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Problem 1 (Problem 2(d), Chapter V1.2, p. 176).
Find the radius of convergence of the power series for the function

about z = mi.

Solution. The function f(z) is meromorphic and has only isolated singularities at the integer multiples
of 7 on the real line. The radius of convergence will be the distance to the nearest pole. The nearest
non-removeable singularity to im is 0. Therefore, the radius of convergence will be 7.

Indeed, the singularity at z = 0 is not a removeable singularity. From the power series expansion,

22 22 2
P T LR = R )
1 1

1 1 11
_ 2t —-(1-2 2 _ - _ 2 2
T3 L1 00 Z( 2z+(’)(2)> ~— 5 +OE),

so the singularity at z = 0 is not removeable and is a pole.



Problem 2 (Problem 6, Chapter VIL.2, p. 202).
Show that
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Solution. Since the degree of the polynomial in the denominator is at least 2 larger than that of the
numerator, we can evaluate this integral by noting that the limit of the integrals
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tend to zero as R — oo, where I'g is the semi-circular path from R to —R in the upper half-plane. The
integrand has simle poles at +27 and —1+¢. We only need to worry about the poles on the upper half-plane,
i.e. 2¢ and —1 + 4. The residues of the integrand at these points are
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Let Dg denote the semi-circular disk of radius R in the upper half-plane. For R large enough, integrating
along 0Dpg (i.e. the path that consists of 'g and the interval from —R to R) yields
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Problem 3 (Problem 7, Chapter VII.2, p. 202).

Show that - (az)
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for a > 0.
Solution. We can evaluate this integral as the real part of the integral f dx and proceed by

integrating the function = 24—“ around the semi-circular contour I' of radius R in the upper half-plane. Note
that |€mz| = |e_“1m(2)em Re(2)| < 1 since Im(z) > 0 on the upper half-plane. Thus, for R large enough,
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by the M L-estimate, which tends to zero as R — co. So we can instead evaluate the integrals around the
semi-circular disks Dy of radius R in the upper half-plane.

The integrand has only simple poles at ¢ (5 +3) for k = 0,1,2,3. We only need to worry about the ones
in the upper half-plane. These are e'7 = f(l +1i) and €% = f( 1+41). The residues of the integrand at

these points are
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Hence, for R large enough, integrating over the boundary of Dg yields
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Putting this together, the integral in question is
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as desired.




Problem 4 (Problem 2, Chapter VIL.3, p. 205).
Show using residue theory that
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fora > b > 0.

Solution.
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. With the change of variables z = €', we have df = ‘Z—j and the integral becomes
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The polynomial in the denominator has roots at
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Only one of these roots is in the unit disk. Indeed, we have
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since a — b < Va2 — b2. Denote this root as zy = i@_
The integrand has a simple pole at this root, so the residue of the integrand at zg is
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Since this is the only pole in the unit disk, the integral in question evaluates to
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as desired.



Problem 5 (Problem 3, Chapter VIL.7, p. 218).
Evaluate the limits R
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for —oo < a < co. Show that they do not depend continuously on the parameter a.

Solution. If @ = 0, then the limit vanishes. So suppose that a # 0. It suffices to consider only a > 0, since
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So suppose a > 0 and make the change of variables v = az such that dz = %du. The limit becomes

Ra :

wsin(u

lim 27(2) U.
R—oco | _p, U”+a

We may evaluate this limit by taking the imaginary part of the limit
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Note that taking the integral around the semicircular path from Ra to —Ra in the upper half-plane tends
zero as R — oo, since, for R > 1,
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which tends to zero as R — oo, where the final inequality is due to Jordan’s lemma. So the integral in
question may be evaluated by instead integrating along the path from —Ra to +Ra, then around the path
I'rq. The integrand has only one pole in this region at z = ia. The residue of the integrand at this point is
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Therefore, taking the integral around this path yields
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Taking the imaginary part of this yields the result. Hence the limits evaluate to
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Clearly, this does not depend continuously on a, since lim,_,qe~ 1% = 1. As a function of a, this is not

continuous at a = 0.



