Functional Analysis

Review

April 22, 2014

Contents

1	Zorn's Lemma	2
2	Normed and Banach spaces	2
3	Linear operators 3.1 Linear functionals	3 4
4	Hilbert spaces 4.1 Functionals on Hilbert spaces 4.2 Hilbert-adjoint operator	4 6 6
5	Hahn-Banach theorem	7
6	Adjoint operator	9
7	Uniform boundedness	10
8	Weak and strong convergence	10
9	Sequences of operators	11
10	Open mapping theorem 10.1 Closed graph theorem	12 14
11	Spectral theory in normed spaces 11.1 Spectral properties of bounded linear operators 11.2 Banach algebras 11.3 Spectral theory of Self-Adjoint operators 11.4 The spectral family	15 15 16 16 18
12	Compactness	19

1 Zorn's Lemma

Definition 1.1. A *partially ordered set* is a set S with a binary operation " \leq " satisfying the following:

- (i) $a \leq a$ for all $a \in S$;
- (ii) $a \leq b$ and $b \leq a$ implies a = b;
- (iii) $a \leq b$ and $b \leq c$ implies $a \leq c$.

Definition 1.2. A *chain* is a subset $M \subset S$ of a partially ordered set S with the property that every two elements in M are comparable.

Definition 1.3. Let $C \subset M$ be a subset of a chain M in S. An *upper bound* of C in M is an element $u \in M$ such that $x \leq u$ for all $x \in C$. A *maximal element* of M is an element $m \in M$ such that $m \leq x$ implies x = m.

Zorn's Lemma 1.4. Let $S \neq \emptyset$ be a partially ordered set. Suppose that every chain $C \subset S$ has an upper bound in S. Then S has at least one maximal element.

Definition 1.5. Given a subset $M \neq \emptyset$ of a vector space X, the **span** of M is the set span(M) of all finite linear combinations of vectors in M,

Theorem 1.6. Every vector space $X \neq \{0\}$ has a (Hamel) basis.

2 Normed and Banach spaces

Definition 2.1. A *metric space* is a pair (X, d) where X is a set and $d: X \times X \longrightarrow \mathbb{R}$ is a mapping such that

(i) $d(x,y) \ge 0$ for all $x, y \in X$

(ii)
$$d(x,y) = d(y,x)$$

- (iii) d(x, y) = 0 if and only if x = y
- (iv) $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in X$.

Definition 2.2. A *normed space* is a pair $(V, \|\cdot\|)$ consisting of a vector space X and a function $\|\cdot\| : X \longrightarrow \mathbb{R}$ satisfying

- i) $||x|| \ge 0$ for all $x \in X$;
- ii) ||x|| = 0 if and only if x = 0;
- iii) $\|\alpha x\| = |\alpha| \|x\|$ for all scalars α ;
- iv) $||x + y|| \le ||x|| + ||y||.$

A normed space is **Banach** if it is complete. A normed space is a metric space with d(x, y) = ||x - y||.

Example 2.3. Some examples of normed spaces

(i) The space ℓ^p for $1 \leq p$

$$\left\{ x = (\xi_1, \xi_2, \dots) = (\xi_n)_{n \in \mathbb{N}} \left| \sum_{j=1}^{\infty} |\xi_j|^p < \infty \right\} \right\}$$

with norm given by $\|x\|_p = \left(\sum_{j=1}^{\infty} |\xi_j|^p\right)^{1/p}$.

(ii) The space ℓ^{∞}

$$\left\{x = (\xi_1, \xi_2, \dots) = (\xi_n)_{n \in \mathbb{N}} \left|\sup_{n \in \mathbb{N}} |\xi_n| < \infty\right\}\right\}$$

with norm given by $||x||_{\infty} = \sup_{n \in \mathbb{N}} |\xi_n|.$

(iii) For an interval [a, b], the space $\mathcal{C}([a, b])$ of continuous real-valued functions on [a, b] with norm

 $\|x\| = \max_{a \le y \le b} |x(t)|$

and this is complete (since convergence in this norm implies uniform convergence).

(iv) For an interval [a, b], the space $L^p[a, b]$ of equivalence classes of real-valued functions on [a, b] where [x] = [y] if x(t) = y(t) almost everywhere on [a, b]. The norm is given by

$$\|x\| = \left(\int_a^b |x(t)|^p\right)^{1/p}$$

Theorem 2.4. Let X be a Banach space and $Y \subset X$ a subspace. Then Y is complete if and only if Y is closed in X.

3 Linear operators

Definition 3.1. A *linear operator* is a map $T: \mathcal{D}(T) \longrightarrow Y$ such that

- 1. the **domain** $\mathcal{D}(T)$ and the target space Y are vector spaces over the same field,
- 2. for all $x, y \in \mathcal{D}(T)$ and scalars α ,

$$T(x+y) = T(x) + T(y)$$
 and $T(\alpha x) = \alpha T(x).$

The set $\mathcal{R}(T) = T(\mathcal{D}(T))$ is called the *range* of *T*.

Proposition 3.2. Let X, Y be vector spaces and let $T: \mathcal{D}(T) \longrightarrow Y$ be a linear operator with $\mathcal{D}(T) \subset X$.

- 1. The inverse operator $T^{-1}: \mathcal{R}(T) \longrightarrow \mathcal{D}(T)$ exists if and only if Tx = 0 implies x = 0.
- 2. If T^{-1} exists, then it is a linear operator.
- 3. If dim $\mathcal{D}(T) = n < \infty$ and T^{-1} exists, then dim $\mathcal{R}(T) = n$.

Definition 3.3. Let X, Y be normed spaces and $T: \mathcal{D}(T) \longrightarrow Y$ a linear operator. Then T is **bounded** if there exists a positive constant c > 0 such that $||Tx|| \leq c ||x||$ for all $x \in \mathcal{D}(T)$. The **norm** of a bounded operator is defined as

$$||T|| := \sup_{\substack{x \in \mathcal{D}(T) \\ x \neq 0}} \frac{||Tx||}{||x||} = \sup_{||x||=1} ||Tx||.$$

The set of all bounded linear operators $T: X \longrightarrow Y$ is denoted $\mathcal{B}(X, Y)$

Proposition 3.4. Let X, Y be normed spaces. The vector space $\mathcal{B}(X,Y)$ is a normed space with the usual operator norm. If Y is Banach, then $\mathcal{B}(X,Y)$ is also Banach.

Theorem 3.5. Let X, Y be normed spaces and $T: \mathcal{D}(T) \longrightarrow Y$ be a linear operator with $\mathcal{D}(T) \subset X$. Then T is continuous if and only if it is bounded. If T is continuous at a single point then it is continuous everywhere.

Theorem 3.6. Let X, Y be Banach spaces and T: $\mathcal{D}(T) \longrightarrow Y$ be a linear operator with $\mathcal{D}(T) \subset X$. Then T has a linear extension $\tilde{T} : \overline{\mathcal{D}(T)} \longrightarrow Y$ such that $\|\tilde{T}\| = \|T\|$.

3.1 Linear functionals

Definition 3.7. A (*linear*) *functional* is a (linear) operator $f: X \longrightarrow \mathbb{K}$ where X is a vector space (and \mathbb{K} is the underlying field of X).

Definition 3.8. Let X be a normed space. The *dual space* of X, denoted X', is a normed spaces that consists of the set of all bounded linear functionals on X. The norm is given by the standard operator norm.

Proposition 3.9. X' is Banach for any normed space X.

4 Hilbert spaces

Definition 4.1. An *inner product space* is a vector space X with an *inner product*, i.e. a mapping

$$\langle \cdot, \cdot \rangle : X \times X \longrightarrow \mathbb{K}$$

into the scalar field, that satisfies (note that this is *backwards* to the usual physicists notation):

- i) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- ii) $ang\alpha x, y = \alpha \langle x, y \rangle$
- iii) $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- iv) $\langle x, x \rangle \ge 0$
- v) $\langle x, x \rangle = 0$ if and only if x = 0. Any inner product space is a normed space with norm $||x|| = \sqrt{\langle x, x \rangle}$.

