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Problem 1 (Problem 8, Chapter 3.2, p. 141 in Kreyszig). Show that in an inner product space, x ⊥ y if
and only if ||x+ αy|| ≥ ||x|| for all scalars α.

Solution. First suppose that x ⊥ y. Then 〈x, y〉 = 0. For any α,

||x+ αy||2 = 〈x+ αy, x+ αy〉
= ||x||2 + α 〈y, x〉︸ ︷︷ ︸

=0

+α 〈x, y〉︸ ︷︷ ︸
=0

+ |α|2||y||2︸ ︷︷ ︸
≥0

≥ ||x||2.

Hence ||x|| ≤ ||x+ αy||.
Now suppose that ||x|| ≤ ||x+ αy|| for all α. Assume that 〈y, x〉 6= 0 and let α = − 〈x,y〉||y||2 . Then

||x+ αy||2 = 〈x+ αy, x+ αy〉
= ||x||2 + α 〈x, y〉+ α

(
〈y, x〉+ α||y||2

)︸ ︷︷ ︸
=0

= ||x||2 − |〈x, y〉|
2

||y||2

< ||x||2

since |〈x,y〉|
2

||y||2 > 0, a contradiction to the fact that ||x|| ≤ ||x+ αy|| for all α.
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Problem 2 (Problem 10, Chapter 3.3, p. 150 in Kreyszig). If M 6= ∅ is any subset of a Hilbert space H,
show that M⊥⊥ is the smallest closed subspace of H which contains M . That is, M⊥⊥ is contained in any
closed subspace Y ⊂ H such that M ⊂ Y .

Solution. We first show that for any M ⊂ H, M⊥ is closed. Indeed, for any x ∈ H the inverse image of
{0} ⊂ H under the continuous mapping

y 7−→ 〈y, x〉

is closed since {0} is closed. That is, {y ∈ H | 〈y, x〉 = 0} is closed for all x ∈ H. Since M⊥ is the intersection
of a family of such closed sets, namely

M⊥ =
⋂
x∈M
{y ∈ H | 〈y, x〉 = 0} ,

it is also closed. Hence M⊥⊥ is closed as well. Since span(M) is the smallest closed subspace that contains M ,
it remains to show that span(M) = M⊥⊥.

By the lemma in class, for a nonempty subset N ⊂ H1 of a Hilbert space, the set span(N) is dense in H1

if and only if N⊥ = {0}. Note that M⊥⊥ itself is a Hilbert space since it is closed, and M ⊂ M⊥⊥ is a
subset. Denote H1 = M⊥⊥ and note that span(M) ⊂ H1. Since we have that M⊥ ∩M⊥⊥ = {0}, this
implies that span(M) = M⊥⊥.
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Problem 3 (Problem 4, Chapter 3.4, p. 159 in Kreyszig). Give an example of an x ∈ `2 such that the Bessel
inequality

∞∑
k=1

|〈x, ek〉|2 ≤ ||x||2

is a strict inequality.

Solution. Let {ẽj}∞j=1 be the standard orthonormal basis of `2, i.e.

ẽj = (0, . . . , 0, 1︸︷︷︸
jthposition

, 0, . . . ),

and let {ek}∞k=1 be the orthonormal set defined by ek = ẽk+1 (namely, we have ‘thrown away’ the first
element). Let x ∈ `2 be ẽ1,

x = ẽ1 = (1, 0, 0, . . . ).

Then ||x|| = 1, but clearly 〈x, ek〉 = 0 for all k. So

∞∑
k=1

|〈x, ek〉|2 = 0 < 1 = ||x||2.
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Problem 4 (Problem 6, Chapter 3.4, p. 159 in Kreyszig — Minimum property of Fourier coefficients).
Let {e1, . . . , en} be an orthonormal set in an inner product space X, where n is fixed. Let x ∈ X be any
fixed element and y = β1e1 + · · ·+ βnen. Then ||x− y|| depends on β1, . . . , βn. Show by direct calculations
that ||x− y|| is minimum if and only if βj = 〈x, ej〉, where j = 1, . . . , n.

