Mark Girard

8 December 2014

Problem 1 (Problem 1, Chapter XVI.1, p. 423).

Define the Riemann surface R of $\log z$ in terms of explicit coordinate patches. Define explicitly the function on R determined by $\log z$. Show that it is a one-to-one analytic map of R onto the complex plane \mathbb{C} .

Solution. The Riemann surface of R can be viewed as the graph $R = \{(z, w) | z \neq 0, w = \log z\}$. To cover this surface with coordinate patches, for each $k \in \mathbb{Z}$ choose the corresponding branch of the logarithm function where $U_k \subset R$ consists of the points $(z, w) \in R$ such that

$$(2k-1)\pi < \operatorname{Im} w < (2k+1)\pi.$$

Define the coordinate maps to be the projection onto the first coordinate. Specifically, $z_k: U_k \to \mathbb{C}$ where

$$z_k(z,w) = z$$

We need to define the additional coordinate patches $U'_k \subset R$ to consist of the points $(z, w) \in R$ such that

$$2k\pi < \operatorname{Im} w < 2(k+1)\pi,$$

and define the corresponding coordinate maps to be $z_k'\colon U_k'\to \mathbb{C}$ where

$$z'_k(z, w) = z.$$

The atlas for R is $\mathcal{A}_R = \{(U_k, z_k)\}_{k \in \mathbb{Z}} \cup \{(U'_k, z'_k)\}_{k \in \mathbb{Z}}$. Note that each U_k has nonempty intersection only with U'_k and U'_{k+1} , and the corresponding transition maps are the identity.

We can define the logarithm function from R to \mathbb{C} as follows:

$$\log(z, w) = w.$$

On each of the coordinate patches, this map just reduces to the corresponding analytic branch of the logarithm, so this function is analytic. Furthermore, it is also one-to-one and onto. Indeed, let $\zeta \in \mathbb{C}$ and set $z = e^{\zeta}$ such that $(z, \zeta) \in R$ and $\log(z, \zeta) = \zeta$, so the function is onto. To show that it is one-to-one, suppose (z_1, w_1) and (z_2, w_2) are two points in R such that $\log(z_1, w_1) = \log(z_2, w_2)$. Then $w_1 = w_2$, and $z_1 = e^{w_1} = e^{w_2} = z_2$.

Problem 2 (Problem 4, Chapter XVI.1, p. 423).

Show that the analytic maps from a Riemann surface R to the Riemann sphere $\mathbb{C}_{\infty} = \mathbb{C} \cup \{\infty\}$ are the meromorphic functions on R and the constant function ∞ .

Solution. Recall that the Riemann sphere \mathbb{C}_{∞} can be given the structure of a Riemann surface with the coordinate charts

$$\zeta \mapsto \zeta \quad \text{for } \zeta \in \mathbb{C}_{\infty} \setminus \{\infty\}, \quad \text{and} \quad \zeta \mapsto \frac{1}{\zeta} \quad \text{for } \zeta \in \mathbb{C}_{\infty} \setminus \{0\}.$$

Let $f: R \to \mathbb{C}_{\infty}$ be an analytic map. For each coordinate patch U_{α} containing a point $p \in R$,

- i) if $f(p) \neq \infty$ then the map $f(z_{\alpha}^{-1}(\zeta))$ is analytic at $z_{\alpha}(p)$,
- ii) and if $f(p) \neq 0$ then the map $\frac{1}{f(z_{\alpha}^{-1}(\zeta))}$ is analytic at $z_{\alpha}(p)$.

If $f(p) \neq \infty$ for all $p \in R$, then f is just an analytic function $f: R \to \mathbb{C}$, which is clearly meromorphic. So suppose that $f(p_0) = \infty$ for some $p_0 \in R$. These points in R are precisely the singularities of f when viewing it as a map to \mathbb{C} . Furthermore, the map $\frac{1}{f(p)}$ must be analytic at each such singularity.