Definition 4.2. A *Hilbert* space is a complete inner product space.

Proposition 4.3. Properties of inner product spaces:

1. The Schwartz inequality holds:

$$|\langle x, y \rangle| \le \|x\| \, \|y\|$$

with equality if and only if x and y are linearly dependent.

- 2. The inner product is a continuous function.
- 3. There is a unique completion (up to isomorphism).
- 4. A subspace $Y \subset H$ of a Hilbert space is complete if and only if it is closed in H.

Proposition 4.4. If X is a Hilbert space, then the norm satisfies the parallelogram identity

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y^{2}||).$$

As a corollary, ℓ^p is not a Hilbert space for $p \neq 2$.

Definition 4.5. Let *H* be a Hilbert space, $x, z \in H$ and $M \subset H$. Then we say that *x* and *y* are *orthogonal* of $\langle x, y \rangle = 0$, which is denoted $x \perp y$. We say $x \perp M$ if |x, y| = 0 for all $y \in M$.

Theorem 4.6 (Minimizing vector theorem). Let X be an inner product space and $M \neq \emptyset$ a complete convex subset of X. Then for any $x \in X$ there exists a unique $y \in M$ such that

$$\delta = \inf_{y' \in M} \|x - y'\| = \|x - y\|.$$

Corollary 4.7. If M is a complete subspace of X and y is the unique closest element in M to x from the above theorem, then the vector z = x - y is orthogonal to M.

Definition 4.8. A vector space X is said to be a *direct sum* of two subspaces Y and Z of X if each $x \in X$ has a unique representation x = y + z for yinY and $z \in Z$. We write $X = Y \oplus Z$.

Theorem 4.9. Let Y be a closed subspace of a Hilbert space H. Then $H = Y \oplus Y^{\perp}$.

Definition 4.10. For a closed subspace $Y \subset H$ of a Hilbert space, the *orthogonal projection* onto Y is the linear operator $P_Y \colon H \longrightarrow Y$ defined by $P_Y x = y$, where y is the unique $y \in Y$ from the previous theorem.

Lemma 4.11. If $Y \subset X$ where X is an inner product space, then $Y \subset Y^{\perp \perp}$. Furthermore, if X = H is a Hilbert space and $Y = \overline{Y}$, then $Y = Y^{\perp \perp}$.

Lemma 4.12. Let $M \neq \emptyset$ be a subset of a Hilbert space. Then $\overline{\text{span}(M)} = H$ if and only if $M^{\perp} = \{0\}.$

Theorem 4.13 (Bessel inequality). Let X be an inner priduct space and (e_k) be an orthonormal sequence in X. Then for every $x \in X$ the following inequality holds:

$$\sum_{k=1}^{\infty} \left| \langle x, e_k \rangle \right|^2 \le \left\| x \right\|^2.$$

Corollary 4.14. If X is an inner product space, then any $x \in X$ can have at most countably many nonzero Fourier coefficients $\langle x, e_{\kappa} \rangle$ with respect to an orthonormal family $(e_{\kappa})_{\kappa \in I} \subset X$ indexed by some (not necessarily countable) set I.

Definition 4.15. Let $\{e_k\}$ be an orthonormal set of vectors in a Hilbert space H and $\{\alpha_k\}$ scalars. We say that $\sum_{k=1}^{\infty} \alpha_x e_k$ converges (or exists) if there exists an $s \in H$ such that

$$\lim_{n \to \infty} \left\| \sum_{k=1}^{\infty} \alpha_k e_k - s \right\| = 0.$$

Theorem 4.16 (convergence). Let (α_n) be a sequence of scalars.

- 1. The sum $\sum_{k=1}^{\infty} \alpha_x e_k$ converges if and only if $\sum_{k=1}^{\infty} \|\alpha_k\|^2$ converges. 2. If $\sum_{k=1}^{\infty} \alpha_x e_k$ converges to some $x \in H$, then $\alpha_n = \langle x, e_n \rangle$ for all n.
- 3. For all $x \in H$, the sum $\sum_{k=1}^{\infty} \langle x, e_k \rangle e_k$ converges to x.

Definition 4.17. A subset $M \subset X$ of a normed space is said to be **total** if span(M) is dense in X. A **total orthonormal set** in an inner product space X is an orthonormal set M which is total in X.

Theorem 4.18 (Totality I). Let M be a sbset of an inner product space X.

- 1. If M is total in X then $x \perp M$ implies x = 0.
- 2. If X = H is a Hilbert space, then $x_{\perp}M$ implies x = 0 if and only of M is total in X.

Definition 4.19. A normed space X is *separable* if there exists a countable set of vectors $C \subset X$ that is dense in X, i.e such that $\overline{C} = X$.

Theorem 4.20. In every Hilbert space H there exists a total orthonormal set. If H is separable and $C \subset H$ is a countably dense subset of H, then by the Gram-Schmidt process we can make C into an orthonormal set.

Theorem 4.21 (Totality II). An orthonormal set M in a Hilbert space H is total if and only if for all $x \in H$ we have

$$||x||^2 = \sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2$$

where $\{e_k\} = \{e_M \mid \langle x, e \rangle \neq 0\}$ is a countable set of vectors.

Proposition 4.22. Let H be a Hilbert space. If H is separable then every orthonormal set in H is countable. If H contains an orthonormal sequence which is total in H, then H is separable.

Theorem 4.23 (Hilbert dimension). All total orthonormal sets in a given Hilbert space $H \neq \{0\}$ have the same cardinality, called the Hilbert dimension.

Definition 4.24. Two Hilbert spaces H_1 and H_2 are said to be *isomorphic* if there exists an inner product preserving isomorphism $T: H_1 \longrightarrow H_2$. That is

$$\langle Tx, Ty \rangle_2 = \langle x, y \rangle_1$$

for all $x, y \in H$.

Theorem 4.25. Two Hilbert spaces H_1 and H_2 are isomorphic if and only if they have the same Hilbert dimension.

4.1 Functionals on Hilbert spaces

Theorem 4.26 (Riesz's representation theorem). For any functional $f \in H'$, there exists a unique element $z \in H$ such that $f(x) = \langle x, z \rangle$ for all $x \in H$ and ||f|| = ||z||.

4.2 Hilbert-adjoint operator

Definition 4.27. Let $T: H_1 \longrightarrow H_2$ be a bounded linear operator on two Hilbert spaces. The *Hilbert-adjoint operator* is an operator $T^*: H_1 \longrightarrow H_2$ defined by the relation

$$\langle Tx, y \rangle_2 = \langle x, T^*y \rangle_1$$

for all $x \in H_1$ and $y \in H_2$. Furthermore, for an operator $T: H_2 \longrightarrow H_2$ there exists a *unique* operator T^* that satisfies the above relation.

Theorem 4.28. Let T be as defined in the definition above. Then

- 1. T^* exists,
- 2. is unique,
- 3. and is a bounded linear operator with $||T^*|| = ||T||$.

Proposition 4.29 (Properties of adjoint operators). Let $T, S: H_1 \longrightarrow H_2$ be a bounded linear operators on Hilbert spaces. Then for all $x, y \in H$ and scalar α the following hold.

1. $\langle T^*y, x \rangle_1 = \langle y, Tx \rangle_2$

- 2. $(S+T)^* = S^* + T^*$
- 3. $(\alpha T)^* = \overline{\alpha}T^*$
- 4. $(T^*)^* = T$
- 5. $||T^*T|| = ||TT^*|| = ||T||^2$
- 6. $T^*T = 0$ if and only if T = 0.
- 7. $(ST)^* = T^*S^*$ (for $H_1 = H_2$).

Definition 4.30. Let $T: H \longrightarrow H$ be a bounded linear operator. Then T is

- (i) *self-adjoint* (or *hermitian*) if $T^* = T$;
- (ii) *unitary* if $T^{-1} = T^*$;
- (iii) *normal* of $TT^* = T^*T$.