Solution. Let αi = 〈x, ei〉 and define x̃ = x− (α1e1 + · · ·+ αnen). Then x− y = x̃+

n∑
i=1

(αi − βi)ei and we

have 〈x̃, ej〉 = 0 for all j. So

||x− y||2 = 〈x− y, x− y〉

=

〈
x̃+

n∑
i=1

(αi − βi)ei, x̃+

n∑
j=1

(αj − βj)ej

〉
= 〈x̃, x̃〉+

∑
i

(αi − βi) 〈x̃, ei〉︸ ︷︷ ︸
=0

+
∑
j

(αj − βj) 〈ej , x̃〉︸ ︷︷ ︸
=0

+
∑
i,j

(αi − βi)(αj − βj) 〈ej , ei〉︸ ︷︷ ︸
δij

= ||x̃||2 +
∑
i

||αi − βi||2

≥ ||x̃||2,

with equality if and only if αi = βi for all i. So this is at a minimum if and only if βi = αi.
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Problem 5 (Problem 4, Chapter 3.5, p. 166 in Kreyszig). If {xj} is a sequence in an inner product space X
such that the series ||x1||+||x2||+· · · converges, show that {sn} is a Cauchy sequence, where sn = x1+·+xn.

Solution. (This follows from the fact that inner product spaces are normed spaces.)
Define the sequence {tn} with tn = ||x1|| + · · · + ||xn||. Since {tn} converges, let ε > 0 and let N such

that ||tm− tn|| < ε for all n,m > N . Let m,n > N and assume without loss of generality that n ≤ m. Then

||sm − sn|| = ||xn+1 + xn+2 + · · ·+ xm||
≤ ||xn+1||+ · · ·+ ||xm||
=
∣∣||xn+1||+ · · ·+ ||xm||

∣∣
= ||tm − tn||
< ε,

so the sequence {sn} is Cauchy.
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Problem 6 (Problem 8, Chapter 3.5, p. 166 in Kreyszig). Let {ek} be an orthonormal sequence in a Hilbert
space H, and let M = span{ek}. Show that for any x ∈ H we have x ∈M if and only if x can be represented
by

∞∑
k=1

αkek

with coefficients αk = 〈x, ek〉.

Solution. To say that x can be represented by the series in

∞∑
k=1

αkek means that x is equal to the limit of

n∑
k=1

αkek. Namely, for all ε > 0 there exists an N ∈ N such that

||x−
n∑
k=1

αkek|| < ε for all n > N.

Suppose x =

∞∑
k=1

αkek and define the sequence of partial sums with xn =

n∑
k=1

αkek which is in M . Then {xn}

is a sequence in M and lim
n→∞

xn = x. So x ∈M . Furthermore,

〈x, ek〉 = lim
n→∞

〈xn, ek〉 = αk.

Now suppose that x ∈ M and define αk = 〈x, ek〉. Since x is in the closure of M , for each ε > 0 there
exists a z ∈ M such that ||x − z|| < ε. We can define a sequence {yn} in M in the following manner. For
each n ∈ N, there exists a zn ∈M such that ||x− zn|| < 1

n . Since zn is in span{ek}, it must be written as a
finite sum of the form

zn =

Nn∑
k=1

β
(n)
k ek.

Then define the sequence {yn} by yn =

Nn∑
k=1

αkek. Now {ek}Nnk=1 is an orthonormal set in H, so by Problem 4

(Minimum Fourier Coefficients) we have that ||x− yn|| is minimal over all y ∈ span{ek}Nnk=1 such that

||x− yn|| ≤ ||x− zn||,

hence ||x − yn|| < 1
n . Thus {yn} converges to x. Note that {yn} is a subsequence of the sequence {xm}

defined by

xm =

m∑
k=1

αkek,

but

∞∑
k=1

|αk|2 ≤ ||x||2 due to Bessel’s inequality. Thus the sum

∞∑
k=1

|αk|2 converges, so that the sum

∞∑
k=1

αkek

converges as well. Since {yn} and {xm} are both Cauchy sequences and one is a subsequence of the other,
they must converge to the same point and thus

x =

∞∑
k=1

αkek

as desired.
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Problem 7 (Problem 10, Chapter 3.6, p. 175 in Kreyszig). Let M be a subset of a Hilbert space H, and
let v, w ∈ H. Suppose that 〈v, x〉 = 〈w, x〉 for all x ∈ M implies v = w. If this holds for all v, w ∈ H, show
that M is total in H.

Solution. By the first totality theorem stated in class, a subset M is total in H if and only if M⊥ = {0}.
Let y ∈M⊥, then 〈y, x〉 = 0 for all x ∈M and

〈αy, x〉 = 〈y, x〉 = 0 for all scalars α and all x ∈M.

