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1 Lecture 1

(10 January 2014)

The main text for this course is [KREY89]. An additional good resources (and the traditional
textbook for this course at U Calgary) is [CON90].

The final mark will be based on 5 assignments throughout the semester, as well as a final exam.

1.1 Normed Spaces

Definition 1.1. A normed space is a pair (X, ‖·‖), where X is a vector space and ‖·‖ : X → R
satisfying

i) ‖x‖ ≥ 0 for all x ∈ X

ii) ‖x‖ = 0 if and only if x = 0

iii) ‖αx‖ = |α| ‖x‖

iv) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

Remark 1.2. The norm must be continuous. We can define a metric by d(x, y) = ‖x− y‖. We
have ∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖ (1.1)

since ‖y‖ = ‖y − x+ x‖ ≤ ‖y − x‖ + ‖x‖, which implies ‖y‖ − ‖x‖ ≤ ‖y − x‖. Similarly, swapping
the roles of x and y, ‖x‖ − ‖y‖ ≤ ‖x− y‖. So

∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖.
Equation (1.1) means that “if x is ‘close’ to y, then ‖x‖ is ‘close’ to ‖y‖” (namely, this is our

concept of continuity).

Definition 1.3. A normed space is Banach if it is complete.

In this sense of completeness we mean that the space contains all of its limit points. That is, if
a sequence {xn} in X is Cauchy, then it converges to something that is in X.

Example 1.4. i) The Euclidean norm on Rn or Cn given by

x = (α1, . . . , αn) ||x|| =
n∑
i=1

|αi|2.

Proof that this is a norm is easy (left as an exercize). The triangle inequality comes from the
Cauchy-Schwartz inequality. This space is also complete.

ii) The space `p (sequence space) where p ≥ 1 is a real number. (This is not a norm for p < 1).
The space is defined byx = (α1, α2, . . . ) = {αn}n∈N

∣∣∣∣ ∞∑
j=1

|αj |p <∞


and the norm is defined by ||x||p =

(∑∞
j=1 |αj |p

)1/p
.

Proof of the triangle inequality for this norm uses the Hölder inequality and Minkowski in-
equality (homework).
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iii) The space `∞ {
x = (α1, α2, . . . ) = {αn}n∈N

∣∣∣∣ sup
j
|αj | <∞

}
and the norm is ||x|| = supj |αj |.

iv) C[a, b] the space of continuous real-valued functions on the interval [a, b]. For x ∈ C[a, b],
x : t 7→ x(t), we can define the norm

||x|| = max
t∈[a,b]

|x(t)|.

Proposition 1.5. C[a, b] with the norm defined above is Banach.

Proof. Let xn be Cauchy, and let ε > 0. Then there exists an N ∈ N such that for n,m > N
we have ||xn − xm|| < ε. That is,

max
t∈[a,b]

|xn(t)− xm(t)| < ε

and so |xn(t)− xm(t)| < ε for all t ∈ [a, b]. Thus, for a fixed t, the sequence {xn(t)} is Cauchy
in R, so the limit exists in R. Define x(t) = limn→∞ xn(t). Then for ε > 0 there exists an
N ∈ N such that for all n > N

max
t∈[a,b]

|xn(t)− x(t)| < ε,

so |xn(t) − x(t)| < ε for all t ∈ [a, b]. Thus xn(t) converges uniformly on [a, b], so x is
continuous.

v) Let X be the space of continuous funcitons on [0, 1] with norm

||x|| =
∫ 1

0

|x(t)|dt.

This space is not complete. Indeed, we can define the sequence of continuous functions xn :
[0, 1]→ R by

xn(t) =

 0, 0 ≤ t ≤ 1
2

n(t− 1
2 ), 1

2 < t < 1
2 + 1

n
1, 1

2 + 1
n ≤ t ≤ 1.

We can visualize the Cauchy-ness of this sequence in the following diagram:

Indeed, we have ‖xn − xm‖ → 0 as n,m → ∞. But the limit of this sequence (the step
function) is clearly not continuous, so it is not in C[a, b].

The completion of this space is L1[0, 1].
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2 Lecture 2

(13 January 2014)

2.1 The space Lp[a, b]

Let p ∈ R p ≥ 1 and consider the space X of continuous functions on the interval J = [a, b], with
the norm || · || defined by

||x|| :=

[∫ b

a

|x(t)|p
]1/p

.

Along the lines of the example in the previous lecture, this space is not complete.

Definition 2.1. An isometry of normed vector spaces is a vector space isomorphism T : X → Y
that preserves the norm, i.e. ||Tx||Y = ||x||X for all x ∈ X.

Theorem 2.2. Let (X, || · ||) be a normed space. Then there exists a Banach space X̃ and an
isometry T : X → W with W ⊂ X̃ such that W is dense in X̃ (i.e. for all x̃ ∈ X̃ there exists a
sequence {wn} in W such that limn→∞ wn = x.)

Furthermore, X̃ is unique up to isometry.

Proof (sketch). Consider an equivalence relation of Couchy sequences in X given by

{xn} ∼ {yn} ⇐⇒ lim
n→∞

||xn − yn|| = 0.

(Exercise: show that this is an equivalence relation.) Let X̂ be the set of all Cauchy sequences in
X, and define X̃ as the set of equivalence classes in X̂ with the equivalence relation given above.

(The rest of the proof may be seen in [KREY89]).



8 3 Lecture 3, v. 4-12

3 Lecture 3

(15 January 2014)

3.1 The space Lp[a, b] (continued)

1. Lp[a, b] is the completion of the space of all continuous (real-valued) functions on [a, b] with
the norm

||x||p =

[∫ b

a

|x(t)|p
]1/p

.

2. Two functions on [a, b] are equivalent in Lp[a, b] if they are the same almost everywhere (i.e.
f ∼ g if f(x) 6= g(x) for only countable many x.)

3. So Lp[a, b] is the space of all equivalence classes of functions on [a, b].

3.2 Properties of normed spaces

Theorem 3.1. Let X be a Banach space and Y ⊂ X a subspace. Then Y is complete ifand only if
Y is closed in X.

Proof. Suppose Y is complere. Then consider the closure Ȳ of Y . An element y ∈ Ȳ . has a sequence
{yn} in Y such that yn → y. Thus {yn} is Couchy. SInce Y is complete, y ∈ Y . Thus Ȳ = Y .

Now suppose that Y is closed. Let {yn} be a Couchy sequence in Y . Since X is complete, {yn}
converges to an element y in X. But y ∈ Ȳ . So s ∈ Y and thus y is complete.

3.3 Linear Operators

Definition 3.2. A linear operator is a map T such that

i) the domain D(T ) is a vector space

ii) for all x, y ∈ D(T ) and all scalars α ∈ R(C)

T (x+ y) = T (x) + T (y) T (αx) = αT (x).

Example 3.3. The following are some examples of linear operators.

1. Let X be the vector space of all polynomials on [a, b], then the differential operator

Tx = x′

is a linear operator.

2. On the space C[a, b] of continuous functions, the integration map T : C[a, b] → C[a, b] given
by

Tx =

∫ τ

a

x(τ)dτ

is a linear operator.

3. On C[a, b] the operator Tx(t) = tx(t) is a linear operator.

Remark 3.4. Properties of linear operators:

1. The range R(T ) of a linear operator is a vector space.

2. If dimD(T ) = n <∞, then dimR(T ) ≤ n.

3. The null space of T (as a subspace of D(T )) is a vector space
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3.3.1 The inverse operator

Let X,Y be vector spaces and let T : D(T )→ Y be a linear operator, with D(T ) ⊂ X andR(T ) ⊂ Y .
Then

1. The inverse operator T−1 : R(T )→ D(T ) exists if and only if Tx = 0 implies x = 0.

2. If T−1 exists, it is a linear operator.

3. If dimD(T ) = n <∞ and T−1 exists, then dimR(T ) = n.

3.3.2 Bounded linear operators

Definition 3.5. Let X,Y be normed vector spaces and T : D(T ) → Y a linear operator. Then T
is bounded if there exists a real number c such that ||Tx|| ≤ c||x|| for all x ∈ X.

Definition 3.6. The norm of a bounded linear operator is defined as

||T || := sup
x∈X, x 6=0

||Tx||
||x||

= sup
||x||=1

||Tx||.

Note 3.7. i) |Tx|| ≤ ||T || ||x||

ii) ||T1T2|| ≤ ||T1|||, ||T2||

Example 3.8. i) For the identity operator T = I, ||T || = 1. for the zero operator T = 0,
||T || = 0.

ii) Let X be the space of polynomials on [0, 1] with norm ||x|| = maxt∈[0,1] |x(t)|. Then the
derivative operator Tx = x′ is unbounded.

Indeed, consider the polynmials xn(t) = tn, then ||xn|| = 1 for all n. But

||Txn(t)|| = ||T (tn)|| = ||ntn−1|| = n,

so for all c ∈ R there is an n ∈ N such that n > c such that

||Txn|| = n > c||xn|| = c.

So T is unbounded.

iii) Consider the space C[0, 1] of continuous functions on [0, 1] with the same norm as above.
Consider the linear operator

T :C[0, 1]→ C[0, 1]

x 7→ t

∫ 1

0

x(t′)dt′.

This has norm

||Tx|| = max
t∈[0,1]

|Tx(t)| = max
t∈[0,1]

∣∣∣∣t∫ 1

0

x(t′)dt′
∣∣∣∣ =

∣∣∣∣∫ 1

0

x(t′)dt′
∣∣∣∣ ≤ max

t∈[a,b]
|x(t)| = ||x||,

So ||T || ≤ 1. To show that ||T || = 1, take x(t) = 1.
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4 Lecture 4

(17 January 2014)

Theorem 4.1. Any linear operator on a finite dimensonal normed space is bounded.

Lemma 4.2. Let {x1, . . . , xn} be a linearly independent set of vectors in a normed space X. Then
there exists a constant c > 0 such that ||

∑n
i=1 αixi|| ≥ c

∑n
i=1 |αi| for all α1, . . . , αn in C.

Proof. Consider a tuple (α1, . . . , αn) in Cn and let βi =
αi∑n
i=1 |αi|

(assuming not all αi are zero).

Suppose that there is no such c such that ||
∑n
i=1 βixi|| ≥ c for all x. Then there exists a set

(β
(m)
i ) ⊂ C such that

∑n
i=1 |β

(m)
i | = 1 for all m ∈ N and, for y(m) = β

(m)
i x1 +β

(m)
2 x2 + · · ·+β

(m)
n xn,

we have ||y(m)|| → 0 as m→∞.

Consider the sequence (β
(1)
1 , β

(2)
1 , . . . ). This sequence bounded since |β(m)

j | ≤ 1, and thus has a

convergent subsequence. Since each sequence (β
(m)
j ) is bounded, we can pick a subsequence of m’s

such that each sequence β
(m)
j → βj converges for each j. Then the corresponding subsequence of

y(m) converges

y(m) → y =

n∑
i=1

βixi.

Thus ||y|| = limm→∞ ||y(m)|| = 0 and so y = 0. This is a contradiction to y 6= 0. Indeed, at least
one βj is nonzero, since |

∑
βj | = 1, and the set {x1, . . . , xn} is linearly independent, so we have

that y =
∑
i βixi cannot be the zero vector .

Proof of Theorem 4.1. Let x ∈ X, x = α1e1 + · · ·+ αnen, where {e1, . . . , en} is a basis of X. Let T
be a linear operator with domain X. Then

‖Tx‖ =

∥∥∥∥∥
n∑
i=1

αTei

∥∥∥∥∥ ≤
n∑
i=1

|αi|‖Tei‖

≤ max
i=1,...,n

‖Tei‖
n∑
i=1

|αi|

≤ max
i=1,...,n

‖Tei‖
1

c
‖x‖,

where in the last inequality we make use of the Lemma. Hence we have that

‖Tx‖
‖x‖

≤ 1

c
max

i=1,...,n
‖Tei‖.

Note that the right-hand-side does not depend on x! So T is bounded.

Theorem 4.3. Let T : D(T )→ Y be a linear operator with D(T ) ⊂ X, where X and Y are normed
spaces. Then

i) T is continuous if and only if T is bounded

ii) If T is continuous at a single point then it is continuous.

Proof. We prove part (i). The proof of part (ii) follows directly.

i) First suppose that T is bounded. Then for any x, y ∈ D(T )

||Tx− Ty|| = ||T (x− y)|| ≤ ||T || ||x− y||.
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So if ||x− y|| is ‘almost zero’ then ||Tx− Ty|| is ‘almost zero’, i.e. Tx is close to Ty whenever
x is close to y. This is the definition of the continuity of T .

Now suppose that T is continuous. Then for all ε > 0 there exists a δ > 0 such that for
x, y ∈ D(T ) the condition ||x − y|| < δ implies ||Tx − Ty|| < ε. Take any z 6= 0 in D(T ) and
x = y + δ

2
z
||z|| . Then

||x− y|| = || δ2
z
||z|| || =

δ
2 < δ

implies

||Tx− Ty|| =
∣∣∣∣∣∣∣∣T ( δz

2||z||

)∣∣∣∣∣∣∣∣ < ε

and thus ||Tz||||z|| <
2ε
δ for all nonzero z ∈ D(T ), so T is bounded.

ii) The proof is simple and follows from linearity of T .

(My proof: Suppose T is continuous at a point x ∈ D(T ). Then for all ε > 0 there exists a
δ > 0 such that ||x − y|| < δ implies ||T (x − y)|| < ε. Consider z ∈ D(T ) and let w ∈ D(T )
such that ||z − w|| < δ. Define y = w − z + x such that z − w = x− y. Then

||z − w|| = ||x− y|| < δ implies ||Tz − Tw|| = ||Tx− Ty|| < ε,

so T is continuous at all z ∈ D(T ).)

Theorem 4.4. Let T : D(T ) → Y be a bounded linear operator in Banach spaces X and Y . Then
T has a linear extension T̃ : D(T )→ Y such that ||T̃ || = ||T ||.

A linear extension of a linear operator T is a linear operator T̃ such that the restriction T̃ |D(T ) =
T .

Proof. We first need to define T̃ before we show that it is linear and bounded. Let x ∈ D(T ). Then
there exists a sequence (xn) in D(T ) such that xn → x. Note that

||Txn − Txm|| ≤ ||T || ||xn − xm||

ando so the sequence {Txn} is Cauchy in Y . Since Y is complete, there exists a y ∈ Y such that
Txn → y ∈ Y . Define T̃ x = y. We need to show that this is well-defined. Indeed, if there is another
sequence {zn} in D(T ) that converges to x, then the sequence {Tzn} also converges in Y , say to
some element y′ ∈ Y . So

||Txn − Tzn|| ≤ ||T || ||xn − zn||

but ||xn − zn|| → 0 as n→∞.
(Linearity is easy to show and is left as an exercise).
For boundedness of T̃ , ||T̃ x|| ≤ ||T || ||x|| since

||Txn|| ≤ ||T || ||xn||

and
||y|| = lim

n→0
||Txn|| ≤ ||T || ||x||.

Furthermore, ||T̃ || ≤ ||T ||. But this implies ||T̃ || = ||T ||.
To show that T̃ is really an extension, consider an element x ∈ D(T ) and the constant sequence

{x}. Then clearly T̃ x = Tx, since the norm of an operator is the supremum.

Denote by B(X,Y ) the set of all bounded linear operators fron X to Y .
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Proposition 4.5. The vector space B(X,Y ) is a normed space with norm defined in the usual way

||T || = sup
||x||=1

||Tx||.

Intreresting fact: if Y is Banach then B(X,Y ) is Banach and this does not depend on X! (proof
next time)
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5 Lecture 5

(20 January 2014)

(These notes copied graciously from German Luna in my absence at the lecture.)

Theorem 5.1. Let X and Y be normed vector spaces. If Y is Banach, then B(X,Y ) is Banach.

Proof. Let {Tn} ⊆ B(X,Y ) be Cauchy. Then for every ε > 0 there exists an N such that for all
m,n ≥ N , we have ||Tn − Tm|| < ε and thus

||Tnx− Tmx|| < ε||x||

for a fixed x ∈ X. So {Tnx} is a Cauchy sequence in Y . Define T as the limit T = limn→∞ Tn given
by

Tx = lim
n→∞

Tnx.

This operator is clearly linear. We must also show that this operator is bounded. Consider

||Tnx− Tx|| = lim
m→∞

||Tnx− Tmx|| < ε||x||

(by continuity of the norm) for sufficiently large n. But this implies ||Tnx− Tx|| < ε||x||, and thus

||(Tn − T )x||
||x||

< ε

for all x 6= 0. Thus ||Tn−T || < ε and therefore Tn−T is bounded. Since Tn and Tn−T are bounded,
so is T .

5.1 (Linear) Functionals

Definition 5.2. A (linear) functional is a (linear) operator f : X → K (where X is a subset of a
normed space and K is the underlying field, i.e. R or C).

Example 5.3. 1. The norm || · || : X → R on any space X is a nonlinear functional. (It is
sublinear, actually, since ||αx+ (1− α)y|| ≤ |α|||x||+ |(1− α)|||y||.)

2. Given a fixed y ∈ X, the inner product fy(x) = 〈x, y〉 is a linear functional with norm
||fy|| = ||y||.

3. Definite integrals are linear functionals∫ b

a

· dt : C[a, b]→ R

with norm ||
∫ b
a
· dt|| = |b− a|.

Exercise. Determine the norms of the operators in the examples above.

Definition 5.4. Let X be a normed space. The dual space of X, denoted by X ′, consists of the set
of all bounded linear functionals on X, with norm given by the standard operator norm. (Note that
X∗ includes the unbounded operators.)

Proposition 5.5. X ′ is Banach for any normed space X.

Proof. Follows from Theorem 5.1 by taking Y = R or C.
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Example 5.6. (Rn)′ = (Rn)∗ ' Rn. This is because all linear operators on finite dimensional
spaces are bounded. We identify linear functionals on Rn as f(x) = v · x with norm ||f || = ||v||.

Example 5.7. (`1)′ ' `∞. The Schauder basis of `1 consists of the sequences

ek = {δk,j} where δk,j =

{
1, k = j
0, k 6= j.

Then every x ∈ `1 can be written as x =

∞∑
k=1

αkek.

For every b ∈ `∞ there exists a g ∈ (`1)′ such that g(x) =

∞∑
k=1

αkβk, where b = {βk}. Then

|g(x)| ≤
∞∑
k=1

|αk| |βk| ≤ sup
k
|βk| ·

∞∑
k=1

|αk|.

So |g(x)| ≤ ||b|| ||x||. Thus g is a bounded linear functional.
Conversely let f ∈ (`1)′, then for x =

∑
αkek

f(x) =

∞∑
k=1

αkf(ek).

Denote βk = f(ek) ∈ R, then

|βk| = |f(ek)| ≤ ||f || ||ek|| = ||f || <∞,

and supk |βk| < ∞. So b = {βk} is in `∞, i.e. ||b||∞ < ∞. Note that, by the above reasoning,
||b||∞ ≤ ||f || since ||b||∞ = supk |βk|. But ||f || ≤ ||b||∞ (why?). Thus ||f || = ||b||∞. Since it
preserves norms, this is an isomorphism of normed spaces.