Theorem 4.31. Let H be a Hilbert space and (T_n) be a sequence of bounded self-adjoint linear operators with $T_n: H \longrightarrow H$. If $T_n \longrightarrow T$ (i.e. $||T_n - T|| \longrightarrow 0$) then T is bounded and $T^* = T$.

5 Hahn-Banach theorem

Definition 5.1. A *sublinear functional* on a vector space X is a real valued function $p: X \longrightarrow \mathbb{R}$ that satisfies

- (i) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$
- (ii) $p(\alpha x) = \alpha p(x)$ for all $\alpha \ge 0$ real and $x \in X$.

Theorem 5.2 (Hahn-Banach version I - real vector spaces). Let X be a real vector space and p a sublinear functional. Let f be a linear functional which is defined on a subspace Y of X that satisfies $f(x) \leq p(x)$ for all $x \in Y$. Then there exists a linear extension \tilde{f} from Y to X of f such that

- 1. $\tilde{f}(x) \leq p(x)$ for all $x \in X$
- 2. $\tilde{f}(x) = f(x)$ for all $x \in Y$.

Lemma. Let g be a linear functional on a strict subspace $Y \subsetneq X$ of a real vector space X and p a sublinear functional such that $g(x) \le p(x)$ for all $x \in Y$. Then there exists a linear extension h of g such that h is defined on a subspace $Z \subset X$ with $Y \subsetneq Z$ such that $h|_Y = g$ and $h(x) \le p(x)$ for all $x \in Z$.

Proof. There is an element $z_0 \in X \setminus Y$ and consider the subspace Z of X defined by $Z = \text{span}\{Y, z_0\}$. Note that $z_0 \neq 0$. Thus any $x \in Z$ can be written uniquely as

$$x = y + tz_0 \tag{(*)}$$

for some $y \in Y$ and $t \in \mathbb{R}$. Indeed, if $y + tz_0 = y' + t'z_0$, then $y - y' = (t' - t)z_0$. But $y - y' \in Y$ wheras $z_0 \notin Y$. Hence y - y' = 0 and t = t' so the representation in (*) is unique.

Using this unique representation, we can define a linear extension h of g to Z by

$$h(y+tz_0) = g(y) + ct$$
 for all $y \in Y$ and $t \in \mathbb{R}$

for some $c \in \mathbb{R}$. It remains to show that we can pick $c \in \mathbb{R}$ such that $h(x) \leq p(x)$ for all $x \in Z$. Hence we need to show that

$$g(y) + ct \le p(y + tz_0)$$
 for all $y \in Y$ and $t \in \mathbb{R}$. (**)

If t = 0, there is nothing to show. For t > 0, the requirement in (**) is equivalent to the statement that

$$c \leq \frac{1}{t}p(y+tz_0) - \frac{1}{t}g(y)$$

= $p\left(\frac{1}{t}y+z_0\right) - g\left(\frac{1}{t}y\right)$,

for all $y \in Y$ and t > 0. So we may define $w = \frac{1}{t}y \in Y$ and this is equivalent to the statement that

$$c \le p(w+z_0) + g(w) \text{ for all } w \in Y.$$
^(†)

Similarly, for t < 0 we may write s = -t such that s > 0 we require that $g(y) - cs \le p(y - sz_0)$ for all $y \in Y$ and s > 0. This is equivalent to the requirement that

$$c \ge \frac{1}{s}g(y) - \frac{1}{s}p(y - sz_0)$$
$$= g\left(\frac{1}{s}y\right) - p\left(\frac{1}{s}y - z_0\right)$$

for all s > 0 and $y \in Y$. Setting $v = \frac{1}{s}y \in Y$ for each y, we see that this is equivalent to the statement that

$$c \ge g(v) - p(v - z_0) \text{ for all } v \in Y.$$

$$(\dagger \dagger)$$

Putting together (\dagger) and $(\dagger\dagger)$, the requirement in (**) is equivalent to the statement that

$$g(v) - p(v - z_0) \le c \le p(w + z_0) + g(w)$$

for all $v, w \in Y$. This is true if there is a c number such that

$$\sup_{v \in Y} (g(v) - p(v - z_0)) \le c \le \inf_{w \in Y} (p(w + z_0) + g(w)),$$

but this is equivalent to having

$$g(v) - p(v - z_0) \le p(w + z_0) - g(w)$$

for all $v, w \in Y$. But this is indeed true, since

$$g(v) + g(w) = g(v + w) \le p(v + w) = p((v - z_0) + (w + z_0)) \le p(w + z_0) + p(v - z_0)$$

by the asymption that g is dominated by p and p is sublinear.

Proof. (of Hahn-Banach I) Define E as the set of all linear extensions of f that are dominated by p. That is

$$E := \{g \in V' \mid W \subset V \subset X \text{ a subspace}, g|_W = f, \text{ and } g(x) \le p(x) \ \forall x \in V \}.$$

Note that E is nonempty since $f \in E$. Define a partial order on E by

 $g \leq h$ if h is an extension of g.

That is, $\mathcal{D}(g) \subset \mathcal{D}(h)$ and $h|_{\mathcal{D}(g)} = g$.

• Claim: There exists a maximal element \tilde{f} of E. Indeed, let C be a chain of elements in E, and define $g_C \in E$ by

$$q_{\mathcal{C}}(x) = q(x)$$
 for all $q \in \mathcal{C}$ and $x \in \mathcal{D}(q)$

with domain given by

$$\mathcal{D}(g_{\mathcal{C}}) = \bigcup_{g \in \mathcal{C}} \mathcal{D}(g).$$

Hence $g_{\mathcal{C}} \in E$ is an upper bound of the chain \mathcal{C} . By Zorn's lemma, there exists an element \tilde{f} that is maximal in E.

• Claim: The domain $\mathcal{D}(\tilde{f})$ is all of X.

Suppose otherwise, then $\mathcal{D}(\tilde{f}) \subsetneq X$. But by the above lemma, we can define a proper linear extension of \tilde{f} that is dominated by p, a contradiction to the maximality of \tilde{f} .

Definition 5.3. Let X be a vector space. A sublinear functional $p: X \longrightarrow \mathbb{R}$ is *subadditive* if $p(x+y) \leq p(x) + p(y)$ and $p(\alpha x) = |\alpha| p(x)$ for any scalar α .

Theorem 5.4 (Hahn-Banach version II - complex vector spaces). Let X be a real or complex vector space and p a real-valued sublinear functional on X. Let f be a linear functional which is defined on a subspace W of X that satisfies $|f(x)| \leq p(x)$ for all $x \in W$. Then there exists a linear extension \tilde{f} from W to X of f such that $|\tilde{f}| \leq p(x)$ for all $x \in X$.

Theorem 5.5 (Hahn-Banach version III - normed spaces). Let X be a normed space and f a bounded linear functional on a subspace $W \subset X$. Then there exists a bounded linear functional \tilde{f} on X which is an extension of f such that $||f||_W = ||\tilde{f}||_X$.

Corollary 5.6. Let X be a normed space and $x_0 \in X$ a nonzero vector. Then there exists a functional $f \in X'$ such that ||f|| = 1 and $f(x_0) = ||x_0||$.

Corollary 5.7. Let X be a normed space. For any $x \in X$ we have

$$||x|| = \sup_{0 \neq \tilde{f} \in X'} \frac{|\tilde{f}(x)|}{\|\tilde{f}\|}.$$

In particular, if $f(x_0) = 0$ for all $f \in X'$ then $x_0 = 0$.

6 Adjoint operator

Definition 6.1. Let X and Y be normed spaces and $T: X \longrightarrow Y$ be a bounded linear operator. Then the *adjoint operator* $T^{\times}: Y' \longrightarrow X'$ is defined by

$$(T^{\times}g)(x) = g(Tx)$$

for all $g \in Y'$.

Theorem 6.2. The adjoint operator T^{\times} is linear and bounded, and $||T^{\times}|| = ||T||$.

Proposition 6.3. In finite dimensions, if T is represented by a matrix A, we have that T^{\times} is represented by the matrix A^{\intercal} in the basis dual to the basis chosen for A.

