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Problem 1. Prove Holder’s and the Minkowski inequalies. Use these to show that /7 and LP are normed
spaces.

Solution.

Claim 1. Holder’s inequality for sums
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holds for all p,q > 1 such that & + ¢ = 1, where {z,,} € 7 and {y,} € 4.
Proof. First note that, for any positive numbers «, 3, with p and ¢ given as above, we have
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where the inequality holds due to the fact that the exponential function is convex and that % + % = 1. Then

the inequality
a?  be
ab < — 4+ — (1)
p q
holds for all non-negative numbers, since it holds trivially if either a or b is zero.
If either = {x,,} or y = {y, } are the zero sequence, then Holder’s inequality holds trivially, so suppose

that both  and y are nonzero sequences. Then define two new sequences o = {a,, } and 5 = {8,} by
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such that ||a||, = ||8]|; = 1. Using the inequality in (1), for each n we have |a,,3,| < % +%. Summing
over n, we obtain
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Multiplying both sides of "7 |a,B,] < 1 by ||z||p||y]| yields the desired inequality. O



Claim 2. The Minkowski inequality for sums
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holds for all p > 1 where {z,,} € ¢? and {y,} € ¢P.

Proof. For p = 1, the inequality follows from the triangle inequality for numbers. Consider p > 1. Since
|Zn, + Yn| < |Tn| + |yn| and thus

1Zn + Ynl? = ([Tn] + [Yn])|Zn + UulP ™" < |20 + Ynl |20 + yulP 7,

it follows that
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Define g = ﬁ such that % + % = 1. Applying Holder’s inequality, we have
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where the final line comes from the fact that (p — 1)¢ = p. Similarly, applying Holder’s inequality to the
other sum, we have
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Noting that % =1- %, combining the inequalities above yields
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Multiplying both sides by (Z |Zn + yn|? ) yields the desired inequality. O
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Proposition 1. For p > 1, the pair (€2, - ||,) with the norm ||z||, = (>, |xn|p)1/p is a normed space.
Proof. We need to check that || - ||, satisfies the the conditions to be a norm. Conditions (i)-(iii) are trivial,

so it remains to check the triangle inequality. That is, ||z +y||, < [|z||, +||y||, for all 2,y € €P. This follows
directly from the Minkowski inequality. Indeed, we have
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Claim 3. Holder’s inequality for integrals
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holds for all p, ¢ > 1 such that % + é = 1, where f and g are integrable functions on the interval [a, b].

q

Proof. If either ||f]|, = (f|f(x)|17d$)1/p =0 or ||g]l; = (f|g(a:)|qu)1/q = 0, then the inequality holds
trivially. So suppose that both f and g have nonzero norm. Then define the functions v and v on [a, b] by

T
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such that [|ul||, = [|v]lq = 1. Using the inequality (1) from Claim 1 above, we have that at each z € [a, b]

Integrating this inequality over = yields
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As in the proof of Claim 1, multiplying both sides of the above inequality by || f||,||g]lq yields the desired
result. O

Claim 4. The Minkowski inequality for integrals
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holds for all p > 1 where f and g are integrable functions on the interval [a, b].

Proof. The proof is analogous. O

1/p
Proposition 2. For p > 1, the pair (L?[a,b],|| - ||,) with the norm ||f||, = (f: |f(x)|pdx) is a normed
space.

Proof. We need to check that || - ||, satisfies the the conditions to be a norm. Conditions (i)-(iii) are trivial,
so it remains to check the triangle inequality. That is, ||f + gll, < ||f|lp + llgll for all f,g € LP[a,b]. This
follows directly from the Minkowski inequality. Indeed, we have
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Problem 2 (Problem 14, Chapter 2.2, p. 66 in Kreyszig). If d is a metric on a vector space X # {0} which
is obtained from a norm, and d is defined by

< . 0, y=ux
dl@,y) = { d(z,y) +1, y#uw,
show that d cannot be obtained from a norm.