Exercise. Show that (`p)′ ' `q for p > 1 and 1
p + 1

q = 1.
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Since we have shown in the last lecture that (`p)′ ' `q, we know that `q is complete since the dual
space of any normed space is complete. This follows also for `1 and `∞. Similarly, this can be shown
for the spaces Lp, since (Lp)′ = Lq (to show this is an exercise).

6.1 Hilbert spaces

Definition 6.1. An inner product space is a vector space X with an inner product, i.e. a mapping

〈·, ·〉 : X ×X → R or C

into the base scalar field with the following properties

1. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

2. 〈αx, y〉 = α〈x, y〉

3. 〈x, y〉 = 〈y, x〉 (which implies 〈x, αy = α〈x, y〉)

4. 〈x, x〉 ≥ 0

5. 〈x, x〉 = 0 if and only if x = 0.

Remark 6.2. We have the following hierarchy

(inner product spaces) ⊂ (normed spaces) ⊂ (metric spaces).

Remark 6.3. Any inner product space can be turned into a normed space by defining the norm

||x|| =
√
〈x, x〉.

Definition 6.4. A Hilbert space is a complete inner product space. It is also a Banach space with
norm given by the previous remark.

Example 6.5. i) The euclidean spaces Rn and Cn with the standard inner products are inner
product spaces.

ii) The spaces of matrices n×m-matrices Cn×m is a inner product space with the Hilbert-Schmidt
inner product

〈A,B〉 = Tr(AB∗)

iii) The space L2[a, b]. For f, g ∈ L2, 〈f, g〉 =
∫
f(t)g(t)dt

iv) The space `2. For x = {xn}, y = {yn}, 〈x, y〉 =
∑∞
n=1 xnyn.

v) `p is not a Hilbert space for p 6= 2.

vi) C[a, b] (with the max norm) is not a Hilbert space.

How does one prove that a space is not a Hilbert space? The parallelogram identity! If a norm
||x|| comes from an inner product, then it satisties

||x+ y||2 + ||y − x||2 = 2
(
||x||2 + ||y||2

)
. (6.1)

Claim 1. `p is not a Hilbert space for p 6= 2.
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Proof. Consider the sequences x = (1, 1, 0, 0, . . . ) y = (1,−1, 0, 0, . . . ). Then

x+ y = (2, 0, 0, 0, dots) y − x = (0,−2, 0, 0, 0, · · · ),

so ||x+ y||p = 4 = ||y − x||p and the LHS of eq. (6.1) is equal to 8 in this case. But

||x||2p =
[
(1p + 1p)

1/p
]2

= 22/p = ||y||p,

so 2
(
||x||2p + ||y||2p

)
= 4 · 22/p = 8 is satisfied if and only if p = 2.

Proposition 6.6. Properties of inner product spaces:

1. The Schwarz inequality holds
|〈x, y〉| ≤ ||x|| ||y|| (6.2)

with equality if and only if x and y are linearly independent.

2. The inner product is a continuous function. That is, if xn → x and yn → y, then 〈xn, yn〉 →
〈x, yrangle.

Proof.

|〈xn, yn〉| ≤ |〈xn, yn〉 − 〈x, yn〉|+ |〈xn, yn〉 − 〈x, y〉|
= |〈xn − x, yn〉|+ |〈x, yn − y〉|
≤ ||xn − x|| ||yn||+ ||x|| ||yn − y|| → 0

as n→∞.

3. (Completion) As with Banach spaces, there is a unique completion (up to isomporphism),
where an inner product space isomorphism T : X → Y is a bijective linear operator that
preserves the inner product

〈Tx, Ty〉 = 〈x, y〉.

4. (Subspaces) A subspace Y ⊂ H of a Hilbert space is complete if and only if it is closed in H.

Remark 6.7. In Hilbert spaces we have the concept of orthogonality, which we don’t necessarily
have in Banach spaces. That is, x ⊥ y (x is orthogonal to y) if 〈x, y〉 = 0.

Theorem 6.8 (Minimizing vector theorem). Let X be an inner product space and M 6= ∅ a convex
subset of X which is complete. (By convexity of M , we mean that for all x, y ∈M and t ∈ [0, 1], the
convex combination tx+ (1− t)y ∈ M is in M .) Then for any x ∈ X there exists a unique y ∈ M
such that

δ = inf
y′∈M

||x− y|| = ||x− y||.

This is only true in Hilbert spaces, not necessarily normed spaces in general.

Proof. First we show existence. By definition of inf, there exists a sequence {yn} in M such that

lim
n→∞

||x− yn|| = δ.

For simplicity, we instead work with the sequence zn ≡ yn − x such that δn ≡ ||zn|| and δn → δ.
Then we have

||yn − ym||2 = ||zn − zm||2 = −||zn + zm||2 + 2
(
||zn||2 + ||zm||2

)
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by the parallelogram identity. This is equal to

−||yn + ym − 2x||2 + 2(δ2n + δ2m) = −4||x− 1
2 (yn + ym)||2 + 2(δ2n + δ2m).

But 1
2 (yn + ym) ∈M by convexity of M , so ||x− 1

2 (yn + ym)|| ≤ δ from the infimum. Thus, we have

||yn − ym||2 ≤ −4δ2 + 2(δ2n + δ2m)→ 0

as m,n→∞.
We need to show that δ = ||x− y||. For {yn} Cauchy, yn → y ∈M , we have ||x− y|| ≥ δ. But

||x− y|| ≤ ||x− yn||+ ||yn − y||

for all n by the triangle inequality. This implies ||x− y|| ≤ δ + 0, so ||x− y|| = δ.
For uniqueness, suppose there exists a w ∈ M such that δ = ||x − y|| = ||x − w||. We want to

show that ||y − w|| = 0. Then, by the parallelogram identity, we have

||y − w||2 = ||(y − x)− (w − x)||2

= −||y + w − 2x||2 + 2
(
||y − x||2 + ||w − x||2

)
= −4|| 12 (y + w)− x||2 + 2(δ2 + δ2)

≤ −4δ2 + 4δ2

= 0,

since 1
2 (y + w) ∈M , and thus || 12 (y + w)− x|| ≥ δ.

Corollary 6.9. If M is a complete subspace of X, and y is the unique closest element in M to
x from the above theorem, then the vector z = x − y is orthogonal to M (i.e. 〈z,m〉 = 0 for all
m ∈M), denoted z ⊥M .

Proof. Suppose z 6⊥ M . Then there exists a nonzero element y0 ∈ M such that 〈z, y0〉 = β 6= 0.
Note that ||z − αy0||2 ≥ δ2 for all α ∈ R(C), since z − αy0 = x− y − αy0 and y + αy0 is in M (it is
a subspace). Then, since ||z|| = δ,

||z − αy0||2 = 〈z − αy0, z − αy0〉
= ||z||2 − α〈y0, z〉 − ᾱ〈z, y0〉+ |α2| ||y0||
= δ2 − αβ̄ − ᾱβ + |α|2||y0||2

= δ2 − αβ̄ − ᾱ
(
β − α||y0||2

)
= (∗).

For α = β
||y0||2 , we get

(∗) = δ2 −
(

β

||y0||2

)2

< δ2

since β 6= 0.
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7.1 Direct sum

Definition 7.1. A vector space X is saod to be a direct sum of two subspaces Y and Z of X,
written X = Y ⊕ Z if each x ∈ X has a unique representation x = y + z for y ∈ Y and z ∈ Z.

Theorem 7.2. Let Y be a closed supspace of a Hilbert space H. Then H = Y ⊕ Y ⊥, where

Y ⊥ = {z ∈ H | 〈z, y〉 = 0∀y ∈ Y }

is the orthogonal complement to Y .

Proof. Note that Y = Ȳ ⊂ H implies that Y is complete, so Y itself is a Hilbert space. Take x ∈ H,
then there exists a y ∈ Y such that z ≡ x − y ∈ Y ⊥. Then x decomposes as x = y + z. To show
that this decomposition is unique, suppose that x = y + z = y′ + z for some y ∈ Y and z ∈ Y ⊥.
Then y − y′ = z′ − z, but Y and and Z are subspaces so y − y′ ∈ Y and z′ − z ∈ Y ⊥. This implies
y′ − y = z′ − z = 0.1

Hilbert spaces have this nice notion of orthogonality that give then many properties familiar to
finite dimensional vector spaces.

Definition 7.3. For a closed subspace Y ⊂ H of a Hilbert space H, the orthogonal projection onto
Y is the linear operator PY : H −→ Y defined by

PY x = y,

where y ∈ Y is the unique y from the previous theorem.

Remark 7.4. Properties of the orthogonal projection.

i) The restriction of PY to Y is the identity on Y , i.e. PY |Y = IY .

ii) The nullspace of PY is Y ⊥, i.e. N (PY ) = Y ⊥.

Lemma 7.5. If Y ⊂ X, where X is an inner product space, then

1. Y ⊂ Y ⊥⊥

2. if X = H is a Hilbert space and Y = Ȳ ⊂ H, then Y = Y ⊥⊥.

Proof. 1. Take y ∈ Y , then y ⊥ Y ⊥ and so y ∈
(
Y ⊥
)⊥

= Y ⊥⊥.

2. Let x ∈ Y ⊥⊥ ⊂ H. Then x = y + z for some y ∈ Y and z ∈ Y ⊥ and z = x− y ∈ Y ⊥⊥. Since
z ∈ Y ⊥ ∩ Y ⊥⊥, z = 0 and so x = y ∈ Y . Thus Y ⊥⊥ ⊂ Y and therefore Y = Y ⊥⊥.

Note that this implies also that H = Y ⊕ Y ⊥ = Y ⊥ ⊕ Y ⊥⊥.

Definition 7.6. Given a subset M 6= ∅ of a vector space X, the span of M is the set span(M) of
all finite linear combinations of vectors in M .

Lemma 7.7. If M 6= ∅ is any subset of a Hilbert space H, then spanM = H if and only if
M⊥ = {0}.

1Note: Y ∩ Y ⊥ = 0. Indeed, suppose x ∈ Y ∩ Y ⊥, then 〈x, x〉 = 0 so x = 0.
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Proof. Suppose spanM = H and let x ∈ M⊥ ⊂ spanM = H. Then x = limxn for some Cauchy
sequence {xn} in span(M). But x ∈ M⊥ and M⊥ ⊥ spanM , so 0 = 〈x, xn〉 −→ 〈x, x〉 implies
x = 0.

Now suppose M⊥ = {0}, then (spanM)
⊥

= {0}. Define Y = spanM . Then Y ⊂ H is a
subspace and H = Y ⊕ (Y )⊥ = Y ⊕ {0} = Y . Thus H = spanM

Theorem 7.8 (Bessel inequality). Let {ek} be an orthonormal sequence in X. Then for every
x ∈ X

∞∑
k=1

|〈x, ek〉|2 ≤ ||x||2.

Proof. Fix x ∈ X, and define Yn as the subspaces Yn = span{e1, . . . , en}. Define

yn =

n∑
k=1

〈x, ek〉ek

then ||yn||2 = 〈y, y〉 =
∑n
k=1 |〈x, ek〉|2. Set zn = x− yn.

Claim. zn ⊥ yn

Proof of claim. 〈zn, yn〉 = 〈x, yn〉 − 〈yn, yn〉 = 0, and

〈x, yn〉 =

〈
x,

n∑
k=1

〈x, ek〉ek

〉
=

n∑
k=1

〈x, ek〉〈x, ek〉 =

n∑
k=1

|〈x, ek〉|2 = ||yn||2.

Thus x = y + z and so ||x||2 = ||yn||2 + ||zn||2, since 〈x, x〉 = 〈y + z, y + z〉. So for all n

||zn||2 = ||x||2 − ||yn||2 = ||x||2 −
n∑
k=1

|〈x, ek〉|2,

and thus
∑n
k=1 |〈x, ek〉|2 ≤ ||x||2.

Corollary 7.9. If X is an inner product space, then any x ∈ X can have at most countable many
nonzero Fourier coefficients 〈x, ek〉 with respect to an orthonormal family (eκ) ⊂ X indexed by some
(not necessarily countable) set κ ∈ I.

Proof. For any integer m ∈ N, define

Vm ≡
{
κ ∈ I

∣∣∣∣ |〈x, eκ〉| > 1

m

}
.

Then |Vm| <∞ (i.e. the cardinality is finite) due to the Bessel inequality. Define V =

∞⋃
m=1

Vm



20 8 Lecture 8, v. 4-12

8 Lecture 8

(27 January 2014)

8.1 Series of orthonormal sequences

Here, {ek} is always an orthonormal set of vectors in a Hilbert space H.

Definition 8.1. We say that

∞∑
k=1

αkek converges (or exists) if there exists s ∈ H such that

lim
n→∞

∣∣∣∣ n∑
k=1

αkek − s
∣∣∣∣ = 0.

We write s =

∞∑
k=1

αkek.

Theorem 8.2 (Convergence). Let {αn} be a sequence of scalars.

1.

∞∑
k=1

αkek converges if and only if

∞∑
k=1

||αk||2 converges.

2. If

∞∑
k=1

αkek converges, say to x ∈ H, then αn = 〈x, en〉, i.e. x =

∞∑
k=1

〈x, ek〉ek

3. For all x ∈ H,

∞∑
k=1

〈x, ek〉ek converges.

Proof. Define the partial sums sn =

n∑
k=1

αkek and σn =

n∑
k=1

||αk||2.

1. For n,m ∈ N with n ≥ m, we have

||sn − sm||2 = ||αm+1em+1 + · · ·+ αnen|| = |αm+1|2 + · · ·+ |αn|2 = |σn − σm|,

so {sn} converges if and only if {σn} does.

2. For n > m there is nothing to prove. So suppose n ≤ m. Then

〈sm, en〉 = αn,

so in the limit of m→∞,
〈x, en〉 = αn.

3. We have

∞∑
n=1

|〈x, ek〉|2 ≤ ||x||2, so this series converges. Then part 3 follows from part 1.

Definition 8.3. A total set in a normed space X is a subset M ⊂ X whose span is dense in X. A
total orthonormal set in an inner product space X is an orthonormal set M which is total in X.

Given a total set M in X, we have spanM = X. In particular, X itself is total in X. But total
orthonormal sets will have cardinality limited by the dimension of X. We will see that all Hilbert
spaces have a total orthonormal set.



8 Lecture 8, v. 4-12 21

Theorem 8.4 (Totality I). Let M be a subset of an inner product space X.

1. If M is total in X, then x ⊥M implies x = 0 (i.e. M⊥ = {0}).

2. If X is a Hilbert space, then x ⊥M implies x = 0 if and only if M is total in X.

Proof. Let H be the completion of X. Hence, X ⊂ H is a dense subspace of H.

1. Since spanM is dense in X it is also dense in H. Thus, M⊥ = {0}.

2. (We have proved this before in a previous lecture, without using the ‘total’ terminology. As
an exercise, find which previous theorem corresponds to this statement.)

The converse of part 1 of Theorem 8.4 is not true. It does hold for most examples that we will
deal with, but there are complex examples of inner product spaces for which it does not hold. We
will not consider such spaces in this course.

Theorem 8.5. In every Hilbert space H there exists a total orthonormal set. If H is separable, then
there exists a countable set of vectors C ⊂ H such that C = H. By the Gram-Schmidt process, we
can make C into an orthonormal set.

Example 8.6. Note that `p (for 1 ≤ p < 0) are separable, but `∞ is not separable. The intuition
behind this has to do with the supremum norm in `∞. There are ‘many more’ sequences in `∞ than
in `p.

8.2 Zorn’s Lemma

In order to prove Theorem 8.5, we need to make use of Zorn’s lemma. We need to introduce some
basic concepts in set theory.

Definition 8.7. A partially ordered set is a set M with a binary operation “≤” satisfying

1. a ≤ a for all a ∈M

2. a ≤ b and b ≤ a implies a = b (antisymmetry)

3. a ≤ b and b ≤ c implies a ≤ c (transitivity).

Example 8.8.

The power set P(X) is a partially ordered with inclusion as the partial order (i.e. “≤” =“⊂”). This
is indeed a partial order. Consider X = {1, 2}, and P(X) = {∅, {1}, {2}, {1, 2}}. We have

{1} 6≤ {2} and {2} 6≤ {1},

so we say that these elements are incomparable under the partial order ⊂ in P(X). In fact, this is
the only partial order that can be defined on the power set.

If a ≤ b or b ≤ a, then a and b are said to be comparable.

Definition 8.9. A chain is a subset M ⊂ X of a partially ordered set with the property that every
two elements in M are comparable.

Definition 8.10. Let C ⊂ M be a subset of a chain M in X. An upper bound in M of C is an
element element u ∈ M such that x ≤ u for all x ∈ C. A maximal element of M is an element
m ∈M such that m ≤ x implies x = m (i.e. there is nothing ‘above’ m in the set).

Here, we take Zorn’s lemma as an axiom. But historically it follows from the Axiom of Choice.
(It is in fact equivalent to AoC). We won’t worry too much about this statement, except when we
use it to prove Theorem 8.5 and the Hahn-Banach theorem later.
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Lemma 8.11 (Zorn’s Lemma (Zorn’s Axiom)). Let M 6= ∅ be a partially ordered set. Suppose that
every chain C ⊂M has an upper bound. Then M has at least one maximal element.

Note that the chains do not need to be countable, and that the maximal element in M does not
have to be unique (since M itself is not a chain).

8.3 Back to the theorem

Proof of Theorem 8.5. If H = {0}, then this is trivially true. So suppose H 6= {0}. Let M be the
set of all orthonormal subsets of H. Since H 6= {0}, there is an element x ∈ H with x 6= 0. Thus M
is nonempty, since {

x

||x||

}
⊂ H

is in M . The partial order on M is defined by inclusion. Every chain C ⊂M has an upper bound.
Indeed, consider

u =
⋃
c∈C

c ∈M.

By Zorn’s lemma there exists a maximal element F ∈M .

Claim 2. F is total in H.

Proof of claim. If F is not total, then there exists a z ∈ F⊥, z 6= 0. Then F ⊂ F ∪
{

z
||z||

}
∈M .
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Today we will introduce the idea that every vector space has a basis. This is certainly obvious for
finite dimensional vector spaces, but we must use Zorn’s lemma for the general infinite dimensional
case. Recall that a basis of a vector space X is a linearly independent set of vectors in X that span
X. A basis that is not constructed but rather shown to exist via Zorn’s lemma is called a Hamel
basis.

Theorem 9.1. Every vector space X 6= {0} has a (Hamel) basis.

Proof. Let M be the set of all linearly independent subsets in X. As before, we can induce a partial
order on M by set inclusion. Clearly, M 6= ∅ since X 6= {0}. Every chain C ⊂ M has an upper
bound (namely, the union of all elements in C). By Zorn’s lemma, there exists a maximal element
B in M . We want to show that spanB = X.

Let Y = spanB. If Y 6= X then there exists a z ∈ X which is not in Y . This implies that
B ∪ {z} is a linearly independent set, which contradicts the maximality of B.

Theorem 9.2 (Totality II). An orthonormal set M in a Hilbert space H is total if and only if for
all x ∈ H

||x||2 =

∞∑
k=1

|〈x, ek〉|2, (*)

where {ek}∞k=1 = {e ∈M | 〈x, e〉 6= 0}.

Proof. If M is not total in H, then M⊥ 6= {0} by the first totality theorem. So there exists a nonzero
z ∈ M⊥ ⊂ H. That is, 〈z, ek〉 = 0 for all ek ∈ M . But ||z||2 6= 0. If (*) holds for x ∈ H then M
must be total.