Proposition 6.4. Let $S, T: X \longrightarrow Y$ be bounded linear operators of normed spaces. Then the following hold.

- 1. $(S+T)^{\times} = S^{\times} + T^{\times}$
- 2. $(\alpha T)^{\times} = \alpha T^{\times}$
- 3. $(ST)^{\times}T^{\times}S^{\times}$
- 4. if $T \in \mathcal{B}(X, Y)$ and T has an inverse $T^{-1} \in \mathcal{B}(Y, X)$ then $(T^{\times})^{-1} = (T^{-1})^{\times}$.

7 Uniform boundedness

Definition 7.1. A subset $M \subset X$ of a metric space is called

- (i) *rare* in X if its closure \overline{M} has no interior points in X;
- (ii) *meager* in X if if is a countable union of rare sets in X;
- (iii) *non-meager* if it is not meager.

Theorem 7.2 (Baire's category theorem). If a metric space $X \neq \emptyset$ is complete, then X is nonmeager in itself.

Proof. Let X be a metric space and suppose that X is meager. Then X may be decomposed as a countable union of rare sets

$$X = \bigcup_{k=1} M_k,$$

where the $\overline{M_k}$ are all rare, i.e. do not contain any open balls. Since $\overline{M_1}$ is closed, there is an element in the complement $x_1 \in \overline{M_k}^c$ and a constant $0 < \varepsilon_1 < \frac{1}{2}$ such that $B(x_1;\varepsilon_1) \subset \overline{M_1}^c$. Since M_2 is rare, we have $B(x_1;\varepsilon_1) \not\subset \overline{M_2}$ and thus there is an element $x_2 \in B(x_1;\varepsilon_1) \cap \overline{M_2}^c$ and a constant $0 < \varepsilon_2 < \frac{1}{4}$ such that $B(x_2;\varepsilon_2) \subset B(x_1;\varepsilon_1) \cap \overline{M_2}^c$. Continuing this process inductively, we contruct sequences (x_n) and (ε_n) such that $0 < \varepsilon_n < \frac{1}{2^n}$ and $x_n \in B(x_{n-1};\varepsilon_{n-1}) \cap \overline{M_n}^c$. For all $n \in \mathbb{N}$, note that $x_m \in B(x_n;\varepsilon)$ and thus $||x_n - x_m|| < \epsilon_n \leq \frac{1}{2^n}$ for all $m \geq n$. Hence, the sequence (x_n) is Cauchy. Suppose that this sequences converges to some $x \in X$. But this implies that $x \in B(x_n;\varepsilon_n)$ for all $n \in N$. But $B(x_n;\varepsilon_n) \subset \overline{M_n}^c$ and thus $x \in \overline{M_n}^c$ for all n, which would mean that $x \notin X$. So X would not be complete. \Box

Theorem 7.3 (Uniform boundedness theorem). Let X be a Banach space and Y a normed space and (T_n) be a sequence in $\mathcal{B}(X,Y)$. If the sequence $(||T_nx||)$ is bounded for all $x \in X$, then $(||T_n||)$ is bounded.

Proof. The proof of the uniform boundedness theorem follows from Baire's category theorem. Define $A_k = \{x \in X \mid ||T_n x|| \le k \text{ for all } n\}$ such that $X = \bigcup_{k=1}^{\infty} A_k$. Since X is Banach, it is non-meager in itself, so at least one A_{k_0} is not rare and thus contains an open ball $B(x_0; \varepsilon) \subset A_{k_0}$ for some $x_0 \in A_{k_0}$ and $\varepsilon > 0$. Then for all $x \in X$ with ||x|| = 1 we have

$$\begin{aligned} \|T_n x\| &= \frac{2}{\varepsilon} \left\| T_n(\frac{\varepsilon}{2}x - x_0 + x_0) \right\| \\ &\leq \frac{2}{\varepsilon} \left(\left\| T_n(\frac{\varepsilon}{2}x - x_0) \right\| + \left\| T_n x_0 \right\| \right) \\ &= \frac{2}{\varepsilon} (k_0 + k_0) \\ &= \frac{4k_0}{\varepsilon} \end{aligned}$$

where we note that $||x_0 - (\frac{\varepsilon}{2}x - x_0)|| \leq \frac{\varepsilon}{2}$ and thus $\frac{\varepsilon}{2}x - x_0 \in B(x_0; \varepsilon) \subset A_{k_0}$. Hence $||T_n|| \leq \frac{4k_0}{\varepsilon}$ for all n and thus $(||T_n||)$ is bounded.

8 Weak and strong convergence

Definition 8.1. Let X be a normed space and let (x_n) be a sequence in X. We say that

(i) converges *strongly* to x (denoted $x_n \longrightarrow x$) if and only if $||x_n + x|| \longrightarrow 0$;

(ii) converges *weakly* to x (denoted $x_n \xrightarrow{w} x$) if and only if $f(x_n) \longrightarrow f(x)$ for all functionals $f \in X'$.

Proposition 8.2. Let X be a normed space. If a sequence (x_n) is weakly convergent, then it converges to a unique element in X.

Theorem 8.3. Let X be a normed space. If (x_n) is a sequence in X such that $x_n \xrightarrow{w} x$, then $||x_n||$ is bounded.

Theorem 8.4. Let X be a normed space. Then strong convergence inplies weak convergence. Furthermore, if X is finite dimensional, then weak convergence and strong convergence are equivalent.

Theorem 8.5. Let X be a normed space and (x_n) be a sequence in X. Then $x_n \xrightarrow{w} x$ if and only if the sequence $(||x_n||)$ is bounded and there exists an $M \subset X'$ such that M is total in X' and $f(x_n) \longrightarrow f(x)$ for all $f \in M$.

(For weak convergence, we only need to check functionals $f \in M$ in some total subset $M \subset X'$, not all $f \in X'$.)

9 Sequences of operators

Definition 9.1. Let X and Y be normed spaces and (T_n) be a sequence of operators in $\mathcal{B}(X,Y)$.

- (i) The sequence (T_n) converges **uniformly** to an operator T if $||T_n T|| \longrightarrow 0$, and this is denoted $T_n \xrightarrow{u} T$.
- (ii) The sequence (T_n) converges **strongly** to an operator T if $T_n x \longrightarrow T x$ for all $x \in X$, and this is denoted $T_n \xrightarrow{s} T$.
- (iii) The sequence (T_n) converges **weakly** to an operator T if $T_n x \xrightarrow{w} T x$ for all $x \in X$, and this is denoted $T_n \xrightarrow{w} T$. (That is, $f(T_n x) \longrightarrow f(Tx)$ for all $x \in X$ and $f \in Y'$).

Theorem 9.2. Let X be a Banach space, Y a normed space and (T_n) a sequence in $\mathcal{B}(X,Y)$. If (T_n) is strongly operator convergent with $T_n \xrightarrow{s} T$, then T is bounded.

Proof. By the uniform boundedness principle, $(||T_n||)$ is bounded. Since (T_n) is strongly convergent, $||Tx|| - ||T_nx|| \le ||(T - T_n)x|| \longrightarrow 0$ for all x, so T is bounded. \Box

Theorem 9.3. Let X, Y be Banach spaces. A sequence (T_n) of operators in $\mathcal{B}(X, Y)$ is strongly operator convergent if and only if the following hold:

- 1. the sequence $(||T_n||)$ is bounded,
- 2. and the sequence $(T_n x)$ is Cauchy in Y for all $x \in M$ where $M \subset X$ is total.

Proof. One direction is trivial, so we may assume that (T_n) is strongly operator convergent. Since M is dense in X, for each $x \in X$ we may choose $y \in M$ that is arbitrarily close to x. Then $||T_n x - T_m x|| \le ||T_n|| ||x - y|| + ||T_n - T_m|| ||y|| + ||T_m|| ||x - y|| \longrightarrow 0.$

Definition 9.4. Let X be a normed space and (f_n) a sequence of functionals in X'.