Suppose that there is at least one such singularity of f that is not isolated at some point $p_0 \in R$. Then the analytic function $\frac{1}{f(p)}$ has a non-isolated zero at $p = p_0$, and thus $\frac{1}{f(p)}$ must be identically zero. That is, f(p) is identically ∞ .

Now suppose that all of the singularities or f are isolated. Since the function $\frac{1}{f(p)}$ is analytic at each such singularity, and these singularity points are isolated zeros of $\frac{1}{f(p)}$, these zeros must be zeros of $\frac{1}{f(p)}$ with some finite order. (The only analytic function with a zero of infinite order is the function that is constant at 0.) Hence, each singularity of f(p) must be a pole of finite order, where the order of the pole at some singularity p_0 is the same as the order of the zero of $\frac{1}{f(p)}$ at p_0 . We conclude that the function f is meromorphic, since it is analytic on R at all but some isolated singularities, each of which is a pole.

Finally, note that any meromorphic function $f: R \to \mathbb{C}$ can clearly be seen as an analytic map from R to \mathbb{C}_{∞} . Indeed, since f is meromorphic, it is analytic at all non-singularity points, and the map $\frac{1}{f(p)}$ must be analytic at each of the isolated singularities. This is exactly the definition for a map $f: R \to \mathbb{C}_{\infty}$ to be analytic.

Problem 3 (Problem 5, Chapter XVI.1, p. 423).

Let $\omega \neq 0$ and let $\mathbb{Z}\omega$ be the integral multiples of ω . Let R be the set of congruence classes $z + \mathbb{Z}\omega$, $z \in \mathbb{C}$. Show that R is a Riemann surface that is conformally equivalent to the punctured plane $\mathbb{C}\setminus\{0\}$.

Solution.

The set R (which can be viewed as a 'cylinder') can be given the structure of a Riemann surface in the following manner. Choose $\varepsilon > 0$ such that $\varepsilon < |\omega|$. For each complex number $\lambda \in \mathbb{C}$, let U_{λ} be the subset of R defined by

$$U_{\lambda} = \left\{ \zeta + \mathbb{Z}\omega \mid |\zeta - \lambda| < \varepsilon \right\},$$

and define the corresponding coordinate chart to be $z_{\lambda} \colon U_{\lambda} \to \mathbb{C}$ by

$$z_{\lambda}(\zeta + \mathbb{Z}\omega) = \zeta$$
 for $|\zeta - \lambda| < \varepsilon$.

This chart maps U_{λ} onto the disk $\{|z - \lambda| < \varepsilon\} \subset \mathbb{C}$, and the condition that $\varepsilon < |\omega|$ guarantees that this map is one-to-one. Transition maps $z_{\mu} \circ z_{\lambda}^{-1}$ are the identity wherever defined, hence analytic.

Consider the map $f: R \to \mathbb{C} \setminus \{0\}$ given by $f(\lambda + \mathbb{Z}\omega) = e^{\lambda \omega^{-1} 2\pi i}$. This map is well-defined, since

$$\lambda + m\omega \mapsto e^{(\lambda + m\omega)\omega^{-1}2\pi i} = e^{\lambda\omega^{-1}2\pi i + m2\pi i}$$
$$= e^{\lambda\omega^{-1}2\pi i}.$$

It is also one-to-one and onto. Indeed, consider $\lambda, \mu \in \mathbb{C}$ such that $f(\lambda) = f(\mu)$. Then

$$e^{\lambda\omega 2\pi i} = e^{\mu\omega 2\pi i} \quad \iff \quad e^{(\lambda-\mu)\omega 2\pi i} = 1 \quad \iff \quad \lambda-\mu = m\omega \quad \text{for some } m \in \mathbb{Z},$$

and thus $\lambda + \mathbb{Z}\omega = \mu + \mathbb{Z}$. So f is one-to-one. Furthermore, to show that f is onto, for any $z \in \mathbb{C} \setminus \{0\}$, take $\lambda = \frac{\omega}{2\pi i} \log z$ where we take the any branch of $\log z$. Then $f(\lambda) = z$. Finally, we also note that f is analytic since it is analytic in every coordinate chart. The map f yields the desired conformal equivalence between R and $\mathbb{C} \setminus \{0\}$.

