2πn)

= eln 2+ π
3 +2πnei(

π
3−ln 2).

See the figure below for the plot.
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(a) Points with n = 0 and n = −1 shown on the
complex plane.
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(b) Points with n = −10, . . . , 10 shown on the first
quadrant of the complex plane with logarithmic axes
scales.

Figure 1: Plots of the values of (1 + i
√

3)(1−i) on the complex plane.
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Problem 2 (Problem 7, Chapter I.8, p. 32).
Set w = cos z and ζ = eiz. Show that ζ = w ±

√
w2 − 1. Show that

cos−1 w = −i log
[
w ±

√
w2 − 1

]
where both sides of the identity are to be interpreted as subsets of the complex plane.

Solution. With ζ = eiz, we have

w = cos z =
eiz + e−iz

2
=
ζ + ζ−1

2

or ζ2 − 2wζ + 1 = 0. Solving the quadratic equation for ζ yields

ζ = w ±
√
w2 − 1.

Taking the logarithm of both sides, we have Log ζ = Log eiz = iz + i2πm and thus

iz + i2πm = log
[
w ±

√
w2 − 1

]
+ i2πn.

Multiplying by −i and setting k = n−m yields

z = −i log
[
w ±

√
w2 − 1

]
+ 2πk.

Replacing z with cos−1 w yields the desired result.
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Problem 3 (Problem 5, Chapter II.1, p. 40).
Show that the sequence

bn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n, n ≥ 1,

is decreasing, while the sequence an = bn − 1
n is increasing. Show that the sequences both converge to the

same limit γ. Show that 1
2 < γ < 3

5 .

Solution. We first show that bn is decreasing. Indeed, we have

bn+1 − bn =
1

n+ 1
− log(n+ 1) + log n

=
1

n+ 1
+ log

(
1− 1

n+ 1

)
< 0

since the logarithm function is concave down and thus log(1+x) < x for all x > −1. Note that bn is bounded
below by 0, since

bn =

n∑
k=1

1

k
− log n >

∫ n+1

1

1

t
dt︸ ︷︷ ︸

log(n+1)

− log n = log(n+ 1)− log n = log

(
1 +

1

n

)
> 0.

Hence bn converges since it is decreasing and bounded below.
We now show that an is increasing. Indeed,

an+1 − an =
1

n
− log(n+ 1) + log n

=
1

n
− log

(
1 +

1

n

)
> 0

since log(1 + x) < x for all x > −1. Note that an is bounded above by 1, since

an = 1 +

n−1∑
k=2

1

k
− log n > 1 +

∫ n−1

1

1

t
dt︸ ︷︷ ︸

log(n−1)

− log n = 1 + log(n− 1)− log n = 1 + log

(
1− 1

n

)
< 1.

Hence an converges since it is increasing and bounded above.
Note that an and bn converge to the same limit, since both sequences converge and

lim
n→∞

(bn − an) = lim
n→∞

1

n
= 0.

To show that 1
2 < γ < 3

5 , note that

a7 −
1

2
=

39

20
− log 7 = 0.00409 · · · > 0 and

3

5
− b22 = 0.000229 · · · > 0.
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Problem 4 (Problem 5, Chapter II.2, p. 46).
Show that if f is analytic on D, then g(z) = f(z̄) is analytic on the reflected domain D∗ = {z̄ | z ∈ D}, and
g′(z) = f ′(z̄).

Solution. From the definition of the derivative, we have

lim
∆z→0

g(z + ∆z)− g(z)

∆z
= lim

∆z→0

f(z + ∆z)− f(z̄)

∆z

= lim
∆z→0

f(z̄ + ∆z)− f(z̄)

∆z

=

(
lim

∆z→0

f(z̄ + ∆z)− f(z̄)

∆z

)∗
=

(
lim

∆z→0

f(z̄ + ∆z)− f(z̄)

∆z

)∗
= f ′(z̄).

Hence the derivative g′(z) exists for all z ∈ D∗, so g is analytic on D∗.
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Problem 5 (Problem 4, Chapter II.3, p. 50).
Show that if f is analytic on a domain D and |f | is constant, then f is constant.

Solution. If |f | = 0, then there is nothing to show since in this case f is constant at zero. So suppose that

|f | 6= 0. Hence f is nonzero on all of D, and we can write f̄ = |f |2
f . Since |f | is constant, it is differentiable

with (|f |)′ = 0. So we can use the quotient rule to take the derivative

(
f̄
)′

=

(
|f |2

f

)′
= −|f |2 f

′

f2

so f ′ is also differentiable on all of D, and thus analytic. From the problem in class (see Problem 3, Chapter
II.3 p. 50), if f and f̄ are analytic, then f is constant.
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