- (i) The sequence (f_n) converges **strongly** to $f \in X'$ if $||f_n f|| \longrightarrow 0$, and this is denoted $f_n \longrightarrow f$.
- (ii) The sequence (f_n) is **weak**^{*} convergent to $f \in X'$ if $f_n(x) \longrightarrow f(x)$ for all $x \in X$, and this is denoted $f_n \xrightarrow{w^*} f$.

Theorem 9.5. Let X be a separable normed space. Every bounded sequence of functionals in X' has a subsequence that is weak^{*} convergent to some element of X'.

Proof. Let (f_n) be a bounded sequence of functionals and (x_n) be a sequence that is dense in X. Since (f_n) is bounded, there is a constant c > 0 such that $||f_n|| < c$ for all n. Noting that $||f_n(x_1)| \leq ||f_n|| ||x_1|| < c ||x_1||$, we have that the sequence $(f_n(x_1))$ is bounded. So there is a subsequence $(f_n^{(1)})$ of (f_n) such that $(f_n^{(1)}(x_1))$ is Cauchy. Similarly, the sequence $(f_n^{(1)}(x_2))$ is bounded, so there is a subsequence $(f_n^{(2)})$ of $(f_n^{(1)})$ such that $(f_n^{(2)}(x_2))$ is Cauchy. Continuing this process inductively, we can construct a series of subsequences

$$\cdots \subseteq (f_n^{(3)}) \subseteq (f_n^{(2)}) \subseteq (f_n^{(1)}) \subseteq (f_n)$$

such that $(f_n^{(k)}(x_k))$ is Cauchy for all k. We may construct another subsequence (g_n) of (f_n) by Cantor diagonalization where we take $g_n = f_n^{(n)}$ for all n. Clearly, the sequence $(g_n(x_k))$ is Cauchy for all k. Note also that the sequence $(g_n(x))$ is Cauchy for all $x \in X$. Indeed, for all $\varepsilon > 0$ there is an element $x_k \in (x_n)$ such that $||x - x_k|| < \frac{1}{3c}\varepsilon$. Furthermore, there is an $N \in \mathbb{N}$ large enough such that $||g_n(x_k) - g_m(x_k)|| < \frac{1}{3}\varepsilon$ for all n, m > N. Then, for all n, m > N we have

$$\begin{split} \|g_{n}x - g_{m}x\| &= \|g_{n}(x) - g_{n}(x_{k}) + g_{n}(x_{k}) - g_{m}(x_{k}) + g_{m}(x_{k}) - g_{m}(x)\| \\ &\leq \|g_{n}(x) - g_{n}(x_{k})\| + \|g_{n}(x_{k}) - g_{m}(x_{k})\| + \|g_{m}(x_{k}) - g_{m}(x)\| \\ &\leq \underbrace{\|g_{n}\|}_{$$

thus $(g_n(x))$ is Cauchy for all $x \in X$. Hence, we may define another functional g on X by

$$g(x) := \lim_{n \to \infty} g_n(x).$$

This is clearly linear, since $g(\alpha x + \beta y) = \lim_{n \to \infty} [\alpha g_n(x) + \beta g_n(y)] = \alpha g(x) + \beta g(y)$. It is also bounded, since $|g(x)| = \left|\lim_{n \to \infty} g_n(x)\right| \le \limsup_{n \in \mathbb{N}} |g_n(x)| \le c ||x||$. So we have that $g_n(x) \longrightarrow g(x)$ for all $x \in X$, where (g_n) is a subsequence of (f_n) and g is a bounded linear functional, and $g_n \xrightarrow{w^*} g$ as desired. \Box

10 Open mapping theorem

Recall: If X and Y are metric spaces, a mapping $T: X \longrightarrow Y$ is continuous if and only if the pre-images $T^{-1}(U)$ are open in X for all open sets $U \subset Y$.

Definition 10.1. Let X and Y be metric spaces. A mapping $T: \mathcal{D}(T) \longrightarrow Y$ with $\mathcal{D}(T) \subset X$ is said to be *open* if the image T(U) is open in Y for every open set $U \subset \mathcal{D}(T)$.

Theorem 10.2 (Open mapping theorem). Let X and Y be Banach spaces. Every surjective bounded linear operator from X onto Y is an open map.

Claim 1. Let $T: X \longrightarrow Y$ be a linear map of Banach spaces. If there exists an r > 0 such that

$$B_Y(0;r) \subset T\big(B_X(0;1)\big),$$

then T is an open mapping.

Proof. Let $A \subset X$ open and $y = Tx \in T(B_X(0;1))$. Then there is an $\varepsilon > 0$ such that $B_X(0;\varepsilon) \subset A$. By linearity of T, we have

$$B_Y(0;r) \subset T\left(B_X(0;1)\right) \iff B_Y(0;r) + \underbrace{Tx}_{y} \subset T\left(\underbrace{B_X(0;1) + x}_{B_X(x;1)}\right) \iff B_Y(y;\varepsilon r) \subset T\left(B_X(x;\varepsilon)\right).$$

So there is an open ball of radius εr contained in T(A), since $T(B_X(x;\varepsilon)) \subset T(A)$.

Claim 2. If the interior of $T(B_X(0;1))$ is nonempty, then it contains a ball around the origin of Y. That is, there exists an r > 0 such that $B_Y(0;r) \subset \overline{T(B_X(0;1))}$.

Proof. By assumption, there exists a $y \in Y$ and $\varepsilon > 0$ such that $B_Y(y;\varepsilon) \subset T(B_X(0;1))$. Let $z \in Y$ with ||z|| < 1 such that both y and $y + \varepsilon z$ are in $B_Y(y;\varepsilon)$. Since they are both in the closure of $T(B_X(0;1))$, there exists sequence (x_n) and (x'_n) in $B_X(0;1)$ such that

$$Tx_n \longrightarrow y$$
 and $Tx'_n \longrightarrow y + \varepsilon z$

Define the sequence (x''_n) as $x''_n = \frac{1}{\varepsilon}(x_n - x'_n)$ and note that $x''_n \in B_X(0; \frac{2}{\varepsilon})$. Then $Tx''_n \longrightarrow z$, since

$$\|Tx_n''-z\| = \frac{1}{\varepsilon} \|Tx_n - Tx_n' - \varepsilon z - y + y\|$$

$$\leq \frac{1}{\varepsilon} \left(\underbrace{\|Tx_n - y\|}_{\to 0} + \underbrace{\|Tx_n' - (y + \varepsilon z)\|}_{\to 0} \right) \longrightarrow 0.$$

Hence $z \in \overline{T(B_X(0; \frac{2}{\varepsilon}))}$, but $z \in B_Y(0; 1)$ was arbitrary. So $B_Y(0; 1) \subset \overline{T(B_X(0; \frac{2}{\varepsilon}))}$. By linearity of T, we see that $B_Y(0; r) \subset \overline{T(B_X(0; 1))}$, where $r = \frac{\varepsilon}{2}$.

Proof. (of open mapping theorem) Since T is onto, we have

$$Y = T(X) = \bigcup_{k=1}^{\infty} (B_X(0;k)).$$

But Y is complete, so by Baire's category theorem we know that there is at least one $k_0 \in \mathbb{N}$ such that $\overline{T(B_X(0;k_0))}$ has nonempty interior. By linearity of T we see that $k_0\overline{T(B_X(0;1))}$ and thus $\overline{T(B_X(0;1))}$ have nonempty interior. By Claim 2, there is an $\varepsilon > 0$ such that $B_Y(0;\varepsilon) \subset \overline{T(B_X(0;1))}$. We now show that $\overline{T(B_X(0;1))} \subset T(B_X(0;2))$.