Problem 4 (Problem 11(a-c), Chapter XVI.1, p. 424).

Let R be a finite bordered Riemann surface with border ∂R . Let \tilde{R} be a duplicate copy of R, and denote by \tilde{p} the point in \tilde{R} corresponding to $p \in R$. Let $S = R \cup \tilde{R} \cup \partial R$. Define $\tau \colon S \to S$ by $\tau(p) = \tilde{p}$ if $p \in \partial R$, and by $\tau(p) = \tilde{p}$, $\tau(\tilde{p}) = p$ if $p \in R$.

- (a) Show that S can be made into a compact Riemann surface with R as a subsurface so that τ is anticonformal, that is, f(p) is analytic on an open set U if and only if $\overline{f(\tau(p))}$ is analytic on $\tau(U)$. (*Remark*: The surface S is called the **doubled surface** of R, and τ is the reflection in ∂R .)
- (b) Show that the doubled surface of the unit disk is the Riemann sphere \mathbb{C}_{∞} .
- (c) What is the doubled surface of an annulus?

Solution.

Since R is a finite bordered Riemann surface, by definition $R \cup \partial R$ is a compact subsurface of some other Riemann surface M, and $\partial R \subset M$ consists of a finite number of disjoint simple closed analytic curves in M. Recall that a subset K of a Riemann surface is compact if and only if it can be expressed as a finite union $K = K_1 \cup \cdots \cup K_m$, where each K_j is a compact subset contained in a single coordinate patch. Finally, recall that a function $g: D \to \mathbb{C}$ is analytic on a domain $D \subset \mathbb{C}$ if and only if the function $\overline{g(\overline{z})}$ is analytic on the reflected domain $D^* = \{z = \overline{w} \mid w \in D\}$.

(a) Let (U_{α}, z_{α}) be an atlas of M. We can give S the structure of a Riemann surface in the following manner. For each α , define to coordinate patches (V_{α}, w_{α}) and $(\tilde{V}, \tilde{w}_{\alpha})$ on S by $V_{\alpha} = U_{\alpha} \cap R$ with corresponding coordinate chart $w_{\alpha}(p) = z_{\alpha}(p)$, and $\tilde{V}_{\alpha} = \tau(U_{\alpha} \cap R)$ with coordinate chart $\tilde{w}_{\alpha}(\tilde{p}) = \overline{z_{\alpha}(\tau(\tilde{p}))}$. Note that the image $\tilde{w}_{\alpha}(\tilde{V}_{\alpha})$ is just the reflected domain of the image $w_{\alpha}(V_{\alpha})$.

For each intersection of coordinate patches, the analyticity of the transition maps is guaranteed by the analyticity of the transition maps for the parent Riemann surface M. Indeed, for $V_{\alpha} \cap V_{\beta} \neq \emptyset$, we have

$$w_{\beta} \circ w_{\alpha}^{-1}(\zeta) = z_{\beta} \circ z_{\alpha}^{-1}(\zeta)$$
 and $\tilde{w}_{\beta} \circ \tilde{w}_{\alpha}^{-1}(\zeta) = \overline{z_{\beta} \circ z_{\alpha}^{-1}(\overline{\zeta})},$

which are both analytic. The intersections $V_{\alpha} \cap \tilde{V}_{\beta}$ are all empty. This covers all of S except ∂R . It remains to construct patches across the boundary of R and \tilde{R} in S.