Solution. Suppose there is a norm || - [|' : X — R such that d(z,y) = ||z —y||' for all z,y € X. Then for
alla € R and z,y € X, d satisfies

d(az, ay) = ||az — ay||' = |al [|x — y|" = |ald(z, y). (2)

But, since d is obtained from a norm, we have d(az,ay) = |ald(x,y) for all z,y € X and a € R. Let z # y
and a # 0, then

d(az, ay) = d(az, ay) +1 = lald(z,y) + 1
= |a|(d(m,y) + 1) +1—|a
= |ald(z,y) + 1 — |al. (3)

In particular for a = 2, the result in (2) is not equal to that in (3).



Problem 3 (Problem 6, Chapter 2.3, p. 70 in Kreyszig). Show that the closure Y of a subspace Y of a
normed space is again a subspace.

Solution. Let x,y € Y and «, 3 € K. Then there exist sequences {z,} and {y,} in Y such that

r= lim z, and y= lim y,.
n—oo n—oo

Define z,, = ax, + By, for each n, and define z = ax + Sy. Since Y is a subspace, z, € Y for each n. Then

Tim (e = zall = lim [l —2a) = By — yn)|
< la] lim ||z — 2] + [8] Jim |y — g
n—oo n—oo
:()7

S0 z = lin}J Zn, and thus z € Y. Hence, Y is a subspace.
n—



Problem 4 (Problem 8, Chapter 2.3, p. 71 in Kreyszig). If in a normed space X, absolute convergence of
any series always implies convergence of that series, show that X is complete.

Solution. Let {z;} be a Cauchy sequence in X. Construct another sequence {y;} in the following manner.
For each j € N there exists an N; € N such that ||z, — #,,|| < 325 for all n,m > N;. Define y; = z,. In
particular, ||y;j 11 — y;|| < 5 for each j.

[ee]
Let {z;} be the sequence defined by z; = y1 and z; = y;41 — y; for j > 1. Consider the series Z [1251]-

i=1
. . . o 1 .
This series converges, since ||z;|| = ||yj+1 — ¥;l| < g7 for each j and thus
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By assumption, absolute convergence implies convergence, so the sequence z = E z; converges to some
=1

element z € X. Note that the partial sums of this series are

Sn=Y_zi=y1+@2—y)+ -+ Un— Y1) = Yn-
j=1

This implies that lim y, = lim s, = 2. So the sequence {y;} is convergent and converges to lim ¥, = z.
n— 00 n— o0 n—oo

Finally, we need to show that {z,} also converges to z. Indeed, for all € > 0 there exists an n € N such

that 57—t < €. By definition of the sequence {y;}, we have ||y, — ym|| < 3 for each m > n, and thus

I !
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Similarly, by definition of {y;}, there exists an M € N such that ||z, — y»|| < 5 for all m > M. Hence

l|Tm = 2|l = [|Tm — Yn + Yn — 2| < |Tm — ynll + |lyn — 2]|
< 1 n 1
2n - 2n
1
= 277.71

< €,

and so {z;} converges to z. We have shown that every Cauchy sequence in X converges to something in X,
and thus X is complete.



Problem 5 (Problem 10, Chapter 2.3, p. 71 in Kreyszig - Schauder basis). Show that if a normed space
has a Schauder basis, it is separable.

Solution. First note that K (either R or C) is separable. Indeed, Q is countably dense in R, and
Q={a+bila,beQ}

is countably dense in C. Without loss of generality let K = C, and define the countable set Y C X

L
Y = {Z Biei

=1

k€N7Bi€Q}

of all finite sums of linear combinations of e; with coefficients in ). We will show that Y is dense in X.
Let X be a normed space X over C and let {e,} a Schauder basis of X. Let € X and € > 0. Then
there exists a sequence of scalars {c,} in C and an N € N such that

- €
||z = ajesl] < 5
j=1

for all n > N. In particular, for n = N,

ol €
||z =D ajes]] < 3
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By density of @ in C, there exist constants 1,..., 8y in @ such that

N
13208 = a)es]| < 5.
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By the triangle inequality, we have
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Note that Zﬁjej €Y. Thus, for all z € X and € > 0 there exists a y € Y such that ||y — z|| < e. Hence Y
j=1

is dense in X, as desired.