Let $y \in T(B_X(0;1))$, then there exists an element $x_1 \in B_X(0;1)$ such that

$$\|y - Tx_1\| < \frac{1}{2}\varepsilon.$$

Hence $y - Tx_1 \in B_Y(0; \frac{1}{2}\varepsilon)$. By linearity, $B_Y(0; \frac{1}{2}\varepsilon) \subset \overline{T(B_X(0; \frac{1}{2}))}$, so there exists an element $x_2 \in B_X(0; \frac{1}{2})$ such that

$$\|(y-Tx_1)-Tx_2\| < \frac{1}{4}\varepsilon.$$

Continuing this process inductively, we find a sequence (x_n) in X such that $x_n \in B_X(0; \frac{1}{2^{n-1}})$ and

$$\left\| y - T \sum_{k=1}^{n} x_n \right\| < \frac{1}{2^n} \varepsilon.$$

The sequence of partial sums $s_n := \sum_{k=1}^{\infty} x_k$ is Cauchy since for m < n we have

$$||s_n - s_m|| \le \sum_{k=n+1}^m ||x_k|| < \sum_{k=n+1}^m \frac{1}{2^{k-1}} \longrightarrow 0.$$

So $s_n \longrightarrow x$ for some $x \in X$ since X is Banach, and

$$||x|| = \left\|\sum_{k=1}^{\infty} x_k\right\| \le \sum_{k=1}^{\infty} ||x_k|| < \sum_{k=1}^{\infty} \frac{1}{2^{k-1}} = 2,$$

and thus $x \in B_X(0;2)$. Since T is bounded, we have $Tx_n \longrightarrow y$ and $x_n \longrightarrow x$ implies y = Tx. Hence $y \in T(B_X(0;2))$.

So we have the inclusions $B_Y(0;\varepsilon) \subset T(B_X(0;1)) \subset T(B_X(0;2))$. By linearity of T we have $B_Y(0;\frac{\varepsilon}{2}) \subset T(B_X(0;1))$, and by Claim 1 we have that T is an open mapping.

Corollary 10.3 (Bounded inverse theorem). Let X and Y be Banach space. Every bijective bounded linear map $T: X \longrightarrow Y$ has a bounded linear inverse.

Proof. Since T is bijective, its inverse T^{-1} exists. From the open mapping theorem, T is open. But the preimage of every open set in X under T^{-1} is open in Y, since $(T^{-1})^{-1}(U) = T(U)$, so T^{-1} is continuous and thus bounded.

10.1 Closed graph theorem

Definition 10.4. Let X and Y be vector spaces and $T: \mathcal{D}(T) \longrightarrow Y$ a linear operator with $\mathcal{D}(T) \subset X$. The *graph* of T is the set

$$\mathcal{G}(T) = \{(x, Tx) \mid x \in \mathcal{D}(T)\}$$

as a subset of $X \times Y$.

Definition 10.5. Let X and Y be normed spaces and $T: \mathcal{D}(T) \longrightarrow Y$ a linear operator with $\mathcal{D}(T) \subset X$. Then T is said to be *closed* if its graph $\mathcal{G}(T)$ is closed in $X \times Y$.

Proposition 10.6. Let X and Y be Banach spaces. Then $X \times Y$ is Banach.

Lemma 10.7. Let X and Y be normed spaces and $T: \mathcal{D}(T) \longrightarrow Y$ be a linear operator with $\mathcal{D}(T) \subset X$. Then T is a closed linear operator if and only if the following holds:

For all sequences
$$(x_n)$$
 in $\mathcal{D}(T)$ such that
 $x_n \longrightarrow x \text{ and } Tx_n \longrightarrow y \text{ for some } x \in X \text{ and } y \in Y,$
we have $x \in \mathcal{D}(T)$ and $y = Tx$.

Lemma 10.8. Let X and Y be normed spaces and $T: \mathcal{D}(T) \longrightarrow Y$ be a bounded linear operator with $\mathcal{D}(T) \subset X$.

1. If $\mathcal{D}(T)$ is closed in X then T is closed.

2. If T is closed and Y is Banach, then $\mathcal{D}(T)$ is closed.

Theorem 10.9 (Closed graph theorem). Let X and Y be Banach spaces and let $T: \mathcal{D}(T) \longrightarrow Y$ be a closed linear operator with $\mathcal{D}(T) \subset X$. If $\mathcal{D}(T)$ is closed then T is bounded.

Proof. Note that $\mathcal{G}(T)$ is itself a Banach space, since it is a closed vector space in the Banach space $X \times Y$. Similarly $\mathcal{D}(T)$ is Banach since it is closed in the Banach space X. Define the mapping $P: \mathcal{G}(T) \longrightarrow \mathcal{D}(T)$

$$P\colon (x,Tx)\longmapsto x.$$

This is linear, so we need to show that it is bounded. Indeed,

$$||P(x,Tx)|| = ||x|| \le ||x|| + ||Tx|| = ||(x,Tx)|$$

and thus $||P|| \leq 1$. Note that P is bijective. It is clearly surjective, but it is also injective since P(x,Tx) = 0 if and only if x = 0. So by the bounded inverse theorem P^{-1} exists and is bounded. Hence

$$||Tx|| \le ||x|| + ||Tx|| = ||(x, Tx)|| = ||P^{-1}(x)|| \le ||P^{-1}|| ||x||.$$

11 Spectral theory in normed spaces

Definition 11.1. Let X be a normed space and $T: \mathcal{D}(T) \longrightarrow X$ be a linear operator with $\mathcal{D}(T) \subset X$. For $\lambda \in \mathbb{C}$, the *resolvent* is the linear operator

$$R_{\lambda} = T_{\lambda}^{-1} = (T - \lambda I)^{-1}$$

if it exists.

(i) The **point spectrum** of T is the set

$$\sigma_p(T) := \{\lambda \in \mathbb{C} \,|\, R_\lambda \text{ does not exist}\}$$

of eigenvalues.

(ii) The *continuous spectrum* of T is the set

$$\sigma_c(T) := \left\{ \lambda \in \mathbb{C} \ \Big| \ R_\lambda \text{ exists but is unbounded, and } \overline{\mathcal{D}(R_\lambda)} = X \right\}$$

(iii) The *residual spectrum* of T is the set

$$\sigma_r(T) := \left\{ \lambda \in \mathbb{C} \mid R_\lambda \text{ exists but } \overline{\mathcal{D}(R_\lambda)} \neq X \right\}.$$

(iv) The *spectrum* is the set

$$\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T).$$

(v) The *resolvent set* of T is $\rho(T) = \mathbb{C} \setminus \sigma(T)$, and $\lambda \in \rho(T)$ is called a *regular value*.

Proposition 11.2. Let $T: X \longrightarrow X$ be a linear operator on a Banach space X.

- 1. If T is bounded and $R_{\lambda}(T)$ exists for some $\lambda \in \mathbb{C}$ such that $\mathcal{D}(R_{\lambda}(T)) = X$, then $R_{\lambda}(T)$ is bounded.
- 2. If $\lambda \in \rho(T)$ and T is either closed or bounded, then $\mathcal{D}(R_{\lambda}) = X$.
- 3. $R_{\mu} R_{\nu} = (\mu \nu)R_{\mu}R_{\nu}$
- 4. If [S,T] = 0 then $[S, R_{\mu}(T)] = 0$ for all $\mu \in \mathbb{C}$ such that R_{μ} exists.
- 5. $[R_{\mu}, R_{\nu}] = 0$ for all $\mu, \nu \in \mathbb{C}$.

11.1 Spectral properties of bounded linear operators

Lemma 11.3. Let X be a Banach space and $T \in \mathcal{B}(X, X)$. If ||T|| < 1 then $(I - T)^{-1}$ exists and

$$(I - T)^{-1} = I + T + T^2 + \dots = \sum_{k=0}^{\infty} T^k$$

Theorem 11.4 (Closed spectrum theorem). Let X be a Banach space and $T: X \longrightarrow X$ be a bounded linear operator. Then the resolvent set $\rho(T)$ is open and the spectrum $\sigma(T)$ is closed in \mathbb{C} .

Theorem 11.5. Let X be a Banach space and $T \in \mathcal{B}(X, X)$. Then $\sigma(T)$ is compact and $|\lambda| \leq ||T||$ for all $\lambda \in \sigma(T)$.