Recall that ∂R consists of disjoint analytic curves in M. Hence, for each $p \in \partial R$, there is a coordinate disk $U_p \subset M$ containing p with coordinate chart $z_p \colon U_p \to D_p$ such that $D_p \subset \mathbb{C}$ is a disk centered on the real line, and the boundary $V_p \cap \partial R$ is mapped to $D_p \cap \mathbb{R}$. For each $p \in \partial R$, we can define a coordinate patch (V_p, w_p) on S as follows. Let $V_p \subset S$ be the image of the one-to-one map

$$w_p^{-1} \colon \zeta \mapsto \begin{cases} z_p^{-1}(\zeta), & \zeta \in D_p \cap z_p(U_p \cap (R \cup \partial R)) \\ \tau(z_{\alpha_p}^{-1}(\overline{\zeta})), & \zeta \in D_p \setminus z_p(U_p \cap (R \cup \partial R)), \end{cases}$$

with corresponding coordinate chart $w_p: V_p \to U_p$ to be the inverse of this map. The map w_p^{-1} takes the disk D_p , which is centered on the real line, to the set V_p , which 'straddles' the boundary between R and \tilde{R} in S. The resulting coordinate patch $V_p = w_p^{-1}(U_p)$ contains the point $p \in \partial R$ and intersects both R and \tilde{R} .

The family of coordinate patches $\{(V_{\alpha}, w_{\alpha})\} \cup \{(\tilde{V}_{\alpha}, \tilde{w}_{\alpha})\} \cup \{(V_{p}, w_{p}) \mid p \in \partial R\}$ is in fact a conformal atlas of $S = R \cup \tilde{R} \cup \partial R$. Indeed, the transition maps $w_{\beta} \circ w_{p}^{-1}$ are

$$w_{\beta} \circ w_p^{-1}(\zeta) = z_{\beta} \circ z_p^{-1}(\zeta) \quad \text{for } \zeta \in w_p(V_{\beta} \cap V_p),$$

which are analytic, and the transition maps $\tilde{w}_{\beta} \circ w_p^{-1}$ are

$$\tilde{w}_{\beta} \circ w_p^{-1}(\zeta) = \overline{z_{\beta} \circ z_p^{-1}(\overline{\zeta})} \quad \text{for } \zeta \in w_p^{(\tilde{V}_{\beta} \cap V_p)}$$

which is also analytic. This completes the proof that S is a Riemann surface.

By definition, $R \subset M$ is compact, so there are finitely many compact subsets $K_j \subset M$ such that $R \cup \partial R = K_1 \cup \cdots \cup K_m$. For each $j = 1, \ldots, m$, let $\tilde{K}_j = \tau(K_j)$. Then each \tilde{K}_j is compact, and S can be written as a union of finitely many compact subsets

$$S = K_1 \cup \dots \cup K_m \cup K_1 \cup \dots \cup K_m,$$

so S is a compact surface.

Let $f: U \to \mathbb{C}$ be an analytic map on an open subset $U \subset S$. This is equivalent to the statement that $f \circ w^{-1}$ is analytic on $w(U \cap V)$ for each coordinate patch (V, w) of S. I.e., the following are analytic functions:

$$f \circ w_{\alpha}^{-1}(\zeta) = f \circ z_{\alpha}^{-1}(\zeta) \qquad \qquad \text{for } \zeta \in w_{\alpha}(U \cap V_{\alpha}), \tag{1}$$

$$f \circ \tilde{w}_{\alpha}^{-1}(\zeta) = f \circ \tau \circ \tilde{z}_{\alpha}^{-1}(\overline{\zeta}) \qquad \qquad \text{for } \zeta \in \tilde{w}_{\alpha}(U \cap \tilde{V}_{\alpha}), \qquad (2)$$

$$f \circ w_p^{-1}(\zeta) = \begin{cases} f \circ z_p^{-1}(\zeta), & \zeta \in w_p(U \cap V_p \cap R) \\ f \circ \tau \circ z_p^{-1}(\overline{\zeta}), & \zeta \in w_p(U \cap V_p \cap \overline{R}) \end{cases} \quad \text{for } \zeta \in w_p(U \cap V_p). \tag{3}$$