Hence, by assumption, αy = y for all scalars α, which can only occur if y = 0. So M⊥ = {0} and thus M is
total in H.
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Problem 8 (Problem 8, Chapter 3.8, p. 194 in Kreyszig). Show that any Hilbert space H is isomprphic to
its second dual space H ′′ = (H ′)

′
. (Hint: see question 7 on the same page.)

Solution. We first show that H ′ and H ′′ are Hilbert spaces.

Lemma 1. If H is a Hilbert space with inner product 〈·, ·〉, then H ′ is Hilbert space with inner product 〈·, ·〉1
given by

〈fz, fw〉1 = 〈z, w〉 = 〈w, z〉 ,
where fz(x) = 〈x, z〉 and fw(x) = 〈x,w〉.

Proof. By the Riesz representation, for all f ∈ H ′ there is a vector z ∈ H such that f = fz (that is
f(x) = fz(x) = 〈x, z〉) and ||f || = ||x||. So we can write H ′ = {fz | z ∈ H}. Furthermore we have

fz(x) + fw(x) = 〈x, z〉+ 〈x,w〉 = 〈x, z + w〉 = fz+w(x)

so fz + fw = fz+w, and similarly

αfz(x) = α 〈x, z〉 = 〈z, αz〉 = fαz(x)

so αfz = fαz. Using 〈·, ·〉1 defined as above on H ′ ×H ′, we claim that this is an inner product. Indeed, for
any fz, fz′ , fw ∈ H ′ we have

1. 〈fz + fz′ , fw〉1 = 〈fz+z′ , fw〉 = 〈w, z + z′〉 = 〈w, z〉+ 〈w, z′〉 = 〈fz, fw〉1 + 〈fz′ , fw〉1
2. 〈αfz, fw〉1 = 〈fαz, fw〉 = 〈w,αz〉 = α 〈w, z〉 = α 〈fz, fw〉1

3. 〈fz, fw〉1 = 〈w, z〉 = 〈z, w〉 = 〈fw, fz〉1
4. 〈fz, fz〉1 = 〈z, z〉 = ||z||2 ≥ 0 and 〈fz, fz〉1 = 〈z, z〉 = ||z||2 = 0 if and only if z = 0 and thus fz = 0.

Furthermore, we have
√
〈fz, fz〉1 =

√
〈z, z〉 = ||z|| = ||fz||. Hence 〈·, ·〉1 satisfies all the requirements for

being an inner product and this inner product gives the same norm. Since the dual space H ′ is also complete,
this is also a Hilbert space.

Corollary 2. If H is a Hilbert space, the second dual space H ′′ is a Hilbert space with inner product given
by

〈Ff , Fg〉2 = 〈f, g〉1 = 〈g, f〉1
where Ff (h) = 〈h, f〉1 and Fg(h) = 〈h, g〉1 for f, g, h ∈ H ′. Furthermore, H ′′ can be written as

H ′′ = {Ff | f ∈ H ′} = {Ffz | z ∈ H} .

Proof. The proof follows exactly as above. In particular, we have Fαf = αFf and Ff+g = Ff + Fg.

Proposition 3. Any Hilbert space H is isomorphic to its second dual space H ′′.

Proof. By the lemma and corollary above, H ′′ is indeed a Hilbert space. Define the map

C : H −→ H ′′

z 7−→ Ffz .

Clearly, C is surjective (by the Riesz Representation Theorem). It is also linear, since

C(αz + βw) = Ffαz+βw = Fαfz+βfw = Fαfz + Fβfw = αFfz + βFfw = αC(z) + βC(w).

It is injective, since C(z) = 0 means Ffz = 0 and thus fz = 0 which implies z = 0. Finally, C preserves the
inner product, since

〈C(z), C(w)〉2 = 〈Ffz , Ffw〉2 = 〈fw, fz〉1 = 〈z, w〉 .
Since C is an isomorphism that preserves the inner product, we have that H ∼= H ′′.

8



Problem 9 (Problem 4, Chapter 3.9, p. 200 in Kreyszig). Let H1 and H2 be Hilbert spaces and T : H1 −→
H2 be a bounded linear operator. If M1 ⊂ H1 and M2 ⊂ H2 are such that T (M1) ⊂ M2, show that
T ∗(M2

⊥) ⊂M1
⊥.