Problem 6 (Problem 12, Chapter 2.3, p. 71 in Kreyszig - seminorm). A seminorm on a vector space X is
a mapping p : X — R satisfying

(N1) p(z) >0
(N3) plaz) = |alp(z)
(N4) p(z+y) < p(x) + p(y) (triangle inequality).

Show that

p(0) =0, *)
Ip(y) — p(x)| < ply — ). (**)

Solution. For equation (*), note that 0z = 0 for each x € X, i.e. zero times an element is equal to the zero
vector. Thus, from (N3),
p(0) = p(0z) = Op(z) = 0.

For equation (**), note that
p(y) =pl+y—z) <p)+ply—z) and p(z) =ply+z—y) <ply) +plx—y)

from (N4). Hence
p(y) —p(x) < ply — ) and p(x) —ply) < plz —y).
From (N3), p(z — y) = p(y — «). Thus

Ip(y) — p(x)| < ply — 2).



Problem 7 (Problem 6, Chapter 2.7, p. 101 in Kreyszig - Range). Show that the range R(T') of a bounded
linear operator T': X — Y need not be closed in Y.

Solution. Let X be a proper dense subspace of a space Y and consider the identity operator on X T :
D(T) — R(T) with D(T) = R(T) = X C Y. Clearly ||T|| = 1 so T is bounded. But R(T) is not closed in
Y, since D(T) = X # Y by assumption.

It remains to show that there exists such a space Y with a proper dense subspace X. Indeed, let Y = /P
for p > 1 and let X be the space of all sequences that terminate after a finite number of entries, i.e.

X = {{a;}|a; # 0 for only finitely many j}.

Then X is clearly a subspace of Y. Furthermore, X is dense in Y, since for any sequence y = {y;} in ¥ we
can construct a sequence {z(™} of sequences in X given by

ZC(n) :{ylay27""yn70’0"“}

such that {z(™} converges to .



Problem 8 (Problem 8, Chapter 2.7, p. 101 in Kreyszig). Show that the inverse T—1 : R(T) — D(T) of a
bounded linear operator T : D(T) — R(T) need not be bounded.

Solution. Consider the opertor T : £>° — £°° defined by

Tn

Tx = {?} where z = {x,}.

This is indeed a linear operator, since

ﬂx+w={%t?m}={?}+{%}:7@+Ty

and T(ax) = {222} = a {£2} + oTz. Furthermore, T is bounded, since

n

X
ITa]loe = sup 222l < sup an] = [[2]]os,
n n n

since % < |z,| for all n > 1. Since Tz = 0 if and only if z is the zero sequence, T~ exists.
We now show that 7! is not bounded. Let ¢ > 0. Then there exists a N € N such that N > ¢. Let z
be the sequence z = {z,} defined by
Z_{o,n¢N
"7 11, mn=N.

Then z € R(T). Indeed, z = T (Nz) where Nz = {Nz,} is the sequence consisting of N in the n*" spot and
zeros elsewhere and thus ||+ 2||oc = N. So Nz € £*° = D(T). Then T~z = Nz, but

T 2]|0o = N||2]]oc = N > c.

So T~ is unbounded.
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Problem 9 (Problem 10, Chapter 2.8, p. 110 in Kreyszig). Let f # 0 be a linear functional on a vector
space X and let N'(f) be the null space of f. Show that two elements z1,x2 € X belong to the same element
of the quotient space X/N(f) if and only if f(z1) = f(x2). Show that codim N'(f) = 1.