The function (1) is analytic if and only if $\overline{f \circ w_{\alpha}^{-1}(\overline{\zeta})} = \overline{f \circ \tau \circ \tilde{w}_{\alpha}^{-1}(\zeta)}$ is analytic on the corresponding reflected domain, which is $\tilde{\omega}_{\alpha}(\tau(U \cap V_{\alpha}))$. Similarly, the function (2) is analytic if and only if $\overline{f \circ \tilde{w}_{\alpha}^{-1}(\overline{\zeta})} = \overline{f \circ \tau \circ w_{\alpha}^{-1}(\zeta)}$ is analytic on the corresponding reflected domain, $\omega_{\alpha}(\tau(U \cap \tilde{V}_{\alpha}))$. Finally, the function (3) is analytic if and only if

$$\overline{f \circ w_p^{-1}(\overline{\zeta})} = \begin{cases} \overline{f \circ z_p^{-1}(\overline{\zeta})} \\ \overline{f \circ \tau \circ z_p^{-1}(\zeta)} \end{cases} = \begin{cases} \overline{f \circ \tau \circ z_p^{-1}(\zeta)}, & \zeta \in w_p(\tau(U) \cap V_p \cap \tilde{R}) \\ \overline{f \circ z_p^{-1}(\overline{\zeta})}, & \zeta \in w_p(\tau(U) \cap V_p \cap R) \end{cases} = \overline{f \circ \tau \circ w_p^{-1}(\zeta)}$$

is analytic on the corresponding reflected domain $w_p(\tau(U \cap V_p))$.

Therefore $f: U \to \mathbb{C}$ is analytic if and only if $\overline{f(\tau(\tilde{p}))}$ is analytic on $\tau(U)$.

(b) We have $D = \{z \mid |z| < 1\}$ and $\tilde{D} = \{\tau(z) \mid |z| < 1\}$. For $z \in D$, we can identify $\tau(z)$ with the point $\frac{1}{\bar{z}} \in \mathbb{C}_{\infty} \setminus (D \cup \partial D)$. Then D, ∂D and \tilde{D} can be viewed as subsets of the extended complex plane \mathbb{C}_{∞} , and $\tau(z) = \frac{1}{\bar{z}}$ as an involution of \mathbb{C}_{∞} that fixes ∂D .

We can take a conformal atlas on $D \cup \partial D \cup \tilde{D}$ by using the same standard atlas on the extended complex plane.

(c) The doubled surface of an annulus is a torus.

Problem 5 (Problem 13, Chapter XVI.1, p. 425).

For τ in the open upper half-plane \mathbb{H} , denote by L_{τ} the lattice $\mathbb{Z} + \mathbb{Z}\tau$ generated by 1 and τ , and denote the Riemann surface \mathbb{C}/L_{τ} by T_{τ} .

- (a) Show that the Riemann surface $T = \mathbb{C}/L$ in this section is conformally equivalent to the Riemann surface T_{τ} for some $\tau \in \mathbb{H}$. (*Hint*: Take $\tau = \pm \omega_1/\omega_2$, where the sign is chosen so that $\operatorname{Im} \tau > 0$.)
- (b) Show that T_{τ} is conformally equivalent to $T_{\tau'}$ if and only if there is a fractional linear transformation of the form $f(z) = \frac{az+b}{cz+d}$ where a, b, c, d are integers satisfying ad bc = 1, such that $f(\tau) = \tau'$. (*Remark*: the matrix with entries a, b, c, d is called a unimodular matrix. The unimodular matrices form a group, which is the special linear group $SL(2,\mathbb{Z})$.)

Note: (I thought this was a really neat problem. Thanks for assigning it! I was really stumped by part (b) and had to go looking through a few books to help me solve it. I figured out one direction on my own, but I had to cite a resource (see my footnotes on the next page) that outlined a proof showing that equivalence of T_{τ} and T'_{τ} implies $\tau' = \frac{a\tau+b}{c\tau+d}$. But I didn't completely understand all of the proof. In particular, showing that conformal maps of tori can be lifted to a conformal maps of \mathbb{C} onto itself was what confused me.)

Solution.