Conversely, if M is total in H, take x ∈ H. Then there is a sequence of vectors in spanM that
converges to x. Furthermore

y =

∞∑
k=1

〈x, ek〉ek

converges in X. It remains to show that y = x. Note that

〈x− y, ej〉 = 〈x, ej〉 − 〈y, ej〉︸ ︷︷ ︸
〈x,ek〉

= 0

since 〈y, ej〉 = 〈x, ek〉 by definition of y. Take e ∈ M with e 6∈ {ek}∞k=1. Then 〈x, e〉 = 0. Further-
more, 〈y, e〉 = 0 since 〈e, ej〉 = 0 for all ej ∈ {ek}∞k=1. Then 〈x − y, e〉 = 0 for all e ∈ M , and thus
x− y ∈M⊥ = {0}. So x = y.

9.1 Separable Hilbert spaces

Proposition 9.3. Let H be a Hilbert space. Then

1. if H is separable then every orthonormal set in H is countable.

2. If H contains an orthonormal sequence which is total in H then H is separable.

If a Hilbert space is separable, then all orthonormal sets are countable, so we can take the cardinality
of the dimension of the space to be ℵ0 if it is infinite dimensional.
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Proof. 1. Suppose M is an uncountable orthonormal set in H. Take x, y ∈M , x 6= y. Then

||x− y||2 = 〈x− y, x− y〉 = ||x||2 + ||y||2 = 2.

Define a neighborhood Nx of x by

Nx =
{
x′ ∈ H

∣∣ ||x− x′|| < 1
4

}
,

and similarly for Ny. Then Nx ∩Ny = ∅. So we have an uncountable family of disjoint open
sets in X. Take B a countably dense set in H. For each x ∈M , the set Nx contains an element
bx ∈ B since B is dense in H. Since Nx and Ny are disjoint for x 6= y, we have bx 6= by for
x 6= y. This is a contradiction to the countability of B.

2. Let {ek} be a total orthonormal sequence in H. Let

A = spanQ {ek} :=
{∑

αkek

∣∣∣αk = ak + ibk, ak, bk ∈ Q
}
,

i.e. finite linear combinations of elements in ek with coefficients in Q + iQ. Then A is clearly
countable. Let x ∈ H and ε > 0. Since {ek} is total, there exists an n ∈ N and {αk}nk=1 such
that ||x− y|| < ε

2 where

y =

n∑
k=1

〈x, ek〉ek.

Take ak, bk ∈ Q such that ∣∣∣∣∣∣ n∑
k=1

(〈x, ek〉 − (ak + ibk)) ek

∣∣∣∣∣∣∣∣ < ε

2
.

Denote vn =

n∑
k=1

(ak + ibk)ek ∈ A. Then

||x− v|| ≤ ||x− y||+ ||y − v||

<
ε

2
+
ε

2
= ε.

Theorem 9.4 (Hilbert dimension). All total orthonormal sets in a given Hilbert space H 6= {0}
have the same cardinality, called the Hilbert dimension.

Theorem 9.5. Two Hilbert spaces H1 and H2 are isomorphic if and only if H1 and H2 have the
same Hilbert dimension.

Proof. If H1 ' H2, then there exists an inner product preserving isomorphism T : H1 → H2. That
is

〈Tx, Ty〉2 = 〈x, y〉1
for all x, y ∈ H1. Then every total orthonormal set in H1 is mapped to an orthonormal set n H2.

Suppose dimH1 = dimH2. Let M1 ⊂ H1 and M2 ⊂ H2 be total orthonormal subsets. For every
x ∈ H1, define {ek}∞k=1 in M1 with 〈x, ek〉 6= 0. Similarly define {fk}∞k=1 in M2.

(to be continued...)
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Note 9.6. In particular, every finite dimensional Hilbert space is isomorphic to Rn or Cn. For
countable infinite dimensional spaces, the standard example is `p ' Lp[a, b]. Indeed, `p has a
countable basis of finite sequences, and Lp has a basis defined by the sin and cos functions (Fourier
basis)1.

An example of a nonseparable Hilbert space is a function space with inner product given by

lim
R→∞

1

R

∫ R

−R
f(x)g(x)dx.

Then each function L2(−∞,+∞) is actually the zero element in this space. But many more divergent
functions are contained.

1See section 3.7 in [KREY89]
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Theorem 10.1. Two Hilbert spaces H1 and H2 are isomorphic H2 ' H2 if and only if they have
the same Hilbert dimension.

Proof. Suppose H1 6= {0} 6= H2. Let M1 ⊂ H2 and M2 ⊂ H2 be total orthonormal sets. For every
x ∈ H1 define a sequence {ek}∞k=1 = {e ∈M1 | 〈e, x〉 6= 0} and analogous for {fk}∞k=1 in M2. Then

x =

∞∑
k=1

〈x, ek〉ek. Define a linear operator T : H1 → H2 through its action on the elements ek by

x 7−→ Tx =

∞∑
k=1

〈x, ek〉fk ∈ H2.

From the Bessel inequality
∑
|〈x, ek〉|2 ≤ ||x||21, and we have

||Tx||22 =
∑
k

|〈x, ek〉|2 = ||x||12.

So 〈Tx, Ty〉2 = 〈x, y〉1. Examing the real and imaginary parts, we have

Re〈x, y〉 =
1

4

(
||x+ y||2 − ||x− y||2

)
and Im〈x, y〉 =

1

4

(
||x+ iy||2 − ||x− iy||2

)
.

Then

〈Tx, Ty〉 = Re〈Tx, Ty〉+ i Im〈Tx, Ty〉

=
1

4

(
||x+ y||2 − ||x− y||2

)
+ i

1

4

(
||x+ iy||2 − ||x− iy||2

)
.

To show that T is injective, note that ||x−y||1 = ||Tx−Ty||2, so if Tx = Ty then ||Tx−Ty||2 = 0
and thus ||x− y||1 = 0 implies x = y.

It remains to show that T is surjective. If y =

∞∑
k=1

αkfk, take x =

∞∑
k=1

αkek. Note that αk =

〈y, ek〉 = 〈x, ek〉 and
∑
|αk|2 ≤ ||y||2.

10.1 Functionals on Hilbert spaces

Theorem 10.2 (Riesz’s Representation Theorem). For any funcitonal f ∈ H ′, there exists a unique
element z ∈ H such that f(x) = 〈x, z〉 for all x ∈ H and ||f || = ||z||.

Note 10.3. In the above theorem z ⊥ N (f) which implies z ∈ N (f)⊥. Therefore dimN (f)⊥ = 1.

Proof of Riesz’s Representation Theorem. If f = 0 then we may take z = 0, so we may assume that
f 6= 0 and we have N (f) 6= H. Since N (f) is a proper subspace of H we can decompose H as
H = N (f)⊕N (f)⊥. Note that N (f)⊥ 6= {0}, since otherwise N (f) = H, which is a contradiction.
Then there exists a nonzero element z0 ∈ N (f)⊥. Furthermore, for all x, y ∈ H we have that

f
(
f(x)y − f(y)x

)
= f(x), f(y)− f(y)f(x) = 0

and thus f(x)y − f(y)x ∈ N (f). For each x ∈ H, define the vector wx = f(x)z0 − f(z0)x such that
wx ∈ N (f). Then

0 = 〈wx, z0〉 = f(x) 〈z0, z0〉︸ ︷︷ ︸
=‖z0‖2

−f(z0)〈x, z0〉.
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Solving for f(x), we find f(x) = f(z0)

‖z0‖2
〈x, z0〉 = 〈x, z〉, where z = f(z0)

‖z0‖2
z0.

It remains to show that z is unique. Suppose that z′ ∈ H such that 〈x, z〉 = 〈x, z′〉 for all x ∈ H.
Then 〈x, z−z′〉 = 0 and take in particular x = z−z′. Then 〈z−z′, z−z′〉 = ||z−z′||2 = 0 so z = z′.

To show that ||f || = ||z||, note that

|f(x)| = |〈x, z〉| ≤ ||x|| ||z||

and thus ||f || ≤ ||z||. Taking x = z, we have

|f(z)|
||z||

= ||z||

and thus ||f || ≥ ||z|| since , ||f || is defined through the supremum. Hence ||f || = ||z||.

10.2 Hilbert-Adjoint operator

Definition 10.4. Let T : H1 → H2 be a bounded linear operator on Hilbert spaces. The Hilbert-
adjoint operator is an operator T ∗ : H2 −→ H1 defined by the relation,

〈Tx, y〉2 = 〈x, T ∗y〉1

for all x ∈ H1 and y ∈ H : 2. In particular, for an operator T : H1 −→ H2 there exists a unique
operator H2 −→ H1 that satisfies the above relation.

We actually need to prove that T ∗ not only exists, but it is unique and linear. In addition, it is
bounded if T is bounded.

Theorem 10.5. Let T be as in Definition 10.4. Then T ∗

1. exists

2. is unique

3. and is a bounded linear ,operator if T is with ||T ∗|| = ||T ||.

Proof. 1. For any y ∈ H2 define the functional fy : H1 −→ K (where K is C or R) by fy(x) =
〈Tx, y〉.
Claim 3. fy ∈ H ′1

Indeed, note that |fy| = |〈Tx, y〉 ≤ ||Tx|| ||y|| ≤ ||T || ||x|| ||y||. Then by the Reisz representa-
tion theorem, there exists a unique zy ∈ H1 such that fy(x) = 〈x, zy〉 = 〈Tx, y〉 for all x ∈ H1.
Then define T ∗ as the map y 7→ zy.

2. From the above arguments, we see that the assignment y 7→ zy is unique for each y (by Reisz
representation), so T ∗ is unique.

3. To show that T ∗ is linear, note that

〈Tx, α1y1 + α2y2〉 = α1〈Tx, y1〉+ α2〈Tx, y2〉
α1〈x, z1〉+ α2〈x, z2〉
〈x, α1z1 + α2z2〉.

Then T ∗ : α1y1 +α2y2 7−→ α1z1 +α2z2 = α1Ty1 +α2Ty2. , To show that T ∗ is bounded, note
that.

|〈x, T ∗y〉| = |〈Tx, y〉| ≤ ||Tx|| ||y|| ≤ ||T || ||x|| ||y||.
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Taking x = T ∗y, we have

||T ∗y||2 ≤ ||T || ||T ∗y|| ||y|| ≤ ||T || ||T || ||y|| ||y|| = ||T ||2||y||2

so ||T ∗|| ≤ ||T ||. Furthermore, we have

|〈Tx, y〉| = |〈x, T ∗y〉 ≤ ||x|| ||T || ||y||.

So taking y = Tx, analogously to above we have

||Tx||2 ≤ ||T ∗||2 ||x||2

and so ||T || ≤ ||T ∗||. Thus ||T ∗|| = ||T ||.
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Proposition 11.1 (Properties of adjoint operators). Let T : H1 −→ H2.

1. 〈T ∗y, x〉1 = 〈y, Tx〉2

2. (S + T )∗ = S∗ + T ∗

3. (αT )∗ = ᾱT ∗

4. (T ∗)∗ = T

5. ||T ∗T || = ||TT ∗|| = ||T ||2

6. T ∗T = 0 if and only if T = 0.

7. (ST )∗ = T ∗S∗ (for H1 = H2)

Proof. Left as an exercise.

Definition 11.2. An operator T is

i) self-adjoint or hermitian if T ∗ = T .

ii) unitary if T−1 = T ∗

iii) normal if TT ∗ = T ∗T .

Exercise. If Q : X −→ Y is a bounded linear operator then

i) Q = 0 if and only if 〈Qx, y〉 = 0 for all x ∈ X and y ∈ Y .

ii) if Q : x −→ X and X is a complex vector space, then 〈Qx, x〉 = 0 for all x ∈ X if and only if
Q = 0.

Note 11.3. Let T : H −→ H be a bounded linear operator.

1. If T = T ∗, then 〈Tx, x〉 = 〈x, Tx〉 is real for all x.

2. If H is complex and 〈Tx, x〉 is real for all x ∈ H, then T = T ∗.

3. If T is unitary, then ||Tx|| = ||x|| for all x ∈ H.

Theorem 11.4. Let {Tn} be a sequence of bounded self-adjoint linear operators with Tn : H −→ H.
If Tn → T (i.e. ||Tn − T || → 0), then T is bounded and T ∗ = T .

Proof. We have that ||T ∗n −T ∗|| = ||(Tn−T )∗|| = ||Tn−T || → 0. Similarly, we have ||Tn−T ∗|| → 0.
So Tn → T ∗ and Tn → T , since Tn = T ∗n for all n.
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11.1 Hahn-Banach theorem

We will discuss three versions of this main theorem.

Definition 11.5. A sublinear functional on a vector space X is a real valued function p that satisfies

i) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X

ii) p(αx) = αp(x) for all α ≥ 0 real and x ∈ X.

Example 11.6. Norms and absolute values of linear functionals satisfy the requirements to be
sublinear functionals. Note that for any sublinear functional p, we have p(0) = 0. So p(0) ≤
p(x) + p(−x) for all x ∈ X, thus p(−x) ≥ −p(x).

Theorem 11.7 (Hahn-Banach - version I). Let X be a real vector space and p a sublinear functional.
Ler f be a linear functional which is defined on a subspace of W of X that satisfies f(x) ≤ p(x) for
all x ∈W . Then there exists a linear extension f̃ from W to X of f such that

1. f̃(x) ≤ p(x) for all x ∈ X

2. f̃(x) = f(x) for all x ∈W .

Example 11.8. We can make use of the Hahn-Banach theorem by choosing p in the following cases.
Choose p(x) = ||f || ||x||, since f(x) ≤ |f(x)| ≤ ||f || ||x|| = p(x). If X is an inner product space, then
f(x) = 〈x, z〉 for some z ∈ X, and |f(x)| = |〈x, z〉| = p(x).

Proof. Let E be the set of all linear extensions g of f such that g(x) ≤ p(x) for all x ∈ D(g) with
D(f) ⊂ D(g) (and of course g(x) = f(x) for all x ∈ D(f) since g is a proper extension). Then E 6= ∅
since f ∈ E (i.e. f is an extension of itself).

We define a partial order on E in the following way. Say that g ≤ h if h is an extension of g.
That is, D(g) ⊂ D(h) and g(x) = h(x) for all x ∈ D(g). For every chain C ⊂ E define u(x) = g(x)

if x ∈ D(g) for each g ∈ C. Then the domain of u is D(u) =
⋃
g∈C
D(g). Note that g ≤ u for all

g ∈ C, so u is an upper bound of C. By Zorn’s Lemma, there exists a maximal element f̃ ∈ E. By
definition, this means that f̃(x) ≤ p(x) for all x ∈ X by definition of E. It remains to show that
D(f̃) = X.

Claim. The domain of f̃ is X.

Proof of claim. Otherwise there exists a y0 ∈ XrD(f̃) and define the subspace Y = span {D(f), y0}.
Then there exists an extension of f whose domain is Y . For every y ∈ Y there exists unique z ∈ D(f̃)
and α ∈ R such that y = z + αy0. This is indeed unique, since supposing y = z′ + α′y0 implies
z − z′ = (α′ − α)y0 = 0. Define a functional h on Y by h(y) = f̃(z) + αc where c ∈ R is some
constant. Then this is a linear extension of f̃ .

Then we need to show that there exists a c ∈ RR such that h(y) ≤ p(y) for all y ∈ Y . Indeed,
h(y) ≤ p(y) is equivalent to f̃(z) + αc ≤ p(z + αy0). This is true if and only if

αc ≤ p(z + αy0)− f̃(z) for all y ∈ Y. (11.1)

Case 1: α > 0. Then c ≤ p( 1
α+y0)−f̃( 1

αz) for all z ∈ D(f̃). This is true if and only if c ≤ p(z+y0)−f̃(z)

for all z ∈ D(f̃).

Case 2: α < 0. Then for all z ∈ D(f̃),

c ≥ 1

α

[
p(z + αy0)− f̃(z)

]
= −p(− 1

α
− y0)− f̃(

1

α
z).

This is true if and only if c ≥ −p(−z′ − y0)− f̃(z′) for all z′ ∈ D(f̃).
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Combining Cases 1 and 2, we have that (11.1) holds if and only if

−p(−z′ − y0)− f̃(z′) ≤ p(z + y0)− f̃(z)

for all z, z′ ∈ D(f̃). Then

f̃(z − z′) ≤ p(z − z′) = p(z + y0 − y0 − z′) ≤ p(z + y0) + p(−y0 − z′),

and since f(z)− f(z′) = f̃(z − z′), this proves the claim.
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Note 12.1. If the dimension of X is finite or countable, then Zorn’s Lemma is not needed to prove
the Hahn-Banach theorem.

Analogous to last time, if D(f) 6= X we can define the function

g1 ≡ f(z) + αc1 for all z ∈ Y1 = span(D(f), y1),

where y1 is some element not in D(f). If the domain D(g1) is stilll not all of X, then we can continue
this process and define

g2 ≡ g1(z) + αc2 for all z ∈ Y2 = span(Y1, y2).

By induction, we can continue this process until D(f̃) = X.

Theorem 12.2 (Hahn-Banach, version II – generalized to complex vector spaces). Let X be a real
or compled vector space and p a real-valued functional on X which is subadditive (i.e. p(x + y) ≤
p(x)+p(y) and p(αx) = |α|p(x) for any scalar α). Let f be a linear functional on a subspace W ⊂ X
which satisfies |f(x)| ≤ p(x) for all x ∈W . Then f has a linear extension f̃ from W to X satisfying
|f̃(x)| ≤ p(x) for all x ∈ X.

Proof. If X is real, then |f(x)| ≤ p(x) implies f(x) ≤ p(x) for all x. By the first version of the
Hahn-Banach theorem, there exists an extension f̃ such that f̃(x) ≤ p(x). Then −f̃(x) = f̃(−x) ≤
p(−x) = p(x) by the conditions in the statement of the theorem. So |f̃(x)| ≤ p(x) for all x ∈ X.

If X is complex, then f(x) = r(x) + im(x) for some real-valued functionals r and m. Then

i(r(x) + im(x)) = if(x) = f(ix) = r(ix) + im(ix),

and thus i r(x) − m(x) = r(ix) + im(x). Equating the real parts, we have that r(ix) = −m(x).
Hence f(x) = r(x) + i r(x) for the real functional r which may be given by

r(x) =
f(x) + f(x)

2
.

So r is a real-valued linear functional.
Consider the vector space WR, which is W as a real vector space. Then

r(x) ≤ |f(x)| ≤ p(x) for all x ∈WR

implies that there exists an extension r̃ of r such that r̃(x) ≤ p(x) for all x ∈ XR. Define f̃(x) =
r̃(x)− ir̃(ix).

Claim. f̃ is a linear functional on X and |f̃(x)| ≤ p(x) for all x ∈ X.

Note that f̃ is linear by construction. Consider some complex number a+ ib, then

f̃ ((a+ ib)x) = r̃ ((a+ ib)x)− ir̃ ((ia− b)x)

= ar̃(x) + br̃(ix)− iar̃(ix) + ibr̃(x)

= (a+ ib)r̃(x)− i(a+ ib)r̃(x)

= (a+ ib)f̃(x).

