Quiz 1

MATH 621

Mark Girard
18 September 2014

Problem 1 (Problem 1 (d), Chapter 1.7, p. 27).
Find all possible values and plot (1 + i1/3)(*=%).

Solution. Set z = 1 + i\/g, which is z = 2¢'3 in polar form. We have Logz =1n2+1 (% + 27rn) for all
n € Z. The expression in question becomes

L(1=1) _ o(1=i)Logz _ e(l*i)(ln2+i%+i2ﬂn)

— 2+ 5+2mni(5-In2)

See the figure below for the plot.
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Figure 1: Plots of the values of (1 + i\/g)(l_i) on the complex plane.



Problem 2 (Problem 7, Chapter 1.8, p. 32).
Set w = cosz and ¢ = e**. Show that ¢ = w &+ vw? — 1. Show that

cos tw = —ilog [w + Vw2 — 1}
where both sides of the identity are to be interpreted as subsets of the complex plane.
Solution. With ¢ = e%*, we have

eiz+e—iz _ <+<—1
2 2

W = COS 2 =

or (? —2w¢ +1 = 0. Solving the quadratic equation for ¢ yields
(=w+vVw?-1.
Taking the logarithm of both sides, we have Log ¢ = Loge®* = iz + i2rm and thus
iz + 12wm = log [w + Vw2 — 1} +i27n.
Multiplying by —i and setting £ = n — m yields
z = —ilog [w:l: w2 — 1} + 27k.

Replacing z with cos™ w yields the desired result.



Problem 3 (Problem 5, Chapter I1.1, p. 40).
Show that the sequence
1 1 1
bp=14-4+-+---+——logn, n>1,
2 3 n

is decreasing, while the sequence a,, = b,, — % is increasing. Show that the sequences both converge to the

same limit 7. Show that % <7y < %

Solution. We first show that b, is decreasing. Indeed, we have

bn+1—bn:n+1 —log(n+1) 4+ logn
1 1
- 4log(1- ——
n+l+0g< n+1>
<0

since the logarithm function is concave down and thus log(1+4x) < z for all z > —1. Note that b, is bounded
below by 0, since

n 1 n+1 1
b, = ; T logn > /1 gdt—logn =log(n+1) —logn = log (1 + n) > 0.
log(n+1)

Hence b,, converges since it is decreasing and bounded below.
We now show that a,, is increasing. Indeed,

1
apt1 —anp = — —log(n+1) + logn
n

1 1
=—log(1+)
n n

>0

since log(1 + z) < « for all z > —1. Note that a,, is bounded above by 1, since

n—1
a, =1+ Z
k=2

El

n—1
1
—logn > 1+/ Zdt—logn: 1+1log(n—1)—logn =1+ log (1— ) < 1.
1 n
log(n—1)

Hence a,, converges since it is increasing and bounded above.
Note that a,, and b,, converge to the same limit, since both sequences converge and

1
lim (b, —ay,) = lim — =0.
n—o00 n—oo n
To show that % << %, note that
1 39 3
ar =5 =1g5 —log7 =10.00409--- >0 and 3 — bag = 0.000229--- > 0.



Problem 4 (Problem 5, Chapter 11.2, p. 46).

Show that if f is analytic on D, then g(z) = f(Z) is analytic on the reflected domain D* = {z| z € D}, and
9'(z) = f'(2).

Solution. From the definition of the derivative, we have

. oglz+Az)—g(z) . flz+Az) - f(Z)
Aligo Az - Aliglo Az
o FGHBS) ()
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(g f<z+Az—f<z>>*

Hence the derivative ¢’(z) exists for all z € D*, so g is analytic on D*.



Problem 5 (Problem 4, Chapter 11.3, p. 50).
Show that if f is analytic on a domain D and |f]| is constant, then f is constant.

Solution. If |f| = 0, then there is nothing to show since in this case f is constant at zero. So suppose that
— 2
|f| # 0. Hence f is nonzero on all of D, and we can write f = % Since | f| is constant, it is differentiable

with (|f])" = 0. So we can use the quotient rule to take the derivative

2\’ /
0= (1) =1L

so f' is also differentiable on all of D, and thus analytic. From the problem in class (see Problem 3, Chapter
I1.3 p. 50), if f and f are analytic, then f is constant.