Solution. Suppose f(z1) = f(z2) and set y = x1 — z5. Then y € N(f), since f(y) = f(z1) — f(z2) = 0. So
z1 = w9 +y and thus x5 € x1 + N(f). Clearly x1 € x1 + N(f). Thus z; and x2 belong to the same element
of X/N(f).

Now suppose that 21 and 2 belong to the same element in X/N(f). Then x1, 22 € xo + N (f) for some
element zo € X. That is, 1 = g + y1 and 22 = o + y2 for some y1,y2 € N(f). Then

f(z1) = f(zo+y1) = f(zo) + f(y1) = f(zo) and  f(z2) = f(x0 +y2) = f(z0) + f(y1) = f(20),
so f(z1) = f(w2).

We now show that codim N (f) = 1. Note that codim N (f) = dim X/N(f).
Since f # 0, there is an element xg € X such that f(zo) = 1. Indeed, there is at least one element z’ € X

/

such that f(z') # 0, so set zo = 77- Define &o = 2o + N(f) as an element in X/N(f). Let & € X/N(f)
not be the zero vector in X/N(f). Then & = z+ N (f) for some x € X ~N(f), i.e. f(z)#0. Let a = f(x).

Then azy = z. Indeed,
flaxo) = af(zo) = f(z)

so, due to the arguments above, axy and x define the same element of X/AN(f) and thus & = aZy. Hence,
X/N(f) is a 1-dimensional vector space.
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Problem 10 (Problem 12, Chapter 2.8, p. 111 in Kreyszig). If Y is a subspace of a vector space X and
codimY = 1, then every element of X/Y is called a hyperplane parallel to Y.

Show that for any linear functional f # 0 on X, the set H; = {x € X | f(x) = 1} is a hyperplane parallel
to the null space N'(f) of f.

Solution. Let Y = AN(f). From the previous problem, we have that codimY = 1, and that there exists an
xo € X such that f(zg) =1, since f # 0. We show that H; = o + N (f).

Indeed, for zo +y € zo + N(f) we have f(zo +vy) = f(zo) + f(y) =1, so zo + N(f) C Hy. Now let
x € Hy and set y = x — xo. Then y € N(f) since

fly)=f(z) — f(xo) =1-1=0.
Sox =x¢+yand x € xg + N(f). Hence Hy C zo + N(f). We conclude that H; = xo + N (f).
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Problem 11 (Problem 10, Chapter 2.9, p. 117 in Kreyszig). Let Z be a proper subspace of an n-dimensional
vector space X, and let zy € X ~\ Z. Show that there is a linear functional f on X such that f(zp) =1 and
fl@)y=0forall z € Z.

Solution. Since Z is finite dimensional, there is an orthonormal basis {e1,...,ex} of Z. Since X is
n-dimensional, the dimension of Z1 is n — k, so there is an orthonormal basis {ex;1,...,e,} of Z+ such
that {e1,...,en} is an orthonormal basis of X. Then there exists unique coefficients a; such that

To = Q11 + - Qpey.

Since xg € Z, there is at least one ¢t € {k+ 1,...,n} such that oy # 0. Define a linear functional f by its
action on the basis elements in the following manner:

1

f(e])_{o’ j#t
k
Then for all z € Z, we have z = Zﬁjej and thus
j=1
k
f(2) =3 B;f(e;) =0.
i=1

So f vanishes on Z. However, f(zg) = a%at =1.
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Problem 12 (Problem 10, Chapter 2.10, p. 126 in Kreyszig). Let X and Y # {0} be normed spaces, where
dim X = oco. Show that there is at least one unbounded linear operator T : X — Y.

Solution. Let y € Y y # 0. Let E = {e,}xecr be a Hamel basis of X, where I is some index set with
|I| = dim X. Let E’ = {ex, }nen be a countable subset of E. Then define an operator T': X — Y by

and Te, = 0 if k # E’. This is a linear operator.
For each ¢ > 0 there exists an N > ¢ such that

[lesnll
I Texyll = N HZ\VI lyll = Nlleny |l > clleny |l

and thus 7T is unbounded.
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