So f̃ is homogeneous with respect to complex scalars.
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We can write in polar form f̃(x) = |f̃(x)|eiθx for some θx, thus

|f̃(x)| = e−iθx f̃(x) = f̃(e−iθxx)

= r̃(e−iθxx)

≤ p(e−iθxx) = p(x),

where the second equality comes from the fact that the value must be real (imaginary part is zero).

Theorem 12.3 (Hahn-Banach, version III – Normed spaces). Let f be a bounded linear functional
on a subspace W of a normed space X. Then there exists a a bounded linear functional f̃ on X
which is an extension of f such that ||f ||W = ||f ||X .

Proof. Take p(x) = ||f ||W ||x||. This implies |f(x)| ≤ p(x). From version II of the Hahn-Banach
theorem, there exists an extension f̃ such that |f̃(x)| ≤ p(x) = ||f ||W ||x||. Hence f̃ is bounded and
||f̃ ||X ≤ ||f ||W . Since f̃ is an extension, we must have ||f̃ ||X ≥ ||f ||W , hence ||f̃ ||X = ||f ||W .

Corollary 12.4. Let X be a normed space and x0 ∈ X a nonzero vector. Then there exists a
functional f ∈ X ′ such that ||f || = 1 and f(x0) = ||x0||.

Note 12.5. This proposition implies that for all 0 6= x0 there is always a functional f such that

|f(x0)| = ||f || ||x0||.

Normally, we would just have |f(x0)| ≤ ||f || ||x0||.

Proof of Corollary 12.4. Let W = span{x0} and define g(x) = g(αx0)
def
= α||x0|| for all x ∈ W .

Since
|g(x)| = |α| ‖|x0|| = ||αx0|| = ||x||,

we have that ||g|| = 1. By version III of the Hahn-Banach theorem, there exists an extention f of g
from W to X such that ||f || = 1, and f(x0) = g(x0) = ||x0||.
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We have two important corollaries from last time.

Corollary 13.1 (from last time). For 0 6= x0 ∈ X, there exists a functional f ∈ X ′ such that
||f || = 1 and f(x0) = 0.

Corollary 13.2. For any x ∈ X, we have

||x|| = sup
06=f̃∈X′

|f̃(x)|
||f̃ ||

.

In particular, if there exists an x0 such that f(x0) = 0 for all f ∈ X ′, then x0 = 0.

Proof. For 0 6= x ∈ X, there exists an f ∈ X ′ such that ||f || = 1 and f(x) = ||x||. Since |f̃(x)| ≤
||f̃ || ||x||, we have

sup
06=f̃∈X′

|f̃(x)|
||f̃ ||

≥ f(x)

||f ||
=
||x||

1
.

Gilad laments the fact that there is only one course in functional analysis at Univeristy of Calgary.
There are many important applications of the above results, but we don’t have time to discuss them
here.

13.1 The Adjoint Operator

Definition 13.3. Let T : X −→ Y be a bounded linear operator. Then the adjoint operator ,
T× : Y ′ −→ X ′, is defined by

(T×g)(x) = g(Tx)

for all g ∈ Y ′.

Note 13.4. The adjoint is the analogue of the transpose for matrices.

We need to show that the functional defined by f(x) = (T×g)(x) is indeed an element of X ′. We
have

|f(x)| = |T×g(x)| = |g(Tx)| ≤ ||g|| ||T || ||x||.

It remains to show that f is linear and bounded.

Theorem 13.5. The adjoint operator T× is linear and bounded, and ||T×|| = ||T ||.

Proof. To show linearity, we have

T×(αg1 + βg2)(x) = (αg1 + βg2) (Tx)

= αg1(Tx) + βg2(Tx)

= αT×(g1) + βT×(g2).

For boundedness, with f given as above, we have

||T×g|| = ||f || ≤ ||g|| ||T ||
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so T× is bounded and ||T×|| ≤ ||T ||. For all 0 6= x ∈ X there exists a g ∈ Y ′ such that g(Tx) = ||Tx||.
Then (assuming ||g|| = 1, which we can do if Tx 6= 0)

||Tx|| = g(Tx) = f(x) ≤ ||f || ||x|| ||T×g|| ||x|| ≤ ||T×|| ||g|| ||x|| = ||T×|| ||x||,

and thus ||T || ≤ ||T×||.

Proposition 13.6. In finite dimensions, if T is represented by a matrix A then T× is represented
by the matrix Aᵀ in the dual basis to the basis chosen for A.

Proof. Let {ek}nk=1 be a basis of X and {fk}nk=1 its dual basis in X ′. Then fk(ek′) = δkk′ and we
can define

ek(fk′) ≡ fk′(ek) = δk′k.

Without loss of generality, assume Y = X, and let y = Tx. Then

x =

n∑
k=1

αkek and y =

n∑
k=1

βkek,

and we have ~β = A~α, where Akk′ = fk(Tek′).
Now let g, h ∈ X ′ with h = T×g. Then

h =

n∑
k=1

γkfk and g =

n∑
k=1

δkfk,

and we have ~γ = B~δ, where Bkk′ = ek(T×fk′). Then

Bkk′ = ek(T×fk′) =
(
T×fk′

)
(ek) = fk′ (Tek) = Ak′k = Aᵀ

kk′ .

Proposition 13.7. Let S, T : X −→ Y be bounded linear operators of normed spaces.

1. (S + T )× = S× + T×

2. (αT )× = αT×

3. (ST )× = T×S×

4. if T ∈ B(X,Y ) and T has an inverse T−1 ∈ B(Y,X), then (T×)
−1

=
(
T−1

)×
13.2 The relation between T× and T ∗

We have the correspondence

H1 H2

H ′1 H ′2

T

C1

T∗

C2

T×

where C1 and C2 are conjugate-linear isometric bijections. We will now discuss that that means.
Consider functionals f ∈ H ′1 and g ∈ H ′2. By the Riesz representation theorem, there are vectors

z ∈ H1 and w ∈ H2 such that f(x) = 〈x, z〉 and g(x) = 〈x,w〉. So denote f = fz and g = gw. In
fact, this assignment of vectors in H1 and H2 to functionals in H ′1 and H ′2, i.e.

C1 : H1 −→ H ′1 and C2 : H2 −→ H ′2
z 7−→ fz w 7−→ gw,
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are the isometries we are looking for. By the Riesz representation theorem, C1 and C2 are isometric
bijections, since ||fz|| = ||z||.

Note that, for vectors z, z′ in a Hilbert space H and corresponding functionals fz, fz′ in H ′, we
have

〈fz, fz′〉H′ = 〈z′, z〉H = 〈z, z′〉H
and

fαz+α′z′(x) = 〈x, αz + α′z′〉 = α〈x, z〉+ α′〈x, z′〉 = αfz(x) + α′fz′ ,

so these isometric bijections are conjugate-linear.
Composition gives us the operator T ∗ = C−11 T×C2. For a functional gz ∈ H ′2, we have T×gz =

fT∗z ∈ H ′1. Indeed, we have

(T×gz)(x) = gz(T (x)) = 〈Tx, z〉 = 〈x, T ∗z〉 = fT∗z(x)

and for hv ∈ H ′1, we have

〈T×gz, hv〉H′1 = 〈fT∗z, hv〉H′1 = 〈v, T ∗z〉 = 〈T ∗z, v〉
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15.1 Uniform Boundedness

There are really four important cornerstones of functional analysis. The first is the Hahn-Banach
theorem. Today we will introduce the second one: the uniform boundedness theorem.

Theorem 15.1 (Uniform boundedness). Let {Tn} be a sequence in B(X,Y ), where X is a Banach
space and Y is a normed space. If there exists constants cx ≥ 0 such that ||Tnx|| ≤ cx for all n ∈ N.
Then {||Tn||} is bounded. That is, there exists a constant c > 0 such that ||Tn|| ≤ c for all n.

Thus if X is Banach, pointwise boundedness of a sequence of operators implies uniform bound-
edness.

Definition 15.2. A subset M ⊂ X in a metric space is

1. rare in X if its closure M has no interior points (in X)—namely, it doesn’t contain any open
balls;

2. meager in X if it is a countable union of rare sets in X;

3. non-meager if it is not meager.

(Historical notaion called these categories of type I and II).

Theorem 15.3 (Baire’s Category Theorem). If a metric space X 6= ∅ is complete, then X is
non-meager in itself.

Proof. Suppose that X is meager. Then X =
⋃∞
k=1Mk where Mk are rare in X. Then Mk

c
(the

complement of Mk
c
) is nonempty for each k. Then there exists a ball of radius ε1 <

1
2 around a

point x1 ∈Mk
c

such that
B(x1, ε1) ⊂M1

c
.

Note that B(x1, ε1) 6⊂ M2 since M2 is rare, so M2
c ∩ B(x1, ε1) = ∅. Then there exists an ε2 <

1
4

and x2 ∈M2
c

such that
B(x2, ε2) ⊂M2

c ∩B(x1, ε1).

Carrying this out, there exists an ε3 <
1
8 and x3 such that

B(x3, ε3) ⊂M3
c ∩B(x2, ε2).

We can continue this inductively for all k. For conciseness, denote Bk = B(xk, εk), and we have

xk ∈ Bk ∩Mk
c

and Bk1 ⊂ Bk.

Hence the sequence {xk} is Cauchy.
It remains to show that {xk} does not converge in X. For m ≥ n, we have

d(xn, x) ≤ d(xn, xm) + d(xm + x) ≤ εn + d(xm, x).

Since this is true for all m ≥ n, and d(xm, x) −→ 0, we have

d(xn, x) ≤ εn for all n.

Hence x ∈ Bn and thus x ∈ Mn
c

for all n ∈ N. So x is not in Mn for all n ∈ N and thus

x 6∈ X =

∞⋃
n=1

Mn.
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Proof (of Uniform Boundedness Theorem). For k ∈ N, denote Ak to be the set of all x ∈ X such

that ||Tnx|| ≤ k. Then X =

∞⋃
k=1

Ak. Note that Ak is closed for each k. From Baire’s Category

Theorem, there exists a k0 ∈ N such that Ak0 is not rare in X. That is, there exists an x0 ∈ X and
r > 0 such that B0 = B(x0, r) ⊂ Ak0 . Then

||Tnx|| ≤ k0 for all x ∈ B(x0, r) = B0.

Take ε > 0 such that z ≡ x0 + εx ∈ B0 for all x ∈ X with ||x|| = 1. Note that if ε < r, then

||z − x0|| = ε||x|| = ε < r

which implies z ∈ B0. Then ||Tnz|| ≤ k0 for all n ∈ N. Hence

||Tnx|| =
1

ε
||Tn(z − x0)||

=
1

ε
(||Tnz||+ ||Tnx0||)

=
1

ε
(k0 + k0)

=
2k0
ε
.

Hence ||Tn|| ≤ 2k0
ε .
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Example 16.1. Let X be the normed space of all polynomials (in R or C) with norm given by

||x|| = max
0≤j≤Nx

|αj |

where x(t) = α0 + α1x+ · · ·+ αNxx
Nx . Show that X is not complete. First, we denote x(t) by

x(t) =

∞∑
j=0

αjt
j where αj = 0 if j > Nx.

Proof. Suppose that X is Banach. For each n, let Tn be the linear funcitonal on X defined by

Tnx =

n∑
j=0

αj .

Then for each x, we have |Tnx| ≤ n ·max0≤j≤n |αj | ≤ n||x|| which implies that Tn is bounded and
thus Tn ∈ X ′. Furthermore, note that, for each x, we have

|Tnx| ≤ (Nx + 1)||x||

and define the constants cx = Nx + 1. Thus, by the Uniform Boundedness Theorem, there exists a
constant c > 0 such that ||Tn|| ≤ c for all n.

However, for each n we can define the polynomial xn(t) = 1+ t+ t2 + · · ·+ tn such that ||xn|| = 1.
But |Tnxn| = n = n||xn||. Thus limn→∞ ||Tn|| =∞, a contradiction to the above claim.

For more examples of uses of the Uniform Boundedness Theorem, see [CON90] and [RUD91].

16.1 Weak and Strong Convergence

Definition 16.2. Let X be a normed space and let {xn} be a sequence in X. We say that {xn}

• converges strongly to x, denoted xn −→ x, if and only if ||xn + x|| −→ 0.

• converges weakly to x, denoted xn
w−→ x, if and only if f(xn) → f(x) for all functionals

f ∈ X ′.

Note that we only have one type of convergence in R and C since they are finite dimensional as
vector spaces.

Proposition 16.3. If {xn} is weakly convergent, then it converges to a unique element in X.

Proof. If xn
w−→ x and xn

w−→ y, then f(xn) → f(x) and f(xn) → f(y) for all f ∈ H ′. Hence
f(x− y) = 0 for all f ∈ H ′ and thus x− y = 0, so x = y.

Theorem 16.4. If xn
w−→ x then {||xn||} is bounded.

Note that strong convergence of a sequence {xn} clearly implies that {||xn||} is bounded.

Proof. Take f ∈ X ′, then the sequence {f(xn)} is bounded. Define the sequence {gn} in X ′′ by
gn(f) = f(xn) for each f ∈ X ′. Then |f(xn)| ≤ cf , which implies |gn(f)| ≤ cf . By the Uniform
Boundedness Theorem, we have that {||gn||} is bounded. Hence {||xn||} is bounded (why?).

Theorem 16.5. Let X be a normed space. Then
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1. strong convergence implies weak convergence, and

2. if dimX <∞ then strong and weak convergence are equivalent.

Proof. The proof of part 1 is trivial (exercise), so we prove part 2. Take a basis {ek}nk=1 ⊂ X and
let x ∈ X be given by

x =

n∑
j=1

αjej .

Let {fk}nk=1 be the dual basis in X ′. Since X is finite dimensional, it is complete, so there is a
sequence {xn} in X denoted by

xn =

n∑
j=1

α
(n)
j ej

that converges to xn. If xn
w−→ x, then fj(xn) −→ f(x) for all j implies α

(n)
j −→ αj for all j. Then

||xn − x|| =
∣∣∣∣∣∣∣∣ n∑
j=1

(α
(n)
j − αj)ej

∣∣∣∣∣∣∣∣
≤

n∑
j=1

∣∣α(n)
j − αj

∣∣ ||ej || n→∞−→ 0.

Example 16.6. We don’t have to look very hard to find counterexamples of this fact for infinite
dimensional spaces. Take H to be a Hilbert space and take {en} an orthonormal set in H. From
Bessel’s inequality,

∞∑
n=1

|〈x, en〉|2 ≤ ||x||2

which implies that lim
n→∞

|〈x, en〉| = 0. Since each f ∈ H ′ can be written as f(x) = 〈x, z〉 for some z,

we have
f(en) = 〈en, z〉

n→∞−→ 0 for all f ∈ X ′.

Theorem 16.7. Let X be a normed space and {xn} a sequence in X. Then xn
w−→ x if and only if

1. the sequence {||xn||} is bounded, and

2. there exists an M ⊂ X ′ such that M is total in X ′ and f(xn) −→ f(x) for all f ∈M .

Proof. Let {xn} be a sequence in X that satisfies condition 1 of the theorem and let M ⊂ X ′ be a
subset that satisfies condition 2. Let f ∈ X ′. Then there exists a sequence {fk} in the span of M
such that fk −→ f . Then for each n,

|f(xn)− f(x)| ≤ |f(xn)− fk(xn)|+ |fk(xn)− fk(x)|+ |fk(x)− f(x)|
= |(f − fk)(xn)|+ |fk(xn − x)|+ |(fk − f)(x)|
≤ ||f − fk||︸ ︷︷ ︸

−→0

||xn||+ ||fk|| ||xn − x||︸ ︷︷ ︸
−→0

+ ||fk − f ||︸ ︷︷ ︸
−→0

||x||,

hence f(xn) −→ f(x) for all functionals f ∈ X ′.
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17.1 Sequences of operators

We now cover different types of convergence inhte space of operators. All the theorems and state-
ments from last time regarding different types (strong and weak) of convergence will have analogues
here.

Definition 17.1. Let {Tn} be a sequence of operators in B(X,Y ) where X and Y are normed
spaces.

(a) Uniform operator convergence. The sequence {Tn} converges uniformly to an operator
T if ||Tn − T || −→ 0 which we denote

Tn
u−→ T.

Then T is called the operator limit of {Tn}.

(b) Strong operator convergence. The sequence {Tn} converges strongly to an operator T if
Tnx −→ Tx for each x, and we write

Tn
s−→ T.

That is Tnx converges strongly in Y , and T is called the strong operator limit of {Tn}.

(c) Weak operator convergence. The sequence {Tn} converges weakly to an operator T if
f(Tnx) −→ f(Tx) for all functionals f ∈ Y ′ and all x ∈ X, and we write

Tn
w−→ T.

That is, Tnx converges weakly in Y , and T is called the weak operator limit of {Tn}.

Example 17.2. Let X = `2 and let x = {xj}.

i) The erasure operators are defined by

Enx = {0, 0, . . . , 0︸ ︷︷ ︸
n zeros

, xn+1, . . . , }.

Note that ||En|| = 1, and En must somehow converge to 0. But En 6
u−→ 0. However, we have

En
s−→ 0.

ii) The (right)-shift operators are defined by

SRn x = {0, 0, . . . , 0︸ ︷︷ ︸
n zeros

, x1, x2, . . . , }.

We can also define the left-shift operators SLnx = {xn+1, xn+2, . . . }. Note that SLn ◦SRn = id`2 ,
but SRn ◦ SLn = En, so these are one-sided inverses of each other. Furthermore, we have that
SRn and SLn are adjoints, since

〈
SRn x, y

〉
=

∞∑
k=1

αkβk+n =
〈
x, SLn y

〉
.
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Furthermore, note that {SRn } must somehow converge to 0, but SRn 6
u→ 0 and SRn 6

s→ 0, since

||SRn x|| = ||x|| for all x ∈ `2. However, the sequence of shift operators is weakly operator
convergent since for all functionals f ∈ X ′ we have f(x) = 〈x, z〉 for some z ∈ X and

|f(SRn x)| =
∣∣〈SRn x, y〉∣∣

=
∣∣〈x, SLn y〉∣∣

= ||x||
∣∣∣∣SLn z∣∣∣∣︸ ︷︷ ︸
−→0

.

Theorem 17.3. Let X be a Banach space and Y a normed space. Let {Tn} be a sequence in B(X,Y ).

If {Tn} be a strongly operator convergent sequence with limit Tn
s−→ T . Then T is bounded.

Proof. Technically, we first need to prove that T is indeed a linear operator (left as an exercise), but
we will just prove boundedness.

Since the sequence {Tnx} in Y is convergent for all x ∈ X, it is bounded, so there exists a
constant cx such that ||Tnx|| ≤ cx. By the Uniform Boundedness Theorem, the sequence {||Tn||} is
bounded since X is complete. Then there exists a constant c such that ||Tn|| ≤ c for all n, and we
have

||Tnx|| ≤ ||Tn|| ||x||
≤ c||x||.

Hence ||Tx|| ≤ c||x|| and thus T ∈ B(X,Y ).

Example 17.4. We now consider a counterexample to the above theorem. Let X ⊂ `2 be the
subspace of sequences consisting of finitely many non-zero elements. This subspace of finite sequences
is not complete in `2. For each n, define the operators

Tnx = {x1, 2x2, . . . , nxn, xn+1, . . . }.

Clearly, we have Tnx −→ Tx where

Tx = {x1, 2x2, 3x3, . . . },

but T is not bounded.

