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Problem 1 (Problem 1, Chapter XVI.1, p. 423).
Define the Riemann surface R of log z in terms of explicit coordinate patches. Define explicitly the function
on R determined by log z. Show that it is a one-to-one analytic map of R onto the complex plane C.

Solution. The Riemann surface of R can be viewed as the graph R = {(z, w) | z 6= 0, w = log z}. To
cover this surface with coordinate patches, for each k ∈ Z choose the corresponding branch of the logarithm
function where Uk ⊂ R consists of the points (z, w) ∈ R such that

(2k − 1)π < Imw < (2k + 1)π.

Define the coordinate maps to be the projection onto the first coordinate. Specifically, zk : Uk → C where

zk(z, w) = z.

We need to define the additional coordinate patches U ′k ⊂ R to consist of the points (z, w) ∈ R such that

2kπ < Imw < 2(k + 1)π,

and define the corresponding coordinate maps to be z′k : U ′k → C where

z′k(z, w) = z.

The atlas for R is AR = {(Uk, zk)}k∈Z ∪ {(U ′k, z′k)}k∈Z. Note that each Uk has nonempty intersection only
with U ′k and U ′k+1, and the corresponding transition maps are the identity.

We can define the logarithm function from R to C as follows:

log(z, w) = w.

On each of the coordinate patches, this map just reduces to the corresponding analytic branch of the
logarithm, so this function is analytic. Furthermore, it is also one-to-one and onto. Indeed, let ζ ∈ C and
set z = eζ such that (z, ζ) ∈ R and log(z, ζ) = ζ, so the function is onto. To show that it is one-to-one,
suppose (z1, w1) and (z2, w2) are two points in R such that log(z1, w1) = log(z2, w2). Then w1 = w2, and
z1 = ew1 = ew2 = z2.
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Problem 2 (Problem 4, Chapter XVI.1, p. 423).
Show that the analytic maps from a Riemann surface R to the Riemann sphere C∞ = C ∪ {∞} are the
meromorphic functions on R and the constant function ∞.

Solution. Recall that the Riemann sphere C∞ can be given the structure of a Riemann surface with the
coordinate charts

ζ 7→ ζ for ζ ∈ C∞ \ {∞}, and ζ 7→ 1

ζ
for ζ ∈ C∞ \ {0}.

Let f : R→ C∞ be an analytic map. For each coordinate patch Uα containing a point p ∈ R,

i) if f(p) 6=∞ then the map f
(
z−1
α (ζ)

)
is analytic at zα(p),

ii) and if f(p) 6= 0 then the map 1

f(z−1
α (ζ))

is analytic at zα(p).

If f(p) 6= ∞ for all p ∈ R, then f is just an analytic function f : R → C, which is clearly meromorphic. So
suppose that f(p0) =∞ for some p0 ∈ R. These points in R are precisely the singularities of f when viewing
it as a map to C. Furthermore, the map 1

f(p) must be analytic at each such singularity.

Suppose that there is at least one such singularity of f that is not isolated at some point p0 ∈ R. Then
the analytic function 1

f(p) has a non-isolated zero at p = p0, and thus 1
f(p) must be identically zero. That is,

f(p) is identically ∞.
Now suppose that all of the singularities or f are isolated. Since the function 1

f(p) is analytic at each such

singularity, and these singularity points are isolated zeros of 1
f(p) , these zeros must be zeros of 1

f(p) with some

finite order. (The only analytic function with a zero of infinite order is the function that is constant at 0.)
Hence, each singularity of f(p) must be a pole of finite order, where the order of the pole at some singularity
p0 is the same as the order of the zero of 1

f(p) at p0. We conclude that the function f is meromorphic, since

it is analytic on R at all but some isolated singularities, each of which is a pole.
Finally, note that any meromorphic function f : R → C can clearly be seen as an analytic map from R

to C∞. Indeed, since f is meromorphic, it is analytic at all non-singularity points, and the map 1
f(p) must

be analytic at each of the isolated singularities. This is exactly the definition for a map f : R → C∞ to be
analytic.
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Problem 3 (Problem 5, Chapter XVI.1, p. 423).
Let ω 6= 0 and let Zω be the integral multiples of ω. Let R be the set of congruence classes z + Zω, z ∈ C.
Show that R is a Riemann surface that is conformally equivalent to the punctured plane C\{0}.