(a) Let ω_1 and ω_2 be two linearly independent points in \mathbb{C} . Consider the lattice $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ and define the torus $T = \mathbb{C}/L$ with the standard conformal structure. That is, set $\varepsilon = \min(|\omega_1|, |\omega_2|)$ such that $|m\omega_1 + n\omega_2| > \varepsilon$ for each nonzero lattice point in L. For each $\lambda \in \mathbb{C}$, define the coordinate patch

$$U_{\lambda} = \left\{ \zeta + L \mid |\zeta - \lambda| < \varepsilon \right\}$$

with corresponding coordinate chart $z_{\lambda}(\zeta + L) = \zeta$ for $|\zeta - \lambda| < \varepsilon$.

Let $\tau = \pm \frac{\omega_1}{\omega_2}$ where the sign is chosen such that $\operatorname{Im} \tau > 0$. We can similarly give T_{τ} the structure of a Riemann surface by picking $\delta = \min\{|\tau|, 1\}$, and defining coordinate patches

$$V_{\lambda} = \left\{ \zeta + L \mid |\zeta - \lambda| < \delta \right\}$$

with corresponding coordinate chart $w_{\lambda}(\zeta + L) = \zeta$ for $|\zeta - \lambda| < \delta$.

Define a map $f: T \to T_{\tau}$ by $f(\zeta + L) = \zeta \omega_2^{-1} + L_{\tau}$. Note that this map is well-defined, since

$$\zeta + m\omega_1 + n\omega_2 + L \mapsto \zeta \omega_2^{-1} + \underbrace{m\frac{\omega_1}{\omega_2} + n}_{\in L_\tau} + L_\tau = \zeta \omega_2^{-1} + L_\tau.$$

Furthermore, this map is both one-to-one and onto. Indeed, if $f(\zeta + L) = f(\xi + L)$ for some $\zeta, \xi \in \mathbb{C}$ implies that $(\zeta - \xi)\omega_2^{-1} = m\tau + n$ for some $m, n \in \mathbb{Z}$, and thus $\zeta - \xi = m\tau\omega_2 + n\omega_n \in L$, so f is one-to-one. For any $\zeta + L_{\tau} \in T_{\tau}$, we have $f(\zeta\omega_2 + L) = \zeta + L_{\tau}$, so f is onto.

This map is also analytic. Indeed, for any $\lambda \in \mathbb{C}$, the maps $w_{\lambda \omega_2^{-1}} \circ f \circ z_{\lambda}^{-1} : z_{\lambda}(U_{\lambda}) \to w_{\lambda \omega_2^{-1}}(V_{\lambda \omega_2^{-1}})$ defined by

$$w_{\lambda\omega_2^{-1}}\big(f(z_\lambda^{-1}(\zeta))\big) = \zeta\omega_2^{-1}$$

are analytic, since they are just multiplication by a constant.

(b) Let T_{ω_1,ω_2} be the torus defined above as $T_{\omega_1,\omega_2} = \mathbb{C}/L_{\omega_1,\omega_2}$ from the lattice $L_{\omega_1,\omega_2} = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. For another pair of linearly independent complex numbers $\omega'_1, \omega'_2 \in \mathbb{C}$, we can define another torus $T_{\omega'_1,\omega'_2} = \mathbb{C}/L_{\omega'_1,\omega'_2}$, where the lattice $L_{\omega'_1,\omega'_2}$ is defined equivalently.

Suppose $\omega'_1 = a\omega_1 + b\omega_2$ and $\omega'_2 = c\omega_1 + d\omega_2$ for some integers $a, b, c, d \in \mathbb{Z}$ such that ad - bc = 1. Then the pairs (ω_1, ω_2) and (ω'_1, ω'_2) define the same lattice. Indeed, we can represent any lattice point $p \in L_{\omega'_1, \omega'_2}$ as $p = m\omega'_1 + n\omega'_2$ for some $m, n \in \mathbb{Z}$, and thus

$$p = m\omega_1' + n\omega_2' = m(a\omega_1 + b\omega_2) + n(c\omega_1 + d\omega_2) = (ma + nc)\omega_1 + (mb + nd)\omega_2$$

so $p \in L_{\omega_1,\omega_2}$ and thus $L_{\omega'_1,\omega'_2} \subseteq L_{\omega_1,\omega_2}$. Similarly, we can write ω_1 and ω_2 as linear combinations of ω'_1 and ω'_2 by

$$\omega_1 = d\omega'_1 - b\omega'_2$$
 and $\omega_2 = -c\omega'_1 + a\omega'_2$