Theorem 17.5. Let X,Y be Banach spaces. A sequence {Tn} in B(X,Y ) is strongly operator
convergent if and only if the following hold:

1. the sequence {||Tn||} is bounded,

2. and the sequence {Tnx} is Cauchy in Y for all x ∈M where M is a total subset of X.

Proof. The forward direction is trivial, so assume (1) and (2). Let x ∈ X and y ∈ spanM . Then we
have

||Tnx− Tmx|| ≤ ||Tnx− Tny||+ ||Tny − Tmy||+ ||Tmy − Tmx||
= ||Tn|| ||x− y||︸ ︷︷ ︸

→0

+ ||Tn − Tm||︸ ︷︷ ︸
→0

||y||+ ||Tm|| ||y − x||︸ ︷︷ ︸
→0

sicne spanM is dense in X, so we can choose y ∈ spanM arbitrarily close to x.

Note 17.6. If Tn = fn for some fn a sequence of bounded linear functionals, then Y = R or C.
But weak and strong convergence is the same in these fields. So fn(x)

w−→ f(x) is equivalent to

fn(x) −→ f(x).
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Definition 17.7. Let X be a normed space and {fn} a sequence of functionals in X ′.

(a) Strong functional convergence. The sequence {fn} converges strongly to a functional
f ∈ X ′ if ||fn − f || −→ 0, and this is denoted

fn −→ f.

(b) Weak∗ functional convergence. The sequence {fn} is weakly∗ convergent to a functional
f ∈ X ′ if fn(x)→ f(x) for all x ∈ X, and this is denoted

fn
w∗−→ f.

Next time we will discuss the Open Mapping Theorem. For this we need to understand a basic
concept of continuous mappings. A map T : X → Y is continuous if and only if T−1(U) ⊂ X is
open in X for all open sets U ⊂ Y .
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18.1 Open Mapping Theorem

This is our third main cornerstone of functional analysis. The other two “cornerstones”, but not as
important as the other three, might be Baire’s Category Theorem and the Closed Graph Theorem
(which is really a consequence of the Open Mapping Theorem, and we will cover this later). The
remainder of this course will be focused on spectral theory and self-adjoint operators, and unbounded
operators if we have time.

Recall: A mapping T of a metric space X into a metric space Y is continuous if and only if T−1(A)
is open in X for any open subset A ∈ Y . This notation T−1(A) does not necessarily mean that T
has an inverse, this is just the inverse image of the mapping.

Definition 18.1. Let X and Y be metric spaces. Then a a mapping T : X −→ Y is said to be an
open mapping if for every open set U ⊂ D(T ) the image under T , i.e. T (U) ⊂ Y , is open in Y .

Note 18.2. Note that in our definition of open, the sets must be open in Y , not that they must
be open in the range R(T ) ⊂ Y , since openess in Y is stronger than openess in a subset of Y under
the subset topology.

Question: What conditions do we need for a bounded continuous linear mapping T : X −→ Y to
be open? It is nice to work in spaces that are Banach, and in this case it turns out that the mapping
must be surjective.

Theorem 18.3 (Open Mapping Theorem). Every bounded linear operator from a Banach space X
onto a Banach space Y is an open map. Hence if T : X −→ Y is bijective, then T−1 is continuous
(which is equivalent to boundedness).

Proof. Let A ⊂ X be open. We need to show that T (A) is open. Take y ∈ Tx ∈ T (A), and we need
to show that there is an open neighborhood of y that is contained in T (A). We know that there
exists an ε > 0 such that the open ε-ball around x is contained in A, i.e. B(x; ε) ⊂ A.

Instead of looking at the ε-ball around an arbitrary x, it is more convenient to translate and
expand the problem to look at the 1-ball around 0, i.e. this is equivalent to looking at

B(0; 1) ⊂ 1

ε
(A− x)

where A− x is the set {y − x ∈ X | y ∈ A}, and similarly cA = {cy ∈ X | y ∈ A}. We can do this by
linearity of the maping. Hence, we have

T (B(0; 1)) ⊂ 1

ε
(T (A)− Tx).

We need to show that there exists a ball of any radius around 0 ∈ Y that is contained in T (B(0; 1)),
then we are done.

Denote Bn ≡ B(0; 2−n) ⊂ X. So we have B0 = B(0; 1) and B1 = B(0; 1
2 ). Note that we can

write X as the countable union

X =

∞⋃
k=1

B1,



18 Lecture 18, v. 4-12 45

since for each x ∈ X there is an integer k such that k
2 > ‖x‖ and thus x ∈ kB1. So we have

Y = T (X) =

∞⋃
k=1

T (kB1)

=

∞⋃
k=1

kT (B1)

=

∞⋃
k=1

kT (B1),

where we can take the closure of each set, since the union will still be equal to the closure of Y
in Y , which is just Y . Now we can make use of Baire’s Category Theorem. Since Y is complete,
and we have written it as a countable union of closed sets, at least one of these closed sets must be
non-meager. So there exists a y0 ∈ Y and δ > 0 such that BY (y0; δ) ⊂ T (B1).1 Hence

BY (0; δ) ⊂ T (B1)− y0,

and we will show that this is contained in T (B0). Indeed, take y ∈ BY (0; δ), then y + y0 ∈ T (B1).
In addition, we have y0 ∈ T (B1). Hence, y−y0 can be written as a limit of elements in T (B1) (since
it is in the closure), that is

y − y0 = lim
n→∞

Tan

for some sequence an ∈ B1. Similarly, y0 ∈ T (B1) so y0 can be written as a limit

y0 = lim
n→∞

Tbn

for some sequence bn ∈ B1. Then
y = lim

n→∞
T (an − bn),

and since an, bn we have ‖an − bn‖ ≤ ‖an‖ + ‖bn‖ < 1
2 + 1

2 = 1. So (an − bn) ∈ B0 for each n and

thus y ∈ T (B0).
To summarize, we have that there exists a δ > 0 such that By(0; δ) ⊂ T (B0) if and only if

BY (0; δ2 ) ⊂ T (Bn), and thus BY (0; δ2 ) ⊂ T (B1).

Finally, we claim that B(0; δ2 ) ⊂ T (B0). Indeed, take y ∈ B(0, δ2 ) and thus there exists an

x1 ∈ B1 such that ‖y − Tx1‖ < δ
4 . Hence

y − Tx1 ∈ B(0, δ4 ) ⊂ T (B2),

and thus there exists an x ∈ B2 such that ‖y − Tx1 − Tx2‖ < δ
8 . By induction, we can continue to

carry out this process to construct a sequence {xk} with each xk ∈ Bk such that the series

∞∑
k=1

xn

converges in X. Indeed, for each n we have∥∥∥∥∥y − T
n∑
k=1

xk

∥∥∥∥∥ ≤ δ

2n+1
.

Define the partial sums of the series sn ≡
n∑
k=1

xk, then

‖sn − sm‖ ≤
n∑

k=m+1

‖xk‖ ≤
∞∑

k=m+1

‖xk‖
m→0−−−→ 0,

1Note that we have removed the k, since there exists some k (say k = 17) such that there is a y0 and δ′ > 0

withBY (y0; δ′) ⊂ kT (B1) and so choose δ = 1
k
δ′.



46 18 Lecture 18, v. 4-12

so {sn} is a Cauchy sequence in X. Since X is Banach, it converges sn −→ x to some x in X. Hence
Txn −→ Tx = y, and thus y = lim

n→∞
Tsn. But

‖x‖ ≤
∞∑
k=1

‖xk‖ < 1

since xk ∈ Bk and thus ‖xk‖ < 1
2k

for each k. Then ‖x‖ < 1 and thus x ∈ B(0; 1), so y ∈ T (B(0; 1))
and we are done.
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Theorem 19.1 (Bounded Inverse theorem1). A bijective linear bounded map T : X −→ Y , where
X and Y are Banach spaces, has a bounded linear inverse.

Today we will discuss another of the important ‘cornerstones’ of functional analysis: the Closed
Graph theorem. In addition, we will talk about unbounded operators, since many important linear
operators in physics (such as the momentum operator p = i ddx ) are unbounded.

Definition 19.2. Let X and Y be normed spaces and T : D(T ) −→ Y a linear operator with
D(T ) ⊂ X. Then T is said to be a closed linear operator if its graph is closed in X × Y .

We recall that the graph of the mapping T is

G(T ) = {(x, Tx) |x ∈ D(T )} ⊂ X × Y.

Note that X × Y has the structure of a normed space, where

α(x, y) = (αx, αy) and (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and the norm is given by ‖(x, y)‖ = ‖x‖+ ‖y‖. Another norm could also be defined by ‖(x, y)‖′ =√
‖x‖2 + ‖y‖2, but in fact all norms on a normed space define the same topology (homework), so it

does not matter.

Proposition 19.3. If X and Y are Banach spaces, then so is X × Y .

Proof. Let zn = (xn, yn) be a Cauchy sequence in X × Y . Then

‖zn − zm‖ = ‖xn − xm‖+ ‖yn − ym‖ −→ 0.

There are two ways to define the notion of a closed operator. We will give the second definition
here, then show that the two notions are the same.

Lemma 19.4. Let T : D(T ) −→ Y be a linear operator, where D(T ) ⊂ X and X and Y are normed
spaces. Then T is a closed linear operator if and only if the following holds: if xn ∈ D(T ) is a
sequence in X such that xn −→ x and Txn −→ y ∈ Y , then x ∈ D(T ) and y = Tx.

That is, in any situation in which Txn converges to something in Y , then it must converge to
Tx where x is the limit of {xn}. Thus, this is similar to, but a weaker condition, then continuity of
T .

Proof. Note that the graph G(T ) is closed in X × Y if and only if for every Cauchy sequence
of the form zn = (xn, Txn), we have that {zn} converges to something in G(T ). In particular,
zn −→ z = (x, Tx) where x ∈ D(T ). But this is true if and only if for all convergent sequences
xn −→ x in D(T ) with Txn −→ y ∈ Y we have y = Tx.

Example 19.5. Let X ⊂ C[0, 1] be the subspace of all functions with continuous derivative, and
T : D(T ) −→ X with D(T ) as a subspace2 of X. Then T is an unbounded closed linear operator.

1This is an important corollary to (or perhaps an important part of) the Open Mapping theorem.
2In particular, it is the subspace of C[0, 1] of functions with continuous first and second derivatives
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Proof. Let xn ∈ D(T ) be a sequence such that xn −→ x ∈ D(T ) and Txn −→ y where y ∈ X. Then

y = lim
n→∞

x′n,

and we may take the integral of both sides to obtain∫ t

0

y(τ) dτ =

∫ t

0

lim
n→∞

x′n(τ) dτ

= lim
n→∞

∫ t

0

x′n(τ) dτ

= lim
n→∞

(xn(t)− xn(0))

= x(t)− x(0)

where we interchange the limit and the integral since the limit converges uniformly. Then we have

x(t) = x(0) +

∫ t

0

y(τ) dτ

and thus x′(t) = y(t) so y = Tx.

Example 19.6. Let T : D(T ) −→ X where D(T ) ⊂ X is a proper dense subset of X and T is the
identity operator. Then T is bounded but not closed. It is clearly bounded, since ‖Tx‖ = ‖x‖ for
each x ∈ D(T ), so ‖T‖ = 1. But it is not closed, since for an x ∈ X r D(T ), there is a sequence
{xn} in D(T ) that converges to x. Then {Txn} converges to x, which is not in D(T ), so the graph
is not closed in D(T )×X.

Lemma 19.7. Let T : D(T ) −→ Y be a bounded linear operator with D(T ) ⊂ X where X and Y
are normed spaces.

1. If D(T ) is closed in X, then T is closed.

2. If T is closed and Y is complete, then D(T ) is closed.

Proof. Next time. (Note: no class next Monday)
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Recall that an operator T is closed if and only if the graph G(T ) is closed. As we saw before, this is
equivalent to the statement: if {xn} in X such that xn −→ x and Txn −→ y for some y ∈ Y , then
x ∈ D(T ) and y = Tx.

Lemma 20.1. Let T : D(T ) −→ Y be a bounded linear operator between normed spaces X and Y
where D(T ) ⊂ X.

1. If D(T ) is closed in X, then T is closed.

2. If T is closed and Y is Banach, then D(T ) is closed.

Proof. 1. Let {xn} be a sequence such that xn −→ x and Txn −→ y for some y ∈ Y . Since D(T )
is closed, x ∈ D(T ). Then Txn −→ Tx and thus y = Tx.

2. Let x ∈ D(T ). Then there exists a sequence {xn} in D(T ) such that xn −→ x. But
‖Txn − Tx‖ ≤ ‖T‖‖xn − x‖ −→ 0, and thus Txn is Cauchy. Since Y is complete, we have
Txn −→ y for some y ∈ Y . Hence x ∈ D(T ), so D(T ) = D(T ).

Theorem 20.2 (Closed Graph Theorem). Let X,Y be Banach spaces, and let T : D(T ) −→ Y be
a closed lienar operator such that D(T ) ⊂ X. If D(T ) is closed then T is bounded.

Proof. By assumption, G(T ) is closed in X × Y . Since X × Y is Banach, we have that G(T ) is
Banach. Similarly, D(T ) is Banach. Define the mapping1 P : G(T ) −→ D(T )

(x, Tx) 7−→ x.

This is clearly linear (exercise), so we show that P is bounded. Note that

‖P (x, Tx)‖ = ‖x‖ ≤ ‖x‖+ ‖Tx‖ = ‖(x, Tx)‖

and thus ‖P‖ ≤ 1. Note that P is bijective, since P (x, Tx) = P (x′, Tx′) if and only if x = x′, and
P is also open by the Open Mapping Theorem. Hence P−1 is bounded by the Bounded Inverse
Theorem. Then

‖Tx‖ ≤ ‖x‖+ ‖Tx‖ = ‖(x, Tx)‖ =
∥∥P−1(x)

∥∥ ≤ ∥∥P−1∥∥‖x‖
and thus T is bounded.

Hence the Closed Graph Theorem is really a consequence of the Open Mapping Theorem. These
theorems have very important applications in spectral theory, which is what we will be covering
pretty much for the rest of the semester.

20.1 Spectral theory in normed spaces

Spectral theory itself has many applications in this such as solving differential equations, since
this often boils down to finding eigenvalues of linear operators. However, spectral theory is still
interesting in its own right, not just applications. Our focus here will mostly be on the following (in
the given order):

1. bounded self-adjoint operators,

2. compact operators,

3. unbounded operators.

1This is kind of like a projection mapping, so we use the letter P .
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20.1.1 Eigenvalues and eigenvectors

Given an operator T on a vector space2, a nonzero vector x is an eigenvector of T if Tx = λx for
some scalar λ, and λ is said to be an eigenvalue of T . If Tx = λx, then we have

Tx− λx = 0.

For each λ, we can define the operator Tλ ≡ T − λI, where I is the identity mapping. Then λ is an
eigenvalue of T if and only if Tλ is not invertible. We define

Rλ ≡ T−1λ = (T − λI)
−1
,

if it exists. This is known as the resolvant. In many cases, the resolvant may be unbounded, which,
in terms of spectrum, is a similar condition it not existing at all.

Definition 20.3. Let T : D(T ) −→ X be a linear operator with D(T ) ⊂ X.

1. The point spectrum or discrete spectrum of T is the set

σp(T ) ≡ {λ ∈ C |Rλ does not exist} .

2. The continuous spectrum of T is the set

σc(T ) ≡
{
λ ∈ C

∣∣∣Rλ exists but is not bounded, and D(Rλ) = X
}
.

3. The residual spectrum of T is the set

σr(T ) ≡
{
λ ∈ C

∣∣∣Rλ exists and D(T ) 6= X
}
.

4. The spectrum of T is the set

σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ).

5. The resolvant set of T is ρ(T ) ≡ Cr σ(T ), and λ ∈ ρ(T ) is called a regular value of T .

Hence λ ∈ ρ(T ) if and only if all of the following are satisfied:

i) Rλ exists,

ii) Rλ is bounded,

iii) and D(Rλ) is dense in X (i.e. D(Tλ) = X).

Note that we can partition the complex plane into four regions:

C = σp(T ) ∪ σc(T ) ∪ σr(T ) ∪ ρ(T ).

Example 20.4. In finite dimensions, the continuous and residual spectra are empty.

Example 20.5. Consider the infinite-dimensional Hilbert space `2 and define the shift operator
S : `2 −→ `2 defined by

S : (α1, α2, . . . ) 7−→ (0, α1, α2, . . . ).

Take λ = 0. Note that R0 = T−1 exists on the range of T , since T−1 : T (`2) −→ `2 is defined by

(0, α1, α2, . . . ) 7−→ (α1, α2, . . . ).

But D(R0) = R(T ) =
{

(0, α1, α2, . . . )
∣∣ (α1, α2, . . . ) ∈ `2

}
which is not dense in `2. So λ = 0 is in

the residual spectrum of S.

2We are not necessarily working in normed spaces or any particulary kind of space yet.
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Proposition 21.1. Let T : X −→ X be a linear operator on a Banach space X.

1. If T is bounded and for some λ ∈ C such that Rλ(T ) exists with D(Rλ(T )) = X, then Rλ is
bounded.

2. If λ ∈ ρ(T ) and T is either closed or bounded, then D(Rλ) = X.

3. Rµ −Rν = (µ− ν)RµRν , where µ, ν ∈ C.

4. If [S, T ] = ST − TS = 0, then [S,Rµ(T )] for all µ such that Rµ exists.

5. [Rµ, Rν ] = 0 for all µ, ν ∈ C.

Proof. .

1. This is an immediate consequence of the Bounded Inverse Theorem.

2. If T is closed then Tλ is closed. Then Rλ = T−1λ is closed, since

G(Rλ) = G(T−1λ ) = {(Tλx, x) |x ∈ X}

which is isomorphic to the closed set G(Tλ) = {(x, Tλx) |x ∈ X}. By assumption, λ ∈ ρ(T )
and thus Rλ is also bounded. Since Rλ is both closed an bounded, D(Rλ) = D(Rλ), but
D(Rλ) is dense in X and thus D(Rλ) = X.

If T is bounded and D(T ) is closed in X, then T is closed. But in our case here, D(T ) = X
and thus T is closed.

3. Note that Rν = T−1ν and so TνRν = I, so we have

Rµ −Rν = Rµ TνRν︸ ︷︷ ︸
I

−RµTµ︸ ︷︷ ︸
I

Rν

= Rµ(Tν − Tµ)Rν

= Rµ(T − νI − (T − µI))Rν

= (µ− ν)RµRν .

4. Note that RµS = RµSTµRµ, but S commutes with T and thus [S, Tλ] = 0. Hence

RµS = RµS TµRµ︸ ︷︷ ︸
I

= RµTµ︸ ︷︷ ︸
I

SRµ = SRµ

and thus [S,Rµ] = 0.

5. This follows from (4). Indeed, Rµ commutes with T , so chose S = Rν .

21.1 Spectral properties of bounded linear operators

Lemma 21.2. Let T ∈ B(X,X) where X is a Banach space. If ‖T‖ < 1 then (I − T )−1 exists and

(I − T )−1 = I + T + T 2 + · · · =
∞∑
k=0

T k.
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Proof. Note that ‖Tn‖ ≤ ‖T‖n, and follow the proof of convergence for a geometric series in R (left
as an exercise).1

Theorem 21.3 (Closed Speectrum Theorem). Let T : X −→ X be a bounded linear operator on a
Banach space X. The resolvent set ρ(T ) is open in C, hence σ(T ) is closed in C.