Solution.
The set R (which can be viewed as a ‘cylinder’) can be given the structure of a Riemann surface in the
following manner. Choose ε > 0 such that ε < |ω|. For each complex number λ ∈ C, let Uλ be the subset of
R defined by

Uλ =
{
ζ + Zω

∣∣ |ζ − λ| < ε
}
,

and define the corresponding coordinate chart to be zλ : Uλ → C by

zλ (ζ + Zω) = ζ for |ζ − λ| < ε.

This chart maps Uλ onto the disk {|z − λ| < ε} ⊂ C, and the condition that ε < |ω| guarantees that this
map is one-to-one. Transition maps zµ ◦ z−1

λ are the identity wherever defined, hence analytic.

Consider the map f : R→ C\{0} given by f(λ+ Zω) = eλω
−12πi. This map is well-defined, since

λ+mω 7→ e(λ+mω)ω−12πi = eλω
−12πi+m2πi

= eλω
−12πi.

It is also one-to-one and onto. Indeed, consider λ, µ ∈ C such that f(λ) = f(µ). Then

eλω2πi = eµω2πi ⇐⇒ e(λ−µ)ω2πi = 1 ⇐⇒ λ− µ = mω for some m ∈ Z,

and thus λ+ Zω = µ+ Z. So f is one-to-one. Furthermore, to show that f is onto, for any z ∈ C\{0}, take
λ = ω

2πi log z where we take the any branch of log z. Then f(λ) = z. Finally, we also note that f is analytic
since it is analytic in every coordinate chart. The map f yields the desired conformal equivalence between
R and C\{0}.
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Problem 4 (Problem 11(a-c), Chapter XVI.1, p. 424).
Let R be a finite bordered Riemann surface with border ∂R. Let R̃ be a duplicate copy of R, and denote by
p̃ the point in R̃ corresponding to p ∈ R. Let S = R ∪ R̃ ∪ ∂R. Define τ : S → S by τ(p) = p̃ if p ∈ ∂R, and
by τ(p) = p̃, τ(p̃) = p if p ∈ R.

(a) Show that S can be made into a compact Riemann surface with R as a subsurface so that τ is anti-
conformal, that is, f(p) is analytic on an open set U if and only if f(τ(p)) is analytic on τ(U). (Remark :
The surface S is called the doubled surface of R, and τ is the reflection in ∂R.)

(b) Show that the doubled surface of the unit disk is the Riemann sphere C∞.

(c) What is the doubled surface of an annulus?

Solution.
Since R is a finite bordered Riemann surface, by definition R ∪ ∂R is a compact subsurface of some other
Riemann surface M , and ∂R ⊂M consists of a finite number of disjoint simple closed analytic curves in M .
Recall that a subset K of a Riemann surface is compact if and only if it can be expressed as a finite union
K = K1 ∪ · · · ∪ Km, where each Kj is a compact subset contained in a single coordinate patch. Finally,

recall that a function g : D → C is analytic on a domain D ⊂ C if and only if the function g(z) is analytic
on the reflected domain D∗ = {z = w |w ∈ D}.

(a) Let (Uα, zα) be an atlas of M . We can give S the structure of a Riemann surface in the following manner.
For each α, define to coordinate patches (Vα, wα) and (Ṽ , w̃α) on S by Vα = Uα ∩R with corresponding
coordinate chart wα(p) = zα(p), and Ṽα = τ(Uα ∩ R) with coordinate chart w̃α(p̃) = zα(τ(p̃)). Note
that the image w̃α(Ṽα) is just the reflected domain of the image wα(Vα).

For each intersection of coordinate patches, the analyticity of the transition maps is guaranteed by the
analyticity of the transition maps for the parent Riemann surface M . Indeed, for Vα ∩ Vβ 6= ∅, we have

wβ ◦ w−1
α (ζ) = zβ ◦ z−1

α (ζ) and w̃β ◦ w̃−1
α (ζ) = zβ ◦ z−1

α (ζ),

which are both analytic. The intersections Vα ∩ Ṽβ are all empty. This covers all of S except ∂R. It

remains to construct patches across the boundary of R and R̃ in S.