Definition 11.6. Let X be a Banach space and T a bounded linear operator on X. The *spectral* radius of T is defined as

$$r_{\sigma}(T) = \sup_{\lambda \in \sigma(T)} |\lambda|.$$

Theorem 11.7. Let X be a Banach space and $T \in \mathcal{B}(X,T)$. Then $r_{\sigma}(T) = \lim_{n \to \infty} \sqrt[n]{\|T^n\|} \le \|T\|$.

Theorem 11.8 (Spectral mapping theorem for polynomials). Let X be a Banach space, $T \in \mathcal{B}(X, X)$ and $p(t) = \alpha_0 + \alpha_1 t + \cdots + \alpha_n t^n$ be a polynomial of degree n. Then $\sigma(p(T)) = p(\sigma(T))$.

 \square

Proof. I should probably know how to prove....

11.2 Banach algebras

Definition 11.9. An *algebra* \mathcal{A} is a vector space with an associative binary operation $x \cdot y \in \mathcal{A}$ for all $x, y \in \mathcal{A}$. That is $x \cdot (y + z) = x \cdot y + x \cdot z$ for all $x, y, z \in \mathcal{A}$. The algebra has an *identity* if there is an element $e \in \mathcal{A}$ such that $e \cdot x = x \cdot e = x$ for all $x \in \mathcal{A}$.

A *normed* algebra is an algebra \mathcal{A} that is normed and a vector space and satisfies

 $\|x \cdot y\| \le \|x\| \|y\|$

for all $x, y \in A$. A **Banach** algebra is a normed algebra whose underlying normed space is Banach.

Definition 11.10. Let \mathcal{A} be a complex Banach algebra with identity and let $x \in \mathcal{A}$. The *resolvent* set of x is the set $\rho(x)$ of all $\lambda \in \mathbb{C}$ such that $x - \lambda e$ is invertible. The spectrum of x is the set $\sigma(x) = \mathbb{C} \setminus \rho(x)$.

Theorem 11.11. Let X be a Banach space and consider the Banach algebra $\mathcal{A} = \mathcal{B}(X, X)$. Then the notions of resolvent set and spectrum coincide.

Theorem 11.12. Let S be a complex Banach algebra A with identity and $x \in A$. If ||x|| < 1 then e - x is invertible with

$$(e-x)^{-1} = e + \sum_{k=1}^{\infty} x^k.$$

Theorem 11.13. Let \mathcal{A} be a complex Banach algebra with identity. The group $G \subset \mathcal{A}$ of all invertible elements is open in \mathcal{A} .

Definition 11.14. Let \mathcal{A} be a Banach algebra and $x \in \mathcal{A}$. Then the *spectral radius* of x is

$$r_{\sigma}(x) := \sup_{\lambda \in \sigma(x)} |\lambda|.$$

Theorem 11.15 (Spectral radius in a Banach algebra). Let \mathcal{A} be a complex Banach algebra with identity. Then $r_{\sigma}(x) \leq ||x||$ and the spectrum $\sigma(x)$ is compact.

Theorem 11.16 (Nonempty spectrum). *The spectrum of every element of a complex Banach algebra is nonempty.*

11.3 Spectral theory of Self-Adjoint operators

Theorem 11.17. Let H be a Hilbert space and $T: H \longrightarrow H$ a self-adjoint linear operator. Then T is bounded.

Proposition 11.18. All eigenvalues of self-adjoint operators are real and eigenvectors of self-adjoint linear operators corresponding to different eigenvalues are orthogonal.

Theorem 11.19. Let H be a complex Hilbert space and $T: H \longrightarrow H$ be a self-adjoint operator. Then $\sigma(T)$ is real.

Lemma 11.20. Let H be a complex Hilbert space and $T: H \longrightarrow H$ a self-adjoint linear operator. Then $\lambda \in \rho(T)$ if and only if there is a constant c > 0 such that $||T_{\lambda}x|| > c ||x||$ for all $x \in H$. **Theorem 11.21** (Properties of the sectrum of self-adjoint linear operators). Let H be a Hilbert space and $T: H \longrightarrow H$ a bounded self-adjoint linear operator, and define

$$m := \inf_{\substack{x \in H \\ \|x\|=1}} \langle Tx, x \rangle \quad and \quad M := \sup_{\substack{x \in H \\ \|x\|=1}} \langle Tx, x \rangle.$$

- 1. $\sigma(T) \subset [m, M]$.
- 2. $||T|| = \max\{|m|, |M|\}.$

3.
$$m, M \in \sigma(T)$$
.

4. $\sigma_r(T) = \emptyset$.

Definition 11.22. Let H be a Hilbert space and consider the set of self-adjoint linear operators in H. Then we can defing a partial order in the following manner:

 $T_1 \leq T_a$ if and only if $|T_1x, x| \leq \langle T_2x, x \rangle$ for all $x \in H$.

A self-adjoint operator T is **positive** if $0 \leq T$.

Theorem 11.23. Let H be a Hilbert space and $T_1, T_2 \ge 0$ two positive operators on H such that $[T_1, T_2] = 0$. Then $T_1T_2 \ge 0$.

Theorem 11.24. Let H be a complex Hilbert space and $T \ge 0$ a positive operator in H. Then there exists a unique operator $A \ge 0$ such that $A^2 = T$.

Definition 11.25. Let H be a Hilbert space and $Y \subset H$ a closed subspace. Then $H = Y \oplus Y^{\perp}$ and any element $x \in H$ can be uniquely represented as x = y + y' where $y \in Y$ and $y' \in Y^{\perp}$, and the *projection* operator into Y is the operator

$$P: H \longrightarrow Y$$
$$y + y' \longmapsto y.$$

Theorem 11.26. Let H be a Hilbert space and $P: H \longrightarrow H$ a bounded linear operator. Then P is a projection if and only if it is self-adjoint and idempotent.

Proposition 11.27 (Properties of projections). Let H be a Hilbert space and P_1, P_2 and P projections on H. Then the following hold.

- 1. $\langle Px, x \rangle = ||Px||^2$ for all $x \in H$, and thus $P \ge 0$
- 2. ||P|| = 1 if $P(H) \neq \{0\}$
- 3. $Q = P_1 P_2$ is a projection if and only if $[P_1, P_2] = 0$, and $Q(H) = P_1(H) \cap P_2(H)$.
- 4. $Q = P_1 + P_2$ is a projection if and only if $P_1(H) \perp P_2(H)$, and $Q(H) = P_1(H) \oplus P_2(H)$.
- 5. Given vectors $v, w \in H$, we have $v \perp w$ if and only if $P_v P_w = 0$.

Theorem 11.28 (Partial order theorem for projections). Let H be a Hilbert space with P_1 and P_2 projections. Then the following are equivalent:

- 1. $P_1P_2 = P_2P_1 = P_1$,
- 2. $||P_1x|| \le ||P_2x||$ for all $x \in H$,
- 3. $P_1 \leq P_2$,
- 4. $\mathcal{N}(P_2) \subset \mathcal{N}(P_1),$
- 5. $P_1(H) \subset P_2(H)$.

Theorem 11.29 (Difference of projections). Let H be a Hilbert space with P_1 and P_2 projections. Then $P = P_2 - P_1$ is a projection if and only if $P_1(H) \subset P_2(H)$. Furthermore, if P is a projection then $P(H) = P_2(H) \cap (P_1(H))^{\perp}$.

11.4 The spectral family

Definition 11.30. Let H be a Hilbert space. A *real spectral family* is a one-parameter family $\mathcal{F} = (E_{\lambda})_{\lambda \in \mathbb{R}}$ of projections E_{λ} on H which satisfies the following properties.

- (i) $E_{\lambda} \leq E_{\mu}$ for all $\lambda \leq \mu$,
- (ii) $\lim_{\lambda \to -\infty} E_{\lambda} x = 0$ and $\lim_{\lambda \to +\infty} E_{\lambda} x = x$ for all $x \in H$,
- (iii) Continuity from the right. That is

$$E_{\lambda^+} := \lim_{\mu \to \lambda^+} E_{\mu} x = E_{\lambda} x$$

for all $x \in H$.