Proof. Take a fixed λ0 ∈ ρ(T ). We will show that there exists a neighborhood of λ0 that is in ρ(T ).
Take some λ ∈ C and consider Tλ and note that

Tλ = T − λI
= T − λ0I + λ0I − λI
= (T − λ0I)

[
I − (T − λ0I)−1(λ0 − λ)I

]
= Tλ0

[I − (λ0 − λ)Rλ0
] .

If ‖(λ0 − λ)Rλ0
‖ < 1 then λ ∈ ρ(T ), and thus if |λ− λ0| < 1

Rλ0
then λ ∈ ρ(T ).

From above, we have that Tλ = Tλ0 [I − (λ− λ0)Rλ0 ], and thus we have the useful formulae

Rλ = [I − (λ− λ0)Rλ0 ]
−1

and thus Rλ =

∞∑
k=0

(λ− λ0)kRk+1
λ0

.

Theorem 21.4. Let X be a Banach space and T ∈ B(X,X). Then σ(T ) is compact and |λ| ≤ ‖T‖
for all λ ∈ σ(T ).

So the spectrum is always contained inside a disk of radius ‖T‖ about the origin.

Proof. Suppose that |λ| > ‖T‖. Then Rλ = (T − λI)−1 exists if
∥∥∥ 1
|λ|T

∥∥∥ < 1, since this is equivalent

to |λ| > ‖T‖. Hence λ ∈ ρ(T ) and thus λ 6∈ σ(T ).

Definition 21.5. The spectral radius rσ(T ) is defined as

rσ(T ) := sup
λ∈σ(T )

|λ|.

Theorem 21.6. 2Let X be a Banach space and T ∈ B(X,X). Then

rσ(T ) = lim
n→∞

n
√
‖Tn‖ ≤ ‖T‖.

Proof. We will show that
rσ(T ) = n

√
rσ(Tn) ≤ n

√
‖Tn‖

(to be continued next time).

1Gilad says this might be a good question for the final.
2This is related to the Hadamard theorem in complex analysis.
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From last time: we looked at expanding (I − T )−1 if ‖T‖ < 1. In particular, this means that
1 ∈ ρ(T ), since in this case (I − T )−1 is bounded and defined on all X.

Theorem 22.1 (The Spectral Mapping Theorem for polynomials). Let X be a complex Banach
space and T ∈ B(X,X). Let p(λ) = α0 + α1λ+ · · ·+ αnλ

n be a degree n polynomial (with αn 6= 0)
then we can define the operator p(T ). Then σ(p(T )) = p(σ(T )).

That is, the spectrum of p(T ) is the image of the spectrum of T under the polynomial p. We are
familiar with this fact for matrices. For example, if λ is an eigenvalue of the matrix A, then λ2 is an
eigenvalue of A2. We must be careful with our intuition, however, in the infinite dimensional case.

Proof. We first prove that σ(p(T )) ⊂ p(σ(T )). Fix µ ∈ σ(p(T )), then we need to show that µ = p(λ)
for some λ ∈ σ(T ). Since µ is just some constant, we can define a new polynomial qµ(λ) = p(λ)−µ.
Since this is a polynomial over C, we can factor it as

qµ(λ) = αn(λ− a1)(λ− a2) · · · (λ− an)

for some nonzero1 complex numbers ak. This gives us the operator

Qµ = αn(T − a1I)(T − a2I) · · · (T − anI) = P (T )− µI.

Suppose that (T − akI)−1 exists and ak ∈ ρ(T ) for all k = 1, . . . n. Then

(P (T )− µI)−1 = Q−1µ =
1

αn
(T − anI)−1 · · · (T − a2I)−1(T − a1I)−1

and thus (P (T )−µI)−1 exists and is bounded, hence µ ∈ ρ(P (T )), a contradiction to the assumption
that µ ∈ σ(P (T )). Thus for at least one ak we must have that (T−akI)−1 does not exist and therefore
ak ∈ σ(T ). So we have µ = p(ak).

Now we show that σ(p(T )) ⊃ p(σ(T )). Take ν ∈ p(σ(T )), then ν = p(λ0) for some λ0 ∈ σ(T ).
We need to show that ν ∈ σ(P (T )). Define a polynomial qν(λ) = p(λ)− ν, then we can factor this
as

qν(λ) = (λ− λ0)g(λ)

for some polynomial g(λ). We have the operator

Qν = P (T )− νI = (T − λ0I)g(λ).

If Q−1ν does not exist, then ν ∈ σ(P (T )). We still need to consider the case when Q−1ν does exist.

• Case I: Rλ0 = (T − λ0I)−1 = T−1λ0
does not exist. Then

I = Q−1ν (T − λ0I)g(T )︸ ︷︷ ︸
Qν

= (T − λ0I)g(T )︸ ︷︷ ︸
Qν

Q−1ν .

Then (?????)

• Case II: Rλ0
= (T−λ0I)−1 = T−1λ0

2 exists. ThenD(Rλ0
) 6= X. Indeed, otherwise Tλ0

: X −→ X
is onto and thus R(Tλ0

) = X. By the Bounded Inverse Theorem, we have that Rλ0
is

bounded.

Last time we proved that if T : X −→ X is bounded or closed and λ ∈ ρ(T ) then
D(Rλ(T )) = X. If ν ∈ ρ(P (T )) then D(P (T )) = X.

1indeed, otherwise αn = 0
2Gilad later erased this and wrote Q−1

ν
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We go back to correct the proof of the theorem from last time.

Proposition 23.1. p(σ(T )) ⊂ σ(p(T ))

Proof. Let ν ∈ p(σ(T )) then ν = p(λ0) for some λ0 ∈ σ(T ). Define the new polynomial

qν(λ) = p(λ)− ν

which factors as qν(λ) = (λ− λ0)g(λ) for some polynomial g(λ). Then we have the operator

Qν = p(T )− νI = (T − λ0I)g(T ) = g(T )(T − λ0I).

• If Q−1ν does not exist, then ν ∈ σ(p(T )).

• If Q−1ν exists, then (T − λ0)−1 = Rλ0 exists. Then R(Tλ0) 6= X and thus R(Qν) 6= X since
R(Qν) ⊂ R(Tλ0

).

We have shown previously that, if T : X −→ X is bounded or closed and λ ∈ ρ(T ), then
D(Rλ) = R(Tλ) = X. So suppose that ν ∈ ρ(p(T )), that is ν 6∈ σ(p(T )). Then Q−1ν =
Rν(p(T )) and thus R(Qν) = X, a contradiction.

Hence Q−1ν does not exist and thus ν ∈ σ(p(T )).

23.1 Banach Algebras

Definition 23.2. An algebra A is a vector space with a binary operation that defines a product
x · y ∈ A that is associative. That is

x · (y + z) = x · y + y · z

for all x, y, z ∈ A. The algebra has an identity if there exists an element e ∈ A such that e ·x = x · e
for all x ∈ A, and the algebra is said to be abelian if the product is commutative. A normed
algebra is an algebra A that is normed as a vector space and satisfies

‖x · y‖ ≤ ‖x‖‖y‖

for all x, y ∈ A, and if A has a multplicative identity e then1 ‖e‖ = 1. A Banach algebra is a
normed algebra whose underlying normed space is Banach.

Note 23.3. The product in a normed algebra is continuous. Indeed, we have

‖xy − x0y0‖ = ‖xy − xy0 + xy0 − x0y0‖ ≤ ‖x(y − y0)‖+ ‖(x− x0)y0‖
≤ ‖x‖‖y − y0‖+ ‖y‖‖x− x0‖,

so ‖x0y0‖ is close to ‖x0y0‖ if x0 and y0 are close to x and y.

Example 23.4. Some examples of normed and Banach algebras are

1. R and C with standard product and norm;

2. C[a, b] is an abelian Banach algebra with identity where product is given by (x·y)(t) := x(t)y(t);

3. the space of n× n matrices Mn(C) (this is abelian if and only if n = 1)

1To figure out (exercise): is this requirement necessary, or does it follow from ‖x · y‖ ≤ ‖x‖‖y‖?
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4. the space B(X,X) for any normed space X (this space has an identity).

Definition 23.5. Let A be a complex Banach algebra with identity.

• The resolvent set ρ′(x) for x ∈ A is the set of all λ ∈ C such that x− λe is invertible.

• The spectrum is σ′(x) := Cr ρ′(x) and any λ ∈ σ′(x) is called a spectral value of x.

Theorem 23.6. If A = B(X,X), then ρ′(T ) = ρ(T ). That is, our notion of the resolvent set of an
operator T ∈ B(X,X) in the algebra-sense coincides with our definition of the resolvent set of T as
an operator in Definition 20.3.

Proof. If λ ∈ ρ′(T ), then (T−λe)−1 exists and belongs to B(X,X), hence λ ∈ ρ(T ). If λ ∈ ρ(T ) then
(T − λe)−1 exists2 with domain dense in X. By the previous theorem, we must have D(Rλ) = X.
Hence (T − λe)−1 exists in A = B(X,X) and thus λ ∈ ρ′(T ).

Theorem 23.7. For a complex Banach algebra A with identity, if ‖x‖ < 1 then e− x is invertible
with

(e− x)−1 = e+

∞∑
k=1

xk

and this converges.

Proof. Define sn =

n∑
k=1

xk and s =

∞∑
k=1

xk. For all n ∈ N, note that

∥∥∥∥∥
n∑
k=1

xk

∥∥∥∥∥ ≤
n∑
k=1

∥∥xk∥∥ n∑
k=1

‖x‖k <
n→∞

∞

and thus

∞∑
k=1

∥∥xk∥∥ converges absolutely. Since A is Banach, this means that
∑
xk converges. It

remains to show that e− s is the inverse of e− x. Indeed,

(e− x)(e+ sn) = (e− x)(e+ x+ x2 + · · ·+ xn) = (e+ x+ x2 + · · ·+ xn)(e− x)

= e− xn+1 −→
n→∞

e.

Theorem 23.8. Let A be a complex Banach algebra with identity. The group G ⊂ A of all invertible
elements is open in A. (Hence, ArG is closed in A.)

Proof. Note that G is nonempty since e ∈ G. Take x0 ∈ G and x ∈ A. Then

x = x0 − (x0 + x) = x0 − x0(e+ x−10 x)

= x0(e− x−10 (x0 + x).

Then x had an inverse if
∥∥x−10 (x0 − x)

∥∥ < 1.∥∥x−10

∥∥‖x0 − x‖ < 1... Suppose ‖x0 − x‖ < 1. ???

2“But where does it exist? On the moon? It exists somewhere, but it important to know where it exists.” – Gilad
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Theorem 24.1 (Spectral radius in a Banach algebra). For a complex Banach algebra with identity,
the following hold:

1. rσ(x) := sup
λ∈σ(x)

|λ| ≤ ‖x‖

2. The spectrum σ(x) is compact.

Proof. 1. Take λ ∈ C. Then
x− λe = −λ(e− 1

λx)

and this is invertible if
∥∥ 1
λ

∥∥ < 1, that is, if |λ| > ‖x‖. Hence, if λ ∈ σ(x) then |λ| < ‖x‖.

2. First note that ρ(x) is nonempty, since part (1) implies that λ0 ∈ ρ(x) whenever |λ0| > ‖x‖.
Take λ0 ∈ ρ(x). Then x−λ0e ∈ G, where G is the group of invertible elements in the algebra.
Since G is open (which we proved last time), there exists a δ > 0 such that x− λe ∈ G for all
λ such that |λ− λ0| < δ. Hence λ ∈ ρ(x) if |λ− λ0| < δ. Therfore ρ(x) is open, and thus σ(x)
is closed and bounded. So it is compact.

Theorem 24.2. The spectrum of every element is nonempty. That is,

σ(x) 6= ∅

for all x ∈ A, where A is a complex Banach space.

Proof. Let f ∈ A′ be a bounded linear functional and define a mapping

h : ρ(x) −→ C

µ 7−→ f
(

[x− µe]−1
)
.

We will show that h is analytic. If ρ(x) = C, then f is a bounded entire function, and therefore
must be constant. We will show that this constant must be zero.

To show that the derivative of h exists everywhere, note that

h(µ)− h(ν)

µ− ν
= f

(
(x− µe)−1 − (x− νe)−1

µ− ν

)
(24.1)

since f is linear. Examing the numerator of the fraction above, we have

(x− µe)−1 − (x− νe)−1 = (x− νe)−1
[
(x− ν)(x− µ)−1 − e

]
= (x− νe)−1

[
(x− µe+ (µ− ν)e)(x− µe)−1

]
= (µ− ν)(x− νe)−1(x− µe)−1

and thus eq. (24.1) becomes

h(µ)− h(ν)

µ− ν
= f

(
(x− νe)−1(x− µe)−1

)
.

Hence, h is analytic on its domain. In particular, the derivative is equal to

h′(µ) = f
(
(x− µe)−2

)
.
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Suppose that ρ(x) = C, then h is an entire function. We have

|h(µ)| =
∣∣f ((x− µe)−1)∣∣

≤ ‖f‖
∥∥(x− µe)−1

∥∥
= ‖f‖

∥∥∥∥µ−1 ( 1
µx− e

)−1∥∥∥∥
=

1

‖µ‖
‖f‖

∥∥∥∥( 1
µx− e

)−1∥∥∥∥ |µ|→∞−−−−→ 0.

So h is bounded. By Liouville, h is constant Hence h(µ) for all µ ∈ C. .... (something else here, he
erased before I wrote it down)

24.1 Spectral Theory of Self-Adjoint Operators

Recall that an operator T : H −→ H on a Hilbert space is self-adjoint if

〈Tx, y〉 = 〈x, Ty〉

for all x, y ∈ H.

Theorem 24.3. If T is a self-adjoint operator, then T is bounded.

Proof. Note that T is closed. Indeed, given a sequence xn −→ x in H such that Txn −→ y for some
y ∈ Y , then

〈Txn, z〉 = 〈xn, T z〉
n→∞−−−−→ 〈x, Tz〉 = 〈Tx, z〉.

Hence Txn
w−→ Tx, but the weak limit is unique. So Tx = y, and thus T is closed. Since D(T ) = H

is closed, we have that T is bounded by the Closed Graph Theorem1.

For Hilbert spaces, most of our useful theorems for finite dimensional self-adjoint matrices holds.

Proposition 24.4. All eigenvalues of self-adjoint operators are real. Eigenvectors of self-adjoint
linear operators corresponding to different eigenvalues are orthogonal.

However, in infintite dimensions, we have other notions of spectrum that we have to be careful about,
although most of our intuition carries over

Theorem 24.5. The spectrum σ(T ) of a self-adjoint linear operator T : H −→ H on a complex
Hilbert space is real.

Lemma 24.6. For a self-adjoint linear operator T : H −→ H, we have λ ∈ ρ(T ) if and only if there
exists a constant c > 0 such that ‖Tλx‖ > c‖x‖ for all x ∈ H.

Proof (of the theorem). First note that, for all λ ∈ C, we have

〈Tλx, x〉 = 〈Tx, x〉 − λ〈x, x〉 and 〈Tλx, x〉 = 〈Tx, x〉 − λ〈x, x〉

since 〈x, x〉 = ‖x‖2 and 〈Tx, x〉 are real. Looking at the imaginary part, we have

Im 〈Tλx, x〉 = − Imλ‖x‖2,

and taking the absolute value of this gives

‖Tλx‖‖x‖ ≥ |〈Tλx, x〉| ≥ |Imλ|‖x‖2

which implies ‖Tλx‖ ≥ |Imλ|‖x‖. By the lemma, this imples that Imλ = 0 unless λ ∈ ρ(T ). Hence,
the spectrum of T is real.

1As an assignment, we will prove this theorem using a different method
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Proof (of the lemma ). If λ ∈ ρ(T ) then Rλ = T−1λ exists and thus ‖Rλ‖ = a > 0 for some consant
a. Then

‖x‖ = ‖RλTλx‖ ≤ ‖Rλ‖‖Tλx‖ = a‖Tλy‖,

which implies that ‖Tλx‖ ≥ 1
a‖x‖, where 1

a = c is the constant we use.
Now suppuse that there exists a constant c > 0 such that ‖Tλx‖ ≥ c‖x‖. We need to show that

the inverse exists, for which we first need to show that Tλ is injective. Indeed,

a‖Tλx1 − Tλx2‖ = ‖Tλ(x1 − x2)‖ ≥ c‖x1 − x2‖

and htus x1 = x2 if Tλx1 = Tλx2.
Furthermore, we claim that the range Tλ(H) is dense in H. Indeed, suppose x0 ⊥ Tλ(H) for

some x0 ∈ H. For all x ∈ H, we have

0 = 〈Tλx, x0〉 = 〈x, Tλx0〉

and thus Tλ(x0) = 0. Since Tλ is injective, x0 = 0, so Tλ(H) is dense in H.
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Extra lecture: scheduled for next Monday (March 24) 10-11am (room to be determined).

Return to proofof the lemma from last time.

Lemma 25.1. For a self-adjoint operator T : H −→ H, we have λ ∈ ρ(T ) if and only if there exists
a constant c such that ‖Tλx‖ ≥ c‖x‖ for all x ∈ X.

Proof. We have already proved one direction, so it remains to prove the following claim.

Claim: If there exists a c > 0 such that ‖Tλx‖ ≥ c‖x‖ for all x ∈ X, then λ ∈ ρ(T ).

We first need to show that Rλ is defined on the whole space H. We show that Tλ(H) is closed
and dense in H. Let x0 ⊥ Tλ(H), then we show that x0 = 0. Indeed, for all x ∈ H we have

0 = 〈x0, Tλx〉
=
〈
Tλx0, x

〉
which implies Tλx0 = 0 and thus Tx0 = λx0. Note that one solution is x0 = 0. Since by the

previous theorem, we must have that λ is real, so λ = λ. Then (T − λI)x0 = Tλx0 = 0. But this is
impossible, due to the assumption that ‖Tλx‖ ≥ c‖x‖ > 0 if x0 6= 0. So we have that Tλ(H) = H.

Now let y ∈ Tλ(H) = H. Then there exists a sequence yn ∈ Tλ(H) sch that yn −→ y. Since
each yn is in the image of T , for each n there is an xn ∈ H such that Txn = yn. Then xn −→ x for
some x ∈ H. Indeed,

‖xn − xm‖ ≤
1

c
‖Tλxn − Tλxm‖ =

1

c
‖yn − ym‖

which goes to zero.

Proposition 25.2 (Properties of the spectrum of self-adjoint linear operators). Let T : H −→ H
be a bounded self-adjoint linear operator.

1. σ(T ) ⊂ [m,M ], where

m := inf
x∈H
‖x‖=1

〈Tx, x〉 and M := sup
x∈H
‖x‖=1

〈Tx, x〉.

2. ‖T‖ = max(|m|, |M |) = sup
x∈H
‖x‖=1

|〈Tx, x〉|.

3. m,M ∈ σ(T ).

4. σr(T ) = (a self-adjoint linear operator has an empty residual spectrum).

Proof. .

1. Let c > 0 be some positive constant and let λ = m − c. Let x ∈ H with ‖x‖ = 1. By the
Schwartz inequality, we have 〈Tλx, x〉 ≤ ‖Tλx‖‖x‖ and thus

‖Tλx‖ ≥ 〈Tλx, x〉 = 〈Tx, x〉 − λ ≥ m− λ = c.