Recall that ∂R consists of disjoint analytic curves in M . Hence, for each p ∈ ∂R, there is a coordinate
disk Up ⊂ M containing p with coordinate chart zp : Up → Dp such that Dp ⊂ C is a disk centered
on the real line, and the boundary Vp ∩ ∂R is mapped to Dp ∩ R. For each p ∈ ∂R, we can define a
coordinate patch (Vp, wp) on S as follows. Let Vp ⊂ S be the image of the one-to-one map

w−1
p : ζ 7→

{
z−1
p (ζ), ζ ∈ Dp ∩ zp

(
Up ∩ (R ∪ ∂R)

)
τ
(
z−1
αp (ζ)

)
, ζ ∈ Dp \ zp

(
Up ∩ (R ∪ ∂R)

)
,

with corresponding coordinate chart wp : Vp → Up to be the inverse of this map. The map w−1
p takes

the disk Dp, which is centered on the real line, to the set Vp, which ‘straddles’ the boundary between

R and R̃ in S. The resulting coordinate patch Vp = w−1
p (Up) contains the point p ∈ ∂R and intersects

both R and R̃.

The family of coordinate patches {(Vα, wα)} ∪ {(Ṽα, w̃α)} ∪ {(Vp, wp) | p ∈ ∂R} is in fact a conformal

atlas of S = R ∪ R̃ ∪ ∂R. Indeed, the transition maps wβ ◦ w−1
p are

wβ ◦ w−1
p (ζ) = zβ ◦ z−1

p (ζ) for ζ ∈ wp(Vβ ∩ Vp),

which are analytic, and the transition maps w̃β ◦ w−1
p are

w̃β ◦ w−1
p (ζ) = zβ ◦ z−1

p (ζ) for ζ ∈ w(
pṼβ ∩ Vp),

which is also analytic. This completes the proof that S is a Riemann surface.
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By definition, R ⊂ M is compact, so there are finitely many compact subsets Kj ⊂ M such that

R ∪ ∂R = K1 ∪ · · · ∪Km. For each j = 1, . . . ,m, let K̃j = τ(Kj). Then each K̃j is compact, and S can
be written as a union of finitely many compact subsets

S = K1 ∪ · · · ∪Km ∪ K̃1 ∪ · · · ∪ K̃m,

so S is a compact surface.

Let f : U → C be an analytic map on an open subset U ⊂ S. This is equivalent to the statement that
f ◦ w−1 is analytic on w(U ∩ V ) for each coordinate patch (V,w) of S. I.e., the following are analytic
functions:

f ◦ w−1
α (ζ) = f ◦ z−1

α (ζ) for ζ ∈ wα(U ∩ Vα), (1)

f ◦ w̃−1
α (ζ) = f ◦ τ ◦ z̃−1

α (ζ) for ζ ∈ w̃α(U ∩ Ṽα), (2)

f ◦ w−1
p (ζ) =

{
f ◦ z−1

p (ζ), ζ ∈ wp(U ∩ Vp ∩R)

f ◦ τ ◦ z−1
p (ζ), ζ ∈ wp(U ∩ Vp ∩ R̃)

for ζ ∈ wp(U ∩ Vp). (3)

The function (1) is analytic if and only if f ◦ w−1
α (ζ) = f ◦ τ ◦ w̃−1

α (ζ) is analytic on the corresponding

reflected domain, which is ω̃α(τ(U∩Vα)). Similarly, the function (2) is analytic if and only if f ◦ w̃−1
α (ζ) =

f ◦ τ ◦ w−1
α (ζ) is analytic on the corresponding reflected domain, ωα(τ(U∩Ṽα)). Finally, the function (3)

is analytic if and only if

f ◦ w−1
p (ζ) =

{
f ◦ z−1

p (ζ)

f ◦ τ ◦ z−1
p (ζ)

=

{
f ◦ τ ◦ z−1

p (ζ), ζ ∈ wp(τ(U) ∩ Vp ∩ R̃)

f ◦ z−1
p (ζ), ζ ∈ wp(τ(U) ∩ Vp ∩R)

= f ◦ τ ◦ w−1
p (ζ)

is analytic on the corresponding reflected domain wp(τ(U ∩ Vp)).