(using the inverse transform $\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$). Hence $L_{\omega_1,\omega_2} \subseteq L_{\omega'_1,\omega'_2}$ and thus $L_{\omega'_1,\omega'_2} = L_{\omega_1,\omega_2}$. Since these two pairs of points define the same lattice, they must also define the same torus, and thus the tori T_{ω_1,ω_2} and $T_{\omega'_1,\omega'_2}$ are identical.

From part (a), we see that T_{τ} and T_{ω_1,ω_2} are conformally equivalent, and similarly that $T_{\tau'}$ and $T_{\omega'_1,\omega'_2}$ are conformally equivalent, where

$$\frac{a\tau+b}{c\tau+d} = \frac{a\frac{\omega_1}{\omega_2}+b}{c\frac{\omega_1}{\omega_1}+d} = \frac{a\omega_1+b\omega_2}{c\omega_1+d\omega_2} = \frac{\omega'_1}{\omega'_2} = \tau'$$

Since both $T_{\tau'}$ and T_{τ} are both conformally equivalent to $T = T_{\omega_1,\omega_2} = T_{\omega'_1,\omega'_2}$, they are conformally equivalent to each other.

Now suppose there is a conformal equivalence $\phi: T_{\tau} \to T_{\tau'}$. This map can be 'lifted'¹ to a conformal equivalence $\tilde{\phi}: \mathbb{C} \to \mathbb{C}$ that satisfies $\tilde{\phi}(0) = 0$ and $\pi' \circ \tilde{\phi} = \phi \circ \pi$, where $\pi: \mathbb{C} \to T_{\tau}$ and $\pi': \mathbb{C} \to T_{\tau'}$ are the canonical projections

$$\pi(\zeta) = \zeta + L_{\tau}$$
 and $\pi'(\zeta) = \zeta + L_{\tau'}$.

The only conformal mappings of the entire complex plane are the linear maps² $z \mapsto \alpha z + \beta$ for $\alpha \neq 0$. Since $\tilde{\phi} \colon \mathbb{C} \to \mathbb{C}$ is conformal and $\tilde{\phi}(0) = 0$, it must be a dilation map $\tilde{\phi}(z) = \alpha z$ for some nonzero $\alpha \in \mathbb{C}$. From the relation $\pi' \circ \tilde{\phi} = \phi \circ \pi$, we see that³ any point on the lattice T_{τ} gets mapped to point on the lattice $T_{\tau'}$. Hence, we have

$$\tilde{\phi}(\tau) = \alpha \tau = a \tau' + b$$
 and $\tilde{\phi}(1) = \alpha = c \tau' + d$

for some $a, b, c, d \in \mathbb{Z}$. Since $\tilde{\phi}$ is invertible, we have $ad - bc = \pm 1$, and τ has the desired form

$$\tau = \frac{\alpha \tau}{\alpha} = \frac{a\tau' + b}{c\tau' + d}.$$

Note that ad - bc = 1, since both τ and τ' are both in the upper half-plane. Indeed, since the imaginary part of τ' is positive, the sign of the imaginary part of $\tau' = \frac{a\tau' + b}{c\tau' + d}$ is the same as the sign of ad - bc. This concludes the proof.

¹I didn't really understand this part. I got the idea from *Glimpses of Algebra and Geometry* by Gabor Toth. Springer Science & Business Media, 2002. Pages 187-188. (link: http://books.google.ca/books?id=U7sSXFIHclOC&pg=187) ²See Problem IX.2.7 on page 265 of *Complex Analysis* by Gamelin.

³Again, I somewhat understand this, but couldn't figure out how to show it.