A spectral family on an interval $[a, b] \subset \mathbb{R}$ is a real spectral family that satisfies properties (i) and (iii) above and the modified property

(ii*) $E_{\lambda} = 0$ for all $\lambda < a$ and $E_{\lambda} = I$ for all $\lambda \ge b$.

Definition 11.31 (positive and negative components, absolute value). Let H be a Hilbert space and $T: H \longrightarrow H$ a self-adjoint linear operator. The **absolute value** of T is the operator

$$|T| = \sqrt{TT^*}.$$

The positive and negative components of T are the operators

$$T^+ := \frac{1}{2} (|T| + T)$$
 and $T^- := \frac{1}{2} (|T| - T)$.

Proposition 11.32. Let H be a Hilbert space and $T: H \longrightarrow H$ a self-adjoint linear operator. For each $\lambda \in \mathbb{R}$, define the projection

$$E_{\lambda} \colon H \xrightarrow{onto} \mathcal{N}(T_{\lambda}^+).$$

Then the family $(E_{\lambda})_{\lambda \in \mathbb{R}}$ is a real spectral family.

Definition 11.33. The spectral family defined in the above proposition is the *real spectral family associated with T*.

Proposition 11.34 (Properties of self-adjoint operators). Let H be a Hilbert space and $T: H \longrightarrow H$ a self-adjoint operator. Denote $E: H \xrightarrow{onto} \mathcal{N}(T^+)$ the projection onto the nullspace of T^+ . Then the following hold.

- 1. $[T, |T|] = [T, T^{\pm}] = 0,$
- 2. $T^+T^- = 0$,
- 3. [E,T] = [E,|T|] = 0,
- 4. $T^+E = ET^+ = 0$ and $T^-E = ET^- = T^-$,
- 5. $TE = -T^-$ and $T(I E) = T^+$,
- 6. $T^{\pm} \ge 0.$

Lemma 11.35. Let H be a Hilbert space and $T: H \longrightarrow H$ a self-adjoint operator. For $\mu > \lambda$ and the operators T_{λ}^+ and T_{μ}^+ , we have $T_{\mu}^+T_{\lambda}^+ = (T_{\mu}^+)^2$.

Theorem 11.36. Let H be a Hilbert space and $T: H \longrightarrow H$ a bounded self-adjoint linear operator. Let $m = \inf_{\lambda \in \sigma(T)} \lambda$ and $M = \sup_{\lambda \in \sigma(T)} \lambda$. Then the spectral family associated to T given by (E_{λ}) is a spectral family on the interval [m, M]

spectral family on the interval [m, M].

Lemma 11.37. Let H be a Hilbert space and (T_n) a sequence of self-adjoint operators K a bounded self-adjoint operator satisfying

$$T_1 \leq T_2 \leq \cdots$$
 and $T_n \leq K$ for all $n \in \mathbb{N}$,

with $[T_i, T_j] = 0$ and $[T_i, K] = 0$ for all *i*. Then (T_n) is strongly convergent to a bounded self-adjoint linear operator T such that $T \leq K$.

...

Theorem 11.38 (Spectral representation). Let H be a Hilbert space and $T: H \longrightarrow H$ a bounded self-adjoint linear operator. Then T has the spectral representation

$$T = \int_{m-0}^{M} \lambda dE_{\lambda}$$

where $m \inf_{\lambda \in \sigma(T)} |\lambda|$ and $M \sup_{\lambda \in \sigma(T)} |\lambda|$, Furthermore, for all $x, y \in H$ we have the representation

$$\langle Tx, y \rangle = \int_{m=0}^{M} \lambda dw(\lambda)$$

where $w(\lambda) = \langle E_{\lambda} x, y \rangle$.

Theorem 11.39 (Properties of $(E_{\lambda})_{\lambda \in \mathbb{R}}$). Let H be a Hilbert space, $T: H \longrightarrow H$ a self-adjoint linear operator and $(E_{\lambda})_{\lambda \in \mathbb{R}}$ the associated spectral family. Let $\lambda_0 \in \mathbb{R}$.

- 1. E_{λ} is discontinuous at $\lambda_0 \in \mathbb{R}$ if and only if $\lambda_0 \in \sigma_p(T)$.
- 2. $\lambda_0 \in \rho(T)$ if and only if there is a c > 0 such that the family of projectors E_{λ} is constant on the interval $J = [\lambda_0 c, \lambda_0 + c]$.

12 Compactness

Definition 12.1. A metric space X is *compact* if every sequence in X has a convergent subsequence. A subset $M \subset X$ of a metric space is compact if every sequence in M has a convergent subsequence that converges in M.

Proposition 12.2 (Properties of compactness). Let X be a normed space.

- 1. If $M \subset X$ is a compact set, then it is closed and bounded.
- 2. There are sets that are closed and bounded but not compact.
- 3. In finite dimensions, a subset $M \subset X$ is compact if and only if it is closed and bounded.
- 4. If $B_X(0;1)$ is compact, then dim $X < \infty$.

Lemma 12.3 (Riesz's lemma). Let X be a normed space, $Z \subset X$ a subspace and $Y \subsetneq Z$ a proper closed subspace. Then for any 0 < t < 1 there exists a $z \in Z$ such that ||z|| = 1 and $||z - y|| \ge t$ for all $y \in Y$.

Definition 12.4. Let X be a normed space and $M \subset X$ a subset. Then M is *relatively compact* in X if its closure in X is compact.

Definition 12.5. Let X and Y be normed spaces. A linear operator $T: X \longrightarrow Y$ is called *compact* if for every bounded subset $M \subset X$, T(M) is relatively compact in Y.

Lemma 12.6. Let X and Y be normed spaces and $T: X \longrightarrow Y$ a linear operator. If T is compact, then it is bounded. If dim $X = \infty$, then the identity operator $I: X \longrightarrow X$ is not compact.

Theorem 12.7. Let X and Y be normed spaces. A linear operator $T: X \longrightarrow Y$ is compact if and only if every bounded sequence (x_n) in X gets mapped to a sequence (Tx_n) that has a convergent subsequence.

Theorem 12.8. Let X and Y be normed spaces and $T: X \longrightarrow Y$ a linear operator. If T is bounded and dim $T(X) < \infty$ then T is compact. if dim $(X) < \infty$ then T is compact.

Theorem 12.9. Let X be a normed space, Y a Banach space and (T_n) a sequence of compact linear operators $T_n: X \longrightarrow Y$. If $||T_n - T|| \longrightarrow 0$ as for some linear operator $T: X \longrightarrow Y$, then T is compact.

Theorem 12.10. Let X and Y be normed spaces and T: $X \longrightarrow Y$ a compact linear operator. If $x_n \xrightarrow{w} x$ in X then $Tx_n \longrightarrow Tx$ in Y.

Proposition 12.11. Let X be a metric space. A subset $B \subset X$ is relatively compact in X if and only if every sequence (x_n) in B has a convergent subsequence in X.

Definition 12.12. Let X be a metric space, $B \subset X$ and $\varepsilon > 0$. A set $M_{\varepsilon} \subset X$ is an ε -**net** for B if for every point $z \in B$ there is a point in M_{ε} that is a distance less that ε away from z. The set B is called **totally bounded** if for every $\varepsilon > 0$ there exists a finite ε -net for B.

Proposition 12.13 (Propertoes of ε -nets and total boundedness). Let X be a metric space and $B \subset X$ a subset.

- 1. If B is relatively compact then B is totally bounded.
- 2. if B is totally bound and X Banach then B is relatively compact.
- 3. If B is totally bound then for all $\varepsilon > 0$ there exists a finite ε -net M_{ε} for B such that $M_{\varepsilon} \subset B$.
- 4. If B is totally bounded then B is separable.
- 5. Total boundedness implies boundedness, but not vice versa.

Theorem 12.14. Let X and Y be normed spaces and $T: X \longrightarrow Y$ a compact linear operator. Then the range of T is separable.

Theorem 12.15. Let X and Y be normed spaces. If $T: X \longrightarrow Y$ is a compact linear operator, then $T^{\times}: Y' \longrightarrow X'$ is also compact.