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Problem 1 (Problem 4, Chapter IV.5, p. 119).
Suppose that f is an entire function such that f(z)/zn is bounded for |z| ≥ R. Show that f(z) is a polynomial
of degree at most n. What can be said if f(z)/zn is bounded on the entire complex plane?

Solution. By assumption, there is an R > 0 and M ∈ R such that
∣∣∣ f(z)zn

∣∣∣ ≤ M for all z with |z| > R. Let

z0 ∈ C be arbitrary. Then
∣∣∣ f(z)zn

∣∣∣ ≤ M for all z such that |z − z0| > |z0| + R. For any r with r ≥ |z0| + R,

and |z − z0| = r, we have
|f(z)| ≤M |z − z0|n = Mrn.

By the theorem of Cauchy estimates, this implies that∣∣∣f (m)(z0)
∣∣∣ ≤ m!

rm
Mrn = m!Mrn−m.

If m > n, taking the limit as r → ∞, we see that f (m)(z0) = 0. Hence, all of the derivatives higher than
the nth one will vanish on the entire complex plane. So f(z) must be a polynomial of degree at most n.

Finally, if f(z)
zn is bounded on the entire complex plane, by the above result f must be a polynomial of

degree at most n, so
f(z) = c0 + c1z + · · ·+ cnz

n

for some c0, . . . , cn ∈ C. But for f(z)
zn to be bounded near zero requires that c0 = · · · = cn−1 = 0. Hence

f(z) = cnz
n.
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Problem 2 (Problem 5, Chapter V.2, p. 137).

For which real numbers x does
∑ 1

k

xk

1 + x2k
converge?

Solution. The series converges for all x ∈ R \ {1}, but diverges at x = 1.

Proof. Let S(x) =
∑ 1

k

xk

1 + x2k
and T (x) =

∑∣∣∣∣1k xk

1 + x2k

∣∣∣∣.
• If x = 0, then S(0) = 0 which converges.

• If x = 1, then S(1) =
∑

1
2k which diverges.

• If x = −1, then S(−1) =
∑ (−1)k

2k which converges by the alternating series test.

• If 0 < |x| < 1, then

T (x) =
∑∣∣∣∣1k xk

1 + x2k

∣∣∣∣ =
∑ 1

k

|x|k

1 + |x|2k
<
∑
|x|k

which converges, so T (x) converges by comparison.

• If |x| > 1, then

T (x) =
∑∣∣∣∣1k xk

1 + x2k

∣∣∣∣ =
∑ 1

k

|x|k

1 + |x|2k
=
∑ 1

k

1

|x|−k + |x|k
<
∑ 1

|x|k

which converges, so T (x) converges by comparison.

Since T (x) converges whenever |x| 6= 1, we have that S(x) converges absolutely for all |x| 6= 1. But S(x)
converges when x = −1 and diverges when x = +1.
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Problem 3 (Problem 1 (i), Chapter V.3, p. 143).
Find the radius of convergence of the following power series:

∑
k=1

k!zk

kk

Solution. The radius of convergence for the series is R = e.

Proof. Let ak = k!
kk . Then we have ∣∣∣∣ akak+1

∣∣∣∣ =
k!

(k + 1)!

(k + 1)k+1

kk

=
1

k + 1

(
k + 1

k

)k

(k + 1)

=

(
1 +

1

k

)k

.

The limit of this as k →∞ exists. From the ratio test, we have

R = lim
k→∞

∣∣∣∣ akak+1

∣∣∣∣
= lim

k→∞

(
1 +

1

k

)k

= e

as desired.
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Problem 4 (Problem 4, Chapter V.5, p. 151).
Let E be a bounded subset of the complex plane C over which area integrals can be defined, and set

f(w) =

∫∫
E

dx dy

w − z
, w ∈ C \ E,

where z = x+ iy. Show that f(w) is analytic at∞, and find a formula for the coefficients of the power series
of f(w) at ∞ in decending powers of w. (Hint: use a geometric series expansion.)