Therefore f : U → C is analytic if and only if f(τ(p̃)) is analytic on τ(U).

(b) We have D =
{
z
∣∣ |z| < 1

}
and D̃ =

{
τ(z)

∣∣ |z| < 1
}

. For z ∈ D, we can identify τ(z) with the point
1
z̄ ∈ C∞ \ (D ∪ ∂D). Then D, ∂D and D̃ can be viewed as subsets of the extended complex plane C∞,
and τ(z) = 1

z̄ as an involution of C∞ that fixes ∂D.

We can take a conformal atlas on D∪∂D∪D̃ by using the same standard atlas on the extended complex
plane.

(c) The doubled surface of an annulus is a torus.
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Problem 5 (Problem 13, Chapter XVI.1, p. 425).
For τ in the open upper half-plane H, denote by Lτ the lattice Z+Zτ generated by 1 and τ , and denote the
Riemann surface C/Lτ by Tτ .

(a) Show that the Riemann surface T = C/L in this section is conformally equivalent to the Riemann surface
Tτ for some τ ∈ H. (Hint : Take τ = ±ω1/ω2, where the sign is chosen so that Im τ > 0.)

(b) Show that Tτ is conformally equivalent to Tτ ′ if and only if there is a fractional linear transformation of
the form f(z) = az+b

cz+d where a, b, c, d are integers satisfying ad− bc = 1, such that f(τ) = τ ′. (Remark :
the matrix with entries a, b, c, d is called a unimodular matrix. The unimodular matrices form a group,
which is the special linear group SL(2,Z).)

Note: (I thought this was a really neat problem. Thanks for assigning it! I was really stumped by part (b)
and had to go looking through a few books to help me solve it. I figured out one direction on my own, but
I had to cite a resource (see my footnotes on the next page) that outlined a proof showing that equivalence
of Tτ and T ′τ implies τ ′ = aτ+b

cτ+d . But I didn’t completely understand all of the proof. In particular, showing
that conformal maps of tori can be lifted to a conformal maps of C onto itself was what confused me.)

Solution.

(a) Let ω1 and ω2 be two linearly independent points in C. Consider the lattice L = Zω1 + Zω2 and define
the torus T = C/L with the standard conformal structure. That is, set ε = min(|ω1| , |ω2|) such that
|mω1 + nω2| > ε for each nonzero lattice point in L. For each λ ∈ C, define the coordinate patch

Uλ =
{
ζ + L

∣∣ |ζ − λ| < ε
}

with corresponding coordinate chart zλ(ζ + L) = ζ for |ζ − λ| < ε.

Let τ = ±ω1

ω2
where the sign is chosen such that Im τ > 0. We can similarly give Tτ the structure of

a Riemann surface by picking δ = min{|τ | , 1}, and defining coordinate patches

Vλ =
{
ζ + L

∣∣ |ζ − λ| < δ
}

with corresponding coordinate chart wλ(ζ + L) = ζ for |ζ − λ| < δ.

Define a map f : T → Tτ by f(ζ + L) = ζω−1
2 + Lτ . Note that this map is well-defined, since

ζ +mω1 + nω2 + L 7→ ζω−1
2 +mω1

ω2
+ n︸ ︷︷ ︸

∈Lτ

+Lτ = ζω−1
2 + Lτ .

Furthermore, this map is both one-to-one and onto. Indeed, if f(ζ + L) = f(ξ + L) for some ζ, ξ ∈ C
implies that (ζ − ξ)ω−1

2 = mτ + n for some m,n ∈ Z, and thus ζ − ξ = mτω2 + nωn ∈ L, so f is
one-to-one. For any ζ + Lτ ∈ Tτ , we have f(ζω2 + L) = ζ + Lτ , so f is onto.