Solution. Let x ∈ T ∗(M2
⊥). Then there exists a y ∈M2

⊥ such that T ∗y = x. For all z ∈M1,

〈x, z〉 = 〈T ∗y, z〉
= 〈y, Tz〉
= 0

since Tz ∈M2 and y ∈M2
⊥. Hence x ∈M1

⊥.
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Problem 10 (Problem 6, Chapter 3.9, p. 200 in Kreyszig). If M1 = N (T ) = {x |Tx = 0}, where T is the
linear operator in the previous problem, show that

(a) T ∗(H2) ⊂M1
⊥

(b) (T (H1))
⊥ ⊂ N (T ∗)

(c) M1 = (T ∗(H2))
⊥

.

Solution. .

(a) This follows from the previous problem. Indeed, we have M1 ⊂ H1 and let M2 = H2 ⊂ H2. Then
T (M1) = {0} ⊂M2. By the previous problem, T ∗(M2) ⊂M1

⊥ as desired.

(b) Let x ∈ (T (H1))
⊥

. Then 〈x, y〉 = 0 for all y ∈ T (H1) and thus 〈x, Tz〉 = 0 for all z ∈ H1. And thus

〈T ∗x, z〉 = 〈x, Tz〉 = 0

for all z in H1. This can only be true if T ∗x = 0, hence x ∈ N (T ∗).

(c) First note that, for any subsets M ⊂ N , we have N⊥ ⊂M⊥. From part (a), we have T ∗(H2) ⊂M⊥, so

we have M⊥⊥ =
(
M⊥

)⊥ ⊂ (T ∗(H2))
⊥

. Furthermore, we know that M1 ⊂M1
⊥⊥, and thus we have

M1 ⊂M⊥⊥ ⊂ (T ∗(H2))
⊥
.

Finally, let x ∈ (T ∗(H2))
⊥

. Then 〈x, T ∗z〉 = 0 for all z ∈ H2. Hence

〈Tx, z〉 = 〈x, T ∗z〉 = 0

for all z ∈ H2. This is true if and only if Tx = 0 and thus x ∈ N (T ) = M1. Hence (T ∗(H2))
⊥ ⊂ M1

and thus M1 = (T ∗(H2))
⊥
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Problem 11 (Problem 8, Chapter 3.9, p. 201 in Kreyszig). Let S = I + T ∗T : H −→ H, where T is linear
and bounded. Show that S−1 : S(H) −→ H exists.

Solution. Recall that S−1 exists if and only if Sx = 0 implies x = 0. Let x ∈ H and suppose that Sx = 0.
Then Sx = (I+T ∗T )x = x+T ∗Tx = 0, and in particular this means that the inner product 〈Sx, x〉 vanishes.
Then

0 = 〈Sx, x〉
= 〈x+ T ∗Tx, x〉
= 〈x, x〉+ 〈T ∗Tx, x〉
= ||x||2 + 〈Tx, Tx〉
= ||x||2 + ||Tx||2.

Since both terms in the last line are non-negative, this can only vanish if ||x||2 = 0 and thus x = 0.
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Problem 12 (Problem 6, Chapter 3.10, p. 207 in Kreyszig). If T : H −→ H is a bounded self-adjoint linear
operator and T 6= 0, show that

(a) Tn 6= 0 for every n = 2, 4, 8, 16, . . .

(b) Tn 6= 0 for every n ∈ N.

Solution. Note that, since T 6= 0, there exists an x ∈ H such that ||Tx||2 = 〈Tx, Tx〉 6= 0.

(a) The proof follows by induction. As a base case, we have that T = T 20 6= 0. Assume that T 2n 6= 0

for some n ∈ N ∪ {0} and suppose that T 2n+1

= 0. Then T 2n+1

x = 0 for all x ∈ H. Therefore〈
T 2n+1

x, x
〉

= 〈0, x〉 vanishes for all x ∈ H and thus

0 =
〈
T 2n+1

x, x
〉

=
〈
T 2nx, T 2nx

〉
= ||T 2nx||2,

so T 2nx = 0 for all x, a contradiction to T 2n 6= 0. So T 2n+1 6= 0. Hence, by induction, T 2n 6= 0 for all
n ∈ N ∪ {0}.

(b) Suppose TN = 0 for some N ∈ N. Then Tm = 0 for all m ≥ N . But there exists an n ∈ N such that
2n > N , and by part (a) we have that T 2n 6= 0, a contradiction.
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