Hence, from the lemma, we have λ ∈ ρ(T ). A similar argument follows if we take λ = M + c.
So λ 6∈ [m,M ] implies λ ∈ ρ(T ).
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2. First note that, by the Schwartz inequality, we have that

t = sup
‖x‖=1

|〈Tx, x〉| ≤ sup
‖x‖=1

‖Tx‖‖x‖ = ‖T‖,

and thus t ≤ ‖T‖. If Tx = 0 for all x ∈ H, then T = 0. If T 6= 0, let x ∈ H such that ‖x‖ = 1
and Tx 6= 0. For an arbitrary linear combination y = αx+ βTx, we have

〈Ty, y〉 = |α|2〈Tx, x〉+ |β|2
〈
T 2x, Tx

〉
+ αβ̄‖Tx‖2 + ᾱβ‖Tx‖2.

Take two linear combinations y1 = α1x + β1Tx and y2 = α2x + β2Tx with α1 = α2 real and
β1 = −β2 real. Then we have

〈Ty1, y1〉 − 〈Ty2, y2〉 = 4αβ‖Tx‖2.

Furthermore, we have that |〈Ty1, y1〉 − 〈Ty2, y2〉| ≤ |〈Ty1, y1〉| + |〈Ty2, y2〉|. Putting this
together with the equation above, we obtain

|4αβ|‖Tx‖2 ≤ |〈Ty1, y1〉|+ |〈Ty2, y2〉| ≤ t‖y1‖2 + t‖y2‖2

where t is defined above. Then we have

t ≥ |4ab| ‖Tx‖2

‖y1‖2 + ‖y2‖2

=
2|αβ|‖Tx‖2

|α|2‖x‖2 + |β|2‖Tx‖2
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26.1 Spectral theory (continued)

Proof (continued from last time). .

3. Since σ(T + aI) = σ(T ) + a by the spectral mapping theorem, we may assume without loss
of generality that 0 ≤ m ≤ M by adding some constant of I to T . From part (2) of the
proposition, we have that

M = sup
‖x‖=1

|〈Tx, x〉| = sup
‖x‖=1

〈Tx, x〉 = ‖T‖.

So there exists a sequence {xn} in H with ‖xn‖ = 1 such that 〈Txn, xn〉 −→M . With
TM = T −MI, we have

‖TMxn‖2 = 〈TMxn, TMxn〉
= 〈(T −MI)xn, (T −MI)xn〉
= 〈Txn, Txn〉︸ ︷︷ ︸

≤M2

−M〈xn, Txn〉 −M〈Txn, xn〉+M2 〈xn, xn〉︸ ︷︷ ︸
=‖xn‖=1

≤ 2M2 − 2M 〈Txn, xn〉︸ ︷︷ ︸
→M

−→ 0.

Hence M,m ∈ σ(T ).

4. Suppose the residual spectrum of T is not empty. Then σr(T ) 6= ∅ and take λ ∈ σr(T ). This

implies that T−1λ exists but D(T−1λ ) 6= H. So we can take a nonzero y ∈ H r D(T−1λ ) 6= H
such that y ⊥ D(T−1λ ). Note also that R(Tλ) = D(T−1λ ). So for all x ∈ H we have that

〈Tλx, y〉 = 0 and thus〈x, Tλy〉 = 0

and thus Tλy = 0. Hence Ty = λy, that is λ ∈ σp(T ), a contradiction since σp(T )∩σr(T ) = ∅.

26.1.1 Partial order on the set of self-adjoint operators

Let H be a Hilbert space and consider the set of all self-adjoint operators on H. Then we can define
a partial order on this set in the following manner:

T1 ≤ T2 if and only if 〈T1x, x〉 ≤ 〈T2x, x〉 for all x ∈ H.

This is equivalent to the statement that 0 ≤ T2 − T1 since

0 ≤ T2 − T1 if and only if 〈(T2 − T1)x, x〉 ≥ 0.

In finite dimensions, we have T ≥ 0 if and only if all of the eigenvalues in the point spectrum are
non-negative.

We now state a few useful lemmas without proof.

Lemma 26.1. If both T1 ≥ 0 and T2 ≥ 0 and [T1, T2] = 0 then T1T2 ≥ 0.

Lemma 26.2. If T ≥ 0 then there exists a unique operator A ≥ 0 such that T = A2.
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26.1.2 Projection operators

In finite dimensions, we can decompose any self-adjoint matrix A as

A =

n∑
k=1

λkvkv
∗
k

where Avk = λvk and v∗k is the conjugate transpose. Then Pk = vkv
∗
k is a projection operator.

Recall that, if Y ⊂ H is a closed subspace, then H = Y ⊕ Y ⊥ and any element x ∈ H can be
written as

x = y + z with y ∈ Y and z ∈ Y ⊥.

We can define the projection onto Y as the operator

P : H −→ Y

y + z 7−→ y.

Note that x = Px+ (I − P )x and I − P is a projection from H onto Y ⊥.

Theorem 26.3. A bounded linear operator P : H −→ H is a projection if and only if P = P ∗

(self-adjoint) and P 2 = P (idempotent).

Proof. If P is a projection operator then

P 2x = P (Px) = Py = y = Px

for all x ∈ H, so P 2 = P . now let x1 = y1 + z1 and x2 = y2 + z2, with y1, y2 ∈ Y and z1, z2 ∈ Y ⊥.
Then

〈Px1, x2〉 = 〈y1, y2 + z2〉 = 〈y1, y2〉 = 〈y1, Py2〉 = 〈y1 + z1, Px2〉 = 〈x1, Px2〉,

so 〈Px1, x2〉 = 〈x1, Px2〉 for all x1, x2 ∈ H, and thus P is self-adjoint.
Now suppose that P = P ∗ and P 2 = P . Define Y = P (H).

Claim: For all x ∈ H, we have (I − P )x ∈ Y ⊥.

Indeed, take Px′ ∈ Y for some x′ ∈ H. Then

〈(I − P )x, Px′〉 = 〈P (I − P )x, x′〉 = 〈(P − P 2)︸ ︷︷ ︸
0

x, x′〉 = 0

since P = P 2.

Claim: Y = P (H) is closed.

Indeed, Y is the nullspace N (I − P ), and nullspaces of bounded operators are closed (since it is
the preimage of the closed set {0}).
Claim: P |Y = idY .

Indeed, for y ∈ Y = P (H), there is an x ∈ H such that Px = y, and

Py = P (Px) = P 2x = Px = y.
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Proposition 27.1 (Properties of projections). Let P, P1, P2 be projections on a Hilbert space H.

1. 〈Px, x〉 = ‖Px‖2, hence P ≥ 0;

2. ‖P‖ = 1 if P (H) 6= {0} (i.e. P 6= 0);

3. Q = P1P2 is a projection if and only if [P1, P2] = 0; if P1 and P2 commute we have Q(H) =
P1(H) ∩ P2(H);

4. given vectors w, v ∈ H, we have w ⊥ v if and only if PwPv = 0;

5. Q = P1 + P2 is a projection if and only if P1(H) ⊥ P2(H).

Note that P1(H) ⊥ P2(H) and Q = P1 + P2 implies Q(H) = P1(H)⊕ P2(H).

Theorem 27.2 (Partial Order Theorem for Projections). Let P1 and P2 be projections on H.
Deonote Y1 = P1(H) and Y2 = P2(H), and let N (P1) and N (P2) be the nullspaces. The following
are equivalent:

1. P2P1 = P2P2 = P1;

2. ‖P1x‖ ≤ ‖P2x‖ for all x ∈ H;

3. P1 ≤ P2;

4. N (P2) ⊂ N (P1);

5. Y1 ⊂ Y2.

Proof. .

(1)⇒ (2): Since ‖P2‖ ≤ 1 (it is either 1 or 0), we have

‖P1x‖ = ‖P1P2x‖ ≤ ‖P1‖‖P2x‖‖P2x‖.

(2)⇒ (3): For all x ∈ X, we have that

〈P1x, x〉 = ‖P1x‖2 ≤ ‖P2x‖2 = 〈P2x, x〉,

and thus 〈P1x, x〉 ≤ 〈P2x, x〉 for all x ∈ X, which is equivalent to P1 ≤ P2.

(3)⇒ (4): Take x ∈ N (P2), and thus P2x = 0. But P1 ≤ P2 and the fact that P1 and P2 are both
positive, we have P1x ≤ P2x = 0, and thus P1x = 0.

(4)⇒ (5): Note that N (P1) = Y ⊥1 and N (P2) = Y ⊥2 . But we have N (P2) ⊂ N (P1) and thus
Y ⊥2 ⊂ Y ⊥1 . Hence Y1 ⊂ Y2.

(5)⇒ (1): Let x ∈ H, then P1x ∈ Y1 ⊂ Y2. But this implies P2P1x = P1x for all x ∈ X and thus
P2P1 = P1. By self-adjointness of projections, we also have P1P2 = P1.

Proposition 27.3 (Difference of projections). Let P1 and P2 be projections on a Hilbert space H.
Let Y1 and Y2 be as defined above. Then P = P2 − P1 is a projection if and only if Y1 ⊂ Y2.
Furthermore, if P is a projection, then P (H) = Y ⊥1 ∩ Y2.
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Proof. If Y1 ⊂ Y2, then P2P1 = P1P2 = P1. Since P 2
1 = P1 and P 2

2 = P2, we have

P 2 = (P2 − P1)2

= P 2
2 − P1P2 − P2P1 + P 2

1

= P2 − P1 − P1 + P1

= P2 − P1 = P,

and thus P 2 = P . Conversely, P 2 = P implies that

P1P2 + P2P1 = 2P1. (27.1)

Multiplying both sides of (27.1) by P2 yields

P2P1P2 + P 2
2P1 = 2P2P1

and thus P2P1P2 = P2P1, since P 2
2 = P2. But the operator P2P1P2 is self-adjoint, and thus

P2P1 = (P2P1)∗ = P ∗1 P
∗
2 = P1P2.

Hence P1P2 = P2P1 = P1.

27.1 The Spectral Family

Consider a finite dimensional Hilbert space H = Cn, and a self-adjoint linear operator T : H −→ H.
Then we may decompose T as

T =

n∑
i=1

aiPi for eigenvalues α1 ≤ α2 ≤ · · · ≤ αn

with rank-one projections Pi = xix
∗
i given by the complete set of eigenvectors xi. Then any vector

x ∈ H may be decomposed uniquely as

x =

n∑
i=1

βixi

for some scalars βi. Then for all x, we have Pix = βixi for each i, and thus

n∑
i=1

Pi = 1.

Unfortunately, this simple realization of finite-dimensional Hilbert spaces does not extend to
infinite dimensions. We need to use different concepts. Instead, for all λ ∈ R, denote

Eλ :=
∑
j

aj≤λ

Pj ,

where the values aj comprise the point spectrum of T . This definition only works if the point
spectrum is discrete (i.e. countable). Hence, we would have

Ea1 = P1 and Ea2 = P1 + P2

and Eλ = P1 for all a1 ≤ λ < a2.
If the point spectrum is not discrete, we instead define
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Definition 28.1. A real spectral family is a one parameter family F = (Eλ)λ∈R of projections
Eλ on a Hilbert space H which satisfies the following properties:

(i) Eλ ≤ Eµ for λ ≤ µ;

(ii) lim
λ→−∞

Eλx = 0 and lim
λ→+∞

Eλx = x for all x ∈ H;

(iii) continuity from the right, that is

Eλ+0x ≡ lim
µ→λ+

Eµx = Eλx

for all x.

A spectral family on an interval [a, b] ⊂ R satisfies the properties (i) and (iii) above and the
modified property

(ii∗) Eλ = 0 for λ < a and Eλ = I for λ ≥ b.

Definition 28.2. Let H be a Hilbert space and T : H −→ H a self-adjoint linear operator. The
spectral family associated with T is the family F = (Eλ)λ∈R of projections that are defined as
follows:

Eλ := H
onto−−−→ N (T+

λ )

where T+
λ is the operator

T+
λ =

1

2
(|Tλ|+ Tλ) .

Here, recall that Tλ = T − λI and |Tλ| =
√
TλT ∗λ . Note that each nullspace N (T+

λ ) is closed and
thus has a projection operator defined onto it.

In finite dimensions, a self-adjoint operator is an hermitian matrix

A = A∗ =

n∑
k=1

λkVkV
∗
k

=
∑
k

λk≥0

λkVkV
∗
k −

∑
k

λk<0

|λk|VkV ∗k

= A+ −A−

such that A± ≥ 0. The absolute value of the matrix is

|A| = A+ +A− such that A± =
1

2
(|A| ±A)

Note that A, A+ and A− all commute with each other.

We can now consider the infinite-dimensional case.

Proposition 28.3 (Properties of self-adjoint operators). Let T : H −→ H be a self-adjoint hermi-

tian operator. Denote E : H
onto−−−→ N (T+) the projection onto the the nullspace of T+.

1. [T, |T |] = [T, T±] = 0;
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2. T+T− = 0;

3. [E, T ] = [E, |T |] = 0;

4. T+E = ET+ = 0 and T−E = ET− = T−;

5. TE = −T− and T (I − E) = T+;

6. T± ≥ 0.

Proof. Parts (1) and (2) are trivial (exercise left to reader).

3. Take x ∈ H and y = Ex ∈ N (T+). Then T+y = 0 and TT+y = T+Ty = 0. Hence
Ty ∈ N (T+), and thus

T+TEx = TT+Ex = TT+y = 0.

So TEx ∈ N (T+) = Y and ETEx = TEx since E projects H onto Y . Since this is true for
all x ∈ H, we have TE = ETE. Taking the adjoint, we obtain

TE = ETE = (ETE)× = (TE)× = ET

since all operators involved are self-adjoint, and thus ET = TE. The argument follows similarly
for |T |.

4. For all x ∈ H we have Ex ∈ N (T+). Hence T+Ex = 0 and thus T+E = 0. Taking the adjoint
yields ET+ = 0 since both T+ and E are self-adjoint.

Similarly, T+T−x = 0 so T−x ∈ N (T+) for all x ∈ H. Hence ET−x = T−x for all x and thus
ET− = T−. Since all operators here are self-adjoint, we also have T−E = T−.

5. Note that TE = (T+ − T−)E = −T−.

6. From (4), we have that T− = ET− +ET+ = E|T | ≥ 0, since [E, |T |] commute and E, |T | ≥ 0
(exercise – part of the next assignment1). Similarly, we have T+ = |T |−T− = |T |(I−E) ≥ 0.

Lemma 28.4. Let T : H −→ H be a self-adjoit operator, then for µ > λ and the operators T+
λ and

T+
µ defined above, we have T+

µ T
+
λ ≥ (T+

µ )2.

Proof. Note that T+
µ T

+
λ ≥ (T+

µ )2 is true if and only if T+
µ (T+

λ − T+
µ ) ≥ 0. This is equivalent to

T+
µ (T+

λ −T
+
µ + T−µ )︸ ︷︷ ︸
−Tµ

≥ 0.

and thus equivalent to
T+
µ (T+

λ − Tµ) ≥ 0.

But T+
λ = Tλ + T−λ which implies T+

λ ≥ Tλ.
Indeed we have

T+
λ − Tµ ≥ Tλ − Tµ = (µ− λ)I ≥ 0

and 〈
T+
λ x, x

〉
= 〈Tλx, x〉+

〈
T−λ x, x

〉
.

Proposition 28.5. Let T : H −→ H be a self-adjoint operator of a Hilbert space H. Then the
spectral family associated with T is indeed a spectral family.

1If A,B ≥ 0 are self-adjoint operators and [A,B] = 0, then AB ≥ 0.
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Proof. We need to show that it satisfies each of the properties (i), (ii∗) and (iii).

(i) Let λ < µ, then Eλ ≤ Eµ is true if and only if N (T+
λ ) ⊆ N (T+

µ ).

Take x ∈ N (T+
λ ), then T+

λ x = 0. By the above lemma, we have

0 =
〈
T+
µ T

+
λ x, x

〉
≥
〈
(T+
µ )2x, x

〉
=
∥∥T+

µ x
∥∥2

and thus T+
µ x = 0 for all x ∈ N (T+

λ ). Hence N (T+
λ ) ⊇ N (T+

µ ) and thus Eλ ≤ Eµ as desired.

(Rest for next time...)
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31.1 Spectral representation of self-adjoint linear operators

Each self-adjoint linear operator T : H −→ H on a Hilbert space H has the spectral representation

T =

∫ M

m−0
λdEλ

and for all x, y ∈ H we have the representation

〈Tx, y〉 =

∫ M

m−0
λdw(λ)

where w(λ) = 〈Eλx, y〉.

Note 31.1. We have some useful generalizations of the spectral representation:

1. Given a polynomial p of degree n, i.e. p(t) = a0 + a1t + · · · antn, we have a representation of
p(T ) = a0I + a1T + · · ·+ anT

n given by

p(T ) =

∫ M

m−0
p(λ)dEλ.

2. Since any continuous real-valued function f may be approximated by polynomials, we also
have

f(T ) =

∫ M

m−0
f(λ)dEλ.

(There are lots of details that we are skipping here. For example, what does f(T ) even mean
for an arbitrary function f and operator T? For details, see the book.)

31.1.1 Properties of (Eλ)λ∈R

Theorem 31.2 (Property 1). Let T : H −→ H be a self-adjoint linear operator on a Hilbert space
H.

Then Eλ0
6= Eλ0−0 if and only if λ0 ∈ σp(T ), that is, λ0 is in the point spectrum of T if and only if the

family Eλ is continuous at λ0. Furthermore, N (Tλ0
) = F0(H) where we denote F0 = Eλ0

− Eλ0−0.

Proof. We prove that N (Tλ0
) = F0(H), and the first conclusion follows. Let λ0 ∈ σp(T ), then λ0

is an eigenvalue and N (Tλ0) 6= {0}. Note that F0 is a projection operator since Eλ0 and Eλ0−0 are
both projections and Eλ0−0 ≤ Eλ0 .

First suppose that x ∈ F0(H). We will make use of the inequality(
λ0 − 1

n

)
∆E ≤ T∆E ≤ λ0∆E

where λ0− 1
n ≤ λ0 and ∆E = Eλ0−Eλ0−

1
n

. Note that Eλ0−0 = lim
n→∞

Eλ0−Eλ0− 1
n

, and this implies

λ0F0 ≤ TF0 ≤ λ0F0.

So TF0 = λ0F0 and thus Tλ0F0 = 0. Hence Tλ0F0x = 0 for all x ∈ H and thus F0(H) ⊂ N (Tλ0).
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Now suppose that λ0 6∈ σp(T ). If λ0 6∈ [m,M ], then λ0 ∈ ρ(T ). Hence we have N (Tλ0
) = {0} ⊂

F0(H), and thus without loss of generality we may assume that λ0 ∈ [m,M ]. Take x ∈ N (Tλ0
),

then clearly T 2
λ0
x = 0. Noting that (Tλ0

)2 = (T − λ0I)(T − λ0I), we have

0 =
〈
T 2
λ0
x, x

〉
=

∫ M

m−0
(λ− λ0)2dw(λ).