This map is also analytic. Indeed, for any λ ∈ C, the maps wλω−1
2
◦f ◦ z−1

λ : zλ(Uλ)→ wλω−1
2

(Vλω−1
2

)

defined by
wλω−1

2

(
f(z−1

λ (ζ))
)

= ζω−1
2

are analytic, since they are just multiplication by a constant.

(b) Let Tω1,ω2
be the torus defined above as Tω1,ω2

= C/Lω1,ω2
from the lattice Lω1,ω2

= Zω1 + Zω2.
For another pair of linearly independent complex numbers ω′1, ω

′
2 ∈ C, we can define another torus

Tω′1,ω′2 = C/Lω′1,ω′2 , where the lattice Lω′1,ω′2 is defined equivalently.

Suppose ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2 for some integers a, b, c, d ∈ Z such that ad − bc = 1.
Then the pairs (ω1, ω2) and (ω′1, ω

′
2) define the same lattice. Indeed, we can represent any lattice point

p ∈ Lω′1,ω′2 as p = mω′1 + nω′2 for some m,n ∈ Z, and thus

p = mω′1 + nω′2 = m(aω1 + bω2) + n(cω1 + dω2) = (ma+ nc)ω1 + (mb+ nd)ω2
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so p ∈ Lω1,ω2 and thus Lω′1,ω′2 ⊆ Lω1,ω2 . Similarly, we can write ω1 and ω2 as linear combinations of ω′1
and ω′2 by

ω1 = dω′1 − bω′2 and ω2 = −cω′1 + aω′2

(using the inverse transform
(
d −b
−c a

)
of
(
a b
c d

)
). Hence Lω1,ω2 ⊆ Lω′1,ω′2 and thus Lω′1,ω′2 = Lω1,ω2

. Since
these two pairs of points define the same lattice, they must also define the same torus, and thus the tori
Tω1,ω2

and Tω′1,ω′2 are identical.

From part (a), we see that Tτ and Tω1,ω2
are conformally equivalent, and similarly that Tτ ′ and

Tω′1,ω′2 are conformally equivalent, where

aτ + b

cτ + d
=
aω1

ω2
+ b

cω1

ω2
+ d

=
aω1 + bω2

cω1 + dω2
=
ω′1
ω′2

= τ ′

Since both Tτ ′ and Tτ are both conformally equivalent to T = Tω1,ω2 = Tω′1,ω′2 , they are conformally
equivalent to each other.

Now suppose there is a conformal equivalence φ : Tτ → Tτ ′ . This map can be ‘lifted’1 to a conformal
equivalence φ̃ : C→ C that satisfies φ̃(0) = 0 and π′ ◦ φ̃ = φ ◦ π, where π : C→ Tτ and π′ : C→ Tτ ′ are
the canonical projections

π(ζ) = ζ + Lτ and π′(ζ) = ζ + Lτ ′ .

The only conformal mappings of the entire complex plane are the linear maps2 z 7→ αz + β for α 6= 0.
Since φ̃ : C→ C is conformal and φ̃(0) = 0, it must be a dilation map φ̃(z) = αz for some nonzero α ∈ C.
From the relation π′ ◦ φ̃ = φ ◦ π, we see that3 any point on the lattice Tτ gets mapped to point on the
lattice Tτ ′ . Hence, we have

φ̃(τ) = ατ = aτ ′ + b and φ̃(1) = α = cτ ′ + d

for some a, b, c, d ∈ Z. Since φ̃ is invertible, we have ad− bc = ±1, and τ has the desired form

τ =
ατ

α
=
aτ ′ + b

cτ ′ + d
.

Note that ad− bc = 1, since both τ and τ ′ are both in the upper half-plane. Indeed, since the imaginary
part of τ ′ is positive, the sign of the imaginary part of τ ′ = aτ ′+b

cτ ′+d is the same as the sign of ad− bc. This
concludes the proof.

1I didn’t really understand this part. I got the idea from Glimpses of Algebra and Geometry by Gabor Toth. Springer
Science & Business Media, 2002. Pages 187-188. (link: http://books.google.ca/books?id=U7sSXFIHcl0C&pg=187)

2See Problem IX.2.7 on page 265 of Complex Analysis by Gamelin.
3Again, I somewhat understand this, but couldn’t figure out how to show it.
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