Solution.
Recall that a function f(w) is said to be analytic at infinity if the function f( 1

u ) is analytic at u = 0.
Since E is bounded, there is an M ∈ R such that |z| ≤ M for all z ∈ E. Let u ∈ C be close enough to

zero such that g(z) = 1
|u| > M and thus |uz| < 1. Note that

1
1
u − z

=
u

1− uz
= u

∞∑
k=0

(uz)k

which is convergent since |uz| < 1. Note that the sequence of functions gn(z) = u
∑n

k=0(uz)k converges
uniformly to g(z) = 1

1
u−z

on E whenever 1
|u| > M . So we can exchange the limits such that∫∫

E

lim
n→∞

gn(z) dxdy = lim
n→∞

∫∫
E

gn(z) dxdy,

since the set E is bounded. Then

f

(
1

u

)
=

∫∫
E

dx dy
1
u − z

=

∞∑
k=0

u

∫∫
E

(uz)kdx dy

=

∞∑
k=0

uk+1

∫∫
E

zkdx dy

and this is convergent for |u| < 1
M , so f( 1

u ) is analytic at u = 0. Hence f(w) is analytic at infinity. In
decending powers of w, the power series for f(w) at infinity may be given by

f(w) =

∞∑
k=1

w−kbk where bk =

∫∫
E

zk−1dx dy.
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Problem 5 (Problem 4, Chapter V.6, p. 154).
Define the Bernoulli numbers Bn by

z

2
cot(z/2) = 1−B1

z2

2!
−B2

z4

4!
−B3

z6

6!
− · · · .

Explain why there are no odd terms in the series. What is the radius of convergence of the series? Find the
first five Bernoulli numbers.

Solution. Note that the function in question, given by f( z
2 ) = z

2 cot(z/2), is even. Indeed, the functions

cosx and sin x
x are even, so their ratio cosx x

sin x = f(x) will also be even. Hence, all of the exponents in the
power series expansion will be even.

Claim. The radius of convergence of the power series of f( z
2 ) given above is R = 2π.

Proof. Since the power series for sin x
x is convergent for all x, the power series for x

sin x will be divergent when
sin x
x = 0. The first zero of this function occurs at |x| = π, so the power series for x

sin x will have a radius of
convergence of π. Since the power series expansion for cos converges for all x, and cos(π) 6= 0, this implies
that the power series expansion for x cotx = x

sin x cosx will also have a radius of convergence R = π. Hence
f( z

2 ) will have a radius of convergence of 2π.

We now compute the first five Bernoulli numbers by computing the series expansion of z
2 cot

(
z
2

)
. We

first find the power series expansion for x
sin x . Up to terms of the order x10, this is

x

sinx
=

x

x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + 1
9!x

9 − 1
11!x

11 +O(x13)

=
1

1−
(
1
3!x

2 − 1
5!x

4 + 1
7!x

6 + 1
9!x

8 − 1
11!x

10 +O(x12)
)

=

∞∑
k=0

(
1

3!
x2 − 1

5!
x4 +

1

7!
x6 +

1

9!
x8 − 1

11!
x10 +O(x12

)k

= 1 +

(
1

3!
x2 − 1

5!
x4 +

1

7!
x6 +

1

9!
x8 − 1

11!
x10
)

+

(
1

3!
x2 − 1

5!
x4 +

1

7!
x6 +

1

9!
x8 +O(x10)

)2

+

(
1

3!
x2 − 1

5!
x4 +

1

7!
x6 +O(x8)

)3

+

(
1

3!
x2 − 1

5!
x4 +O(x6)

)4

+

(
1

3!
x2 −O(x4)

)5

+O(x12)

= 1 +
1

3!
x2 +

(
− 1

5!
+

1

(3!)2

)
x4 +

(
1

7!
− 2

3!5!
+

1

(3!)3

)
x6 +

(
1

9!
+

1

(5!)2
+

2

3!7!
+

1

(3!)4

)
x8

+

(
− 1

11!
+

2

3!9!
+

3

3!(5!)2
+

3

(3!)27!
− 4

(3!)35!
+

2

(3!)5

)
x10 +O(x12)

= 1 +
1

6
x2 +

7

360
x4 +

31

15120
x6 +

127

604800
x8 +

73

3421440
x10 +O(x12).

Multiplying this series with the one for cos(x) = 1− 1
2!x

2 + 1
4!x

4 − 1
6!x

6 + 1
8!x

8 − 1
10!x

10 +O(x12), this yilds

x cotx =

(
1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 +

1

8!
x8 − 1

10!
x10 +O(x12)

)
(

1 +
1

6
x2 +

7

360
x4 +

31

15120
x6 +

127

604800
x8 +

73

3421440
x10 +O(x12)

)
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= 1− 1

3
x2 − 1

45
x4 − 2

945
x6 − 1

4735
x8 − 2

9355
x10 +

(
O(x12)

)
.

Substituting x = z
2 , we find that

z

2
cos
(z

2

)
= 1− 1

6

1

2!
z2 − 1

30

1

4!
z4 − 1

42

1

6!
z6 − 1

30

1

8!
z8 − 5

66

1

10!
z10 +O(z12).

So the first five Bernoulli numbers are B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 , B5 = 5
66 .
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