But w(λ) = 〈Eλx, x〉 is an increasing function of λ, hence dw(λ) ≥ 0. So for any a < λ0 and ε > 0,
we have

0 =

∫ λ0−ε

a

(λ− λ0)2dw(λ)

≥ ε2
∫ λ0−ε

a

dw(λ)

= ε2w(λ0 − ε)
= ε2〈Eλ0−ε, x〉

and similarly

0 =

∫ M

λ0+ε

(λ− λ0)2dw(λ)

≥ ε2
∫ M

λ0+ε

dw(λ)

= ε2 (w(M)− w(λ0 + ε))

= ε2 (〈x, x〉 − 〈Eλ0+ε, x〉) .

Putting these together, we have 〈Eλ0−εx, x〉 = 0 and 〈Eλ0+εx, x〉 = 〈x, x〉. Taking the limit ε → 0,
we have

〈F0x, x〉 = 〈x, x〉,

and thus
∥∥(I − F0)2x

∥∥2 = 〈(I − F0)x, x〉 = 0, so F0x = x for all x ∈ N (Tλ0
). Hence F0(H) ⊂

N (Tλ0
).

Theorem 31.3 (Property 2). Let T and (Eλ)λ∈R be as above. Then λ0 ∈ ρ(T ) if and only if there
exists a constant c > 0 such that Eλ is constant on [λ0 − c, λ0 + c] = J .
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Theorem 32.1. Let T and (Eλ)λ∈R be as before. Then λ0 ∈ ρ(T ) if and only if there exists a c > 0
such that Eλ is a constant on J = [λ0 − c, λ+ c].

Proof. Suppose that Eλ is constant on J . Recall that λ ∈ ρ(T ) if and only if there exists a c > 0
such that ‖Tλx‖ > c‖x‖. For λ ∈ J , we have dw(λ) = d〈Eλx, x〉 = 0 since Eλ is constant on this
interval. But for λ 6∈ J , we have (λ− λ0)2 ≥ c2. Then

‖Tλ0x‖
2

= 〈Tλ0x, Tλ0〉 =
〈
T 2
λ0
x, x

〉
=

∫ M

m−0
(λ− λ0)2d〈Eλx, x〉

≥ c2
∫ M

m−0
d〈Eλx, x〉

= c2〈EMx, x〉

= c2‖x‖2,

and thus ‖Tλx‖ ≥ c‖x‖, hence λ ∈ ρ(T ).
Conversely, suppose that λ0 ∈ ρ(T ), which is true if and only if there exists a c > 0 such that

‖Tλ0
x‖ ≥ c‖x‖, and denote J = [λ0 − c, λ + c]. Using the same arguments as above, we have that

this is equivalent to ∫ M

m−0
(λ− λ0)2d〈Eλx, x〉 ≥ c2

∫ M

m−0
d〈Eλx, x〉

for all x ∈ H. Suppose that Eλ is not constant on J . Then there exists an η > 0 with η < c such
that Eλ0−η 6= Eλ0+η, and thus there is a nonzero y ∈ H such that x = (Eλ0+η−Eλ0−η)y 6= 0. Next,
for an arbitrary λ we calculate

Eλx =

 0, λ < λ0 − η
x, λ > λ0 − η
(Eλ − Eλ0−η)y, otherwise

since EµEν = Eν if µ < ν and EµEν = Eµ if µ > ν. We can split the integral into three parts

∫ M

m−0
(λ− λ0)2dw(λ) =

=

∫ λ0−η

m−0
(λ− λ0)2dw(λ) +

∫ λ0+η

λ0−η
(λ− λ0)2dw(λ) +

∫ M

λ0+η

(λ− λ0)2dw(λ)

where dw(λ) = d〈Eλx, x〉. However, from above, note that Eλ only depends on lambda if λ ∈
[λ0 − η, λ0 + η], and thus dw(λ) = 0 outside of this range. Hence we have∫ λ0+η

λ0−η
(λ− λ0)2d〈Eλx, x〉 ≥ c2

∫ λ0+η

λ0−η
d〈Eλx, x〉

which is false, since (λ− λ0)2 < η2 < c2 for all λ in this range. So we have a contradiction.

Note that we can choose η < c. Why not η = c? If η = c were the only positive constant less
than or equal to c such that this were true, then Eλ would be constant on the open interval of J .
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33.1 Compactness

We have used notions of compactness so far in the homework problems in the course, but we have
yet to rigorously define this notion.

Definition 33.1. A metric space X is compact if every sequence has a convergent subsequence.
A subset M ⊂ X is compact if every sequence in M has a convergent subsequence in M .

Proposition 33.2 (Properties of compactness). .

1. If M ⊂ X is a compact set, then it is closed and bounded.

2. There are sets that are closed and bounded but not compact.

3. In finite dimensions, a subset M ⊂ X is comapct if and only if it is closed and bounded.

4. Let X be a normed space. If B(0; 1) is compact, then dimX <∞.

Lemma 33.3 (Riesz’s Lemma). Let X be a normed space. Let Z ⊂ X be a subspace and Y ( Z
be a proper closed subspace. Then for any 0 < t < 1, there exists z ∈ Z such that ‖z‖ = 1 and
‖z − y‖ ≥ t for all y ∈ Y .

Proof. Take x ∈ Z r Y and define d = inf
y∈Y
‖x− y‖. Note that d > 0 since otherwise x ∈ Y since Y

is closed. Then there exists a y0 such that d ≤ ‖x− y0‖ ≤ d
t . Setting z = x−y0

‖x−y0‖ we have

‖z − y‖ =

∥∥∥∥ z − y0
‖z − y0‖

− y
∥∥∥∥

=

∥∥∥∥x− y0 − y‖x− y0‖‖x− y0‖

∥∥∥∥
= ‖x− y0‖−1‖x− y′‖

≥ t

d
‖x− y′‖

≥ t

where y′ = y0 − y‖x− y0‖ ∈ Y .

Proof of Proposition 33.2 part (4 ). Suppose that B(0; 1) is compact and dimX =∞. Take x1 ∈ X
such that ‖x1‖ = 1 and define X1 = span{x1}. Since X1 ⊂ X is a closed proper subset of X, by
Reisz’s Lemma there exists a x2 ∈ X r X1 such that ‖x2‖ = 1 and ‖x2 − x1‖ ≥ 1

2 then define
X2 = span{x1, x2}. Continuing this process by induction, we contstuct a sequence {xn} such
that ‖xn‖ = 1 and ‖xn − xm‖ ≥ 1

2 for all m 6= n. So this sequence does not have a convergent
subsequence.

Definition 33.4. Let X be a normed space and M ⊂ X. Then M is relatively compact in X if
its closure in X is compact.

Definition 33.5. Let X and Y be normed spaces. A linear operator T : X −→ Y is called compact
if for every M ⊂ X bounded subset of X, T (M) is relatively compact in Y .

Historically, the notion of compact operators were originally called completely continuous, since
(as we will see) any compact operator is bounded and thus continuous.
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Lemma 33.6. Let X,Y and T be as above. Then

1. T is bounded.

2. If dimX =∞ then the identity operator I : X −→ X is not compact.

Proof. .

1. Take S = {x ∈ X | ‖x‖ = 1}, which is bounded. Then T (S) is compact and thus

sup
x∈S
‖T (x)‖ <∞

so T is bounded.

2. Consider the unit ball at the origin B(0; 1) ⊂ X. If dimX =∞ then by the previous proposi-
tion I

(
B(0; 1)

)
= B(0; 1) = B(0; 1) is not compact. So I is not compact.
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Theorem 34.1. A linear operator T is compact if and only if every bounded sequence (xn) in X is
mapped to a sequence (Txn) that has a convergent subsequence.

Proof. Suppose T is compact, then T{xn} is compact and thus (Txn) has a convergent subsequence.
On the other hand, let M ⊂ X be a bounded set and let (yn) ⊂ T (M) be a sequence. Then

yn = Txn for some sequence (xn) in M . Then (xn) is bounded and (yn) = (Txn) has a convergent
subsequence by assumption.

Theorem 34.2. Let X,Y be normed spaces and T : X −→ Y a linear operator.

i) If T is bounded and dimT (X) <∞, then T is compact.

ii) If dim(X) <∞ then T is compact.

Proof. .

i) Take a bounded sequence (xn) in X, then (Txn) is bounded in Y . Then

‖Txn‖ ≤ ‖T‖‖xn‖

hence {Txn} is a closed and bounded set in a finite dimensional space.

ii) Note that dimT (X) ≤ dim(X) < ∞. Then T is bounded since dim(X) < ∞. From part (i),
T is compact.

Theorem 34.3. Let X be a normed space and Y a Banach space and let (Tn) be a sequence of
compact linear operators Tn : X −→ Y . If ‖Tn − T‖ −→ 0 as n −→∞, then T is compact.

Proof. Take a bounded sequence (xm), then (T1xm) has a convergent subsequence which we denote
by (T1xmk1 ). But T2 is compact, so (T2xmk1 ) has a convergent subsequence which we denote by
(T2xmk2 ). By induction, we construct a sequence of subsequences

· · · ⊂ (xmk2 ) ⊂ (xmk1 ) ⊂ (xm)

such that (Tnxmkn ) is convergent for all n. Using the Cantor diagonalization argument, we can
construct a sequence (ym) that is a subsequence of (xmkn ) for all n and thus (Tnym)m∈N is convergent
for all n.

We claim that (Tym) is also Cauchy. Indeed, we have

‖Tyk − Tyj‖ ≤ ‖Tyk − Tnyk‖+ ‖Tnyk − Tnyj‖+ ‖Tnyj − Tyj‖
≤ ‖T − Tn‖︸ ︷︷ ︸

→0

‖yk‖+ ‖Tn‖ ‖yk − yj‖︸ ︷︷ ︸
→0

+ ‖Tn − T‖︸ ︷︷ ︸
→0

‖yj‖

−→ 0.

Question: Can we replace uniform convergence in Theorem 34.3 with strong convergence? No! We
make use of the fact that the identity operator I in an infinite-dimensional space is not compact.
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Example 34.4. Take X = `2 and Tn : X −→ X a sequence of operators given by yn = Tnx with

yn = (ξ1, ξ2, . . . , ξn, 0, . . . )

where x = (xi). Then ‖Tnx− x‖ −→ 0 for all x ∈ `2. Hence we have strong convergence Tn
s−→ I.

Each Tn is a compact operator, but I is not compact.

Example 34.5. Show that T : `2 −→ `2 is compact, where given by y = Tx with

y = (ξ1,
1
2ξ2,

1
3ξ3, . . . )

and x = (ξi).

Proof. Define the sequence of operators (Tn) given by yn = Tnx

yn = (ξ1,
1
2ξ2, . . . ,

1
nξn, 0 . . . ).

Then each Tn is compact. We have

‖(T − Tn)x‖2 =

∞∑
k=n+1

1

k2
|ξk|2 ≤

1

(n+ 1)2

∞∑
k=n+1

|ξk|2

≤ ‖x‖2

(n+ 1)2

which implies ‖T − Tn‖ ≤ 1
n+1 and thus ‖T − Tn‖ −→ 0.

Theorem 34.6. Let X,Y be normed spaces and T : X −→ Y be a compact linear operator. If
xn

w−→ x in X then Txn −→ Tx in Y .

Proof. First note that Txn
w−→ Tx since, for all g ∈ Y ′ we have the linear functional f ∈ X ′ defined

by
f(x) = g(Tx).

Hence g(Txn) = f(xn) −→ f(x) = g(Txn) by weak convergence of xn
w−→ x.

We still need to show string convergence. Suppose that Txn 6→ Tx. Then there exists a constant
c > 0 and a subsequence (Txnk) such that

‖Txnk − Tx‖ ≥ c.

But {xnk} is bounded, and thus by compactness of T we must have a subsequence of this subsequence(
Txnkj

)
that converges to −→ y = Tx.
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There was an important statement that we used last time but did not prove.

Proposition 35.1. Let X be a metric space. A subset B ⊂ X is relatively compact in X if and
only if for every sequence (xn) in B there is a convergent subsequence in X.

Proof. One direction is clear. For the other direction, let (yn) be a sequence in B. Then there exists
a sequence (xn) in B such that d(xn, yn) < 1

n for all n. By assumption, there is a subsequence (xnk)
that converges to some x ∈ X. Then (ynk) also converges to x, but then x must be in B since B is
closed.

Definition 35.2 (ε-net, total boundedness). Let ε > 0 and B a subset of a metric space X. A set
Mε ⊂ X is called an ε-net for B if for every point z ∈ B there is a point of Mε that is a distance
less than ε away from z. The set B is called totally bounded if for every ε > 0 there is a finite
ε-net Mε ⊂ X for B.

Proposition 35.3 (Properties of ε-net and total boundedness). Let X be a metric space and let
B ⊂ X be a subset.

1. If B is relatively compact then B is totally bounded.

2. If B is totally bounded and X Banach then B is relatively compact.

3. If B is totally bounded then for all ε > 0 there exists a finite ε-net Mε of B such that Mε ⊂ B.

4. If B is totally bounded then B is separable.

5. Total boundedness implies boundedness, but bounded does not necessarily imply totally bounded.

Proof. .

1. Suppose that B ⊂ X is relatively compact and let ε > 0. If B 6= ∅ is not totally bounded, take
x1 ∈ B. If d(x1, x) < ε for all x ∈ X then {x1} is an ε-net for B and we are done. Otherwise,
there exists a x2 ∈ B such that d(x1, x2) ≥ ε. If d(x1, x) < ε or d(x2, x) < ε for all x ∈ X then
we are done and {x1, x2} is an ε-net for B. Continuing this process inductively, we construct
a sequence (xn) in B such that d(xn, xn+1) ≥ ε for all n which does not have a convergent
subsequence, a contradiction to the assumption that B is relatively compact.

2. Let B ⊂ X be a totally bounded subset of a Banach space X. Take a sequence (xn) in B and
ε = 1. Since B is totally bounded, there exists a finite ε-net Mε=1 ⊂ X. For each k define the
ball B(xk; 1) centered at xk with radius 1. Since

B ⊂
n⋃
k=1

Bk

there exists a k ∈ N such that (xnk1 ) is a subsequence of (xn) in Bk. Similarly, for ε = 1
2 there

exists a finite ε-net M
ε=

1
2
⊂ X for B. So there exists a subsequence (xnk2 ) of (xnk1 ) such that

(xnk2 ) ⊂ B(zk; 1
2 ).

For any m ∈ NN there exists a subsequence (xm,n)(??need better notation) such that (xm,n) ⊂
Ball of radius 1

m . Using Cantor diagonalization, define the sequence (ym) ⊂ (xn) with ym =
xm,m. Then (ym) is Cauchy, since ‖ym − ym′‖ ≤ 1

m for all m′ < m.

3. Take ε > 0 and ε1 = 1
2ε. Take zk ∈ B ∩B(xk; ε1) and define the set Mε = {z1, . . . , zn}.

We claim that Mε ⊂ B is an ε-net for B. Indeed, take z ∈ B. Then there exists a k such that
z ∈ B(xk; ε) and thus d(z, zk) ≤ d(z, xk) + d(xk, zk) < ε1 + ε1 = ε.
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4.

5. To show that total boundedness implies boundedness is trivial (left as an exercise). On the
otherhand, consider the unit ball B(0; 1) ⊂ `2. Then B(0; 1) is not compact since dim `2 =∞.
From (2), this implies that B(0; 1) is not totally bounded.
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Theorem 36.1. Let X and Y be normed spaces and T : X −→ Y be a compact linear operator.
Then the range of T is separable.

Proof. We can write X =

∞⋃
n=1

B(0;n). Then we have that

T (X) =

∞⋃
n=1

T
(
B(0;n)

)
but B(0;n) is bounded, so T

(
B(0;n)

)
is relatively compact for each n and hence T

(
B(0;n)

)
is

totally bounded so it is separable. Then T (X) is separable since it is a countable union of separable
sets.

Theorem 36.2. If T : X −→ Y is compact, then T× : Y ′ −→ X ′ is also compact.

Proof. Let B ⊂ Y ′ be a bounded subset. Consider T×(B) ⊂ X ′. Since X ′ is Banach, we need
to show that T×(B) ⊂ X ′ is totally bounded. Let U = {x ∈ X | ‖x‖ ≤ 1}, which is bounded. So
T (U) ⊂ Y is relatively compact by compactness of T , and thus T (U) is totally bounded. For some
ε > 0 there exists an ε0-net Mε for T×(B).

Since T (U) is totally bounded, there exist elements x1, . . . , xn ∈ U such that for all x ∈ U there
exists a j ∈ {1, . . . , n} with ‖Tx− Txj‖ < ε1. Define A : Y ′ −→ Rn by

g 7−→(T×g(x1), . . . , T×g(xn))

=(g(Tx1), . . . , g(Txn)).

Since A is bounded, dimA(Y ′) ≤ n < ∞, we have that A is compact. Then A(B) is relatively
compact, so A(B) is totally bounded. This implies that there exist g1, . . . , gm ∈ B such that for all
g ∈ B there exists a k ∈ {1, . . . ,m} such that ‖Ag −Agk‖ < ε2.

Claim: The set {T×g1, . . . , T×gm} is an ε-net for T×(B).

Note that we should choose ε1 = ε
3c where c is a constant such that ‖g‖ < c for all g ∈ B, and

ε2 = ε
4

36.1 Solutions to difficult homework problems

Problem 1 (Problem 7 of assignment 5 (Exercise 7.5.10, p. 394 in Kreyszig)). Show that the
existence of the limit of n

√
‖Tn‖ as n −→∞ follows from the fact that ‖Tn+m‖ ≤ ‖Tn‖‖Tm‖.

Solution. Define the sequences an = ‖Tn‖ and bn = ln an = ln ‖Tn‖. By assumption we have that
‖Tn+m‖ ≤ ‖Tn‖‖Tm‖ for all n,m ∈ NN . This implies that that bn+m ≤ bn + bm. Let n,m ∈ N
and suppose wlog that n > m, then n = mq + r for some q ≥ 0 and 0 ≤ r < m. Then we have

bn
n

=
bmq+r
mq + r

≤ bmq + br
mq + r

≤ qbm + br
mq + r

q→∞−→ bm
m
.

(That is, we take m, r ∈ N fixed and let n = qm + r for all q ∈ N.) Let ε > 0 then there exists an
N ∈ N such that

bn
n
≤ bm

m
+
ε

2
for all n > N . Take m such that ∣∣∣∣bmm − inf

m′

bm′

m′

∣∣∣∣ < ε

2
.

Define α = infm′
bm′
m′ , then α ≤ bn

n ≤ α+ ε.
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Problem 2 (Problem 8 of assignment 5 (Exercise 7.6.8, p. 403 in Kreyszig)). Let A be a Banach
algebra and let G ⊂ A be the subset of all invertible elements. Then the inverse map T : G −→ G
given by Tx = x−1 is continuous.

Solution. Let x0 ∈ G and ε > 0. We need to show that there exists δ > 0 such that ‖x−1 − x0−1‖ < ε
for all x such that ‖x− x0‖ < δ.

Note that ‖x−1 − x0−1‖ =
∥∥x0−1(x0 − x)x−1

∥∥ ≤ ‖x0−1‖‖x−1‖‖x− x0‖. Then

‖x−1‖ − ‖x0−1‖ ≤ ‖x−1 − x0−1‖ < ‖x0−1‖‖x−1‖δ,

and from this we can find δ from ε.

36.2 Things to know for final

• Learn the first version of the Hahn-Banach theorem.

•
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