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Problem 1 (Problem 8, Chapter 3.2, p. 141 in Kreyszig). Show that in an inner product space, x L y if
and only if ||z + ay|| > ||z|| for all scalars a.

Solution. First suppose that L y. Then (z,y) = 0. For any «,

|z + ay|? = (z + ay, = + ay)
= [l2[* + a (y,x) +@ (2, 9) + o[yl
N~ S~ ———
=0 =0 >0
> [|alf*.

Hence ||z|| < |z + ayl|-
Now suppose that ||z|| < ||z + ay]|| for all a. Assume that (y,z) # 0 and let & = — f@’ﬁQ.

I~

Then

||z + ay||” = (z + oy, z + o)
= ||lz|]> + @ (z,y) + o« ((y, ) + ally|]*)
N——
=0

(2, y)[?
[[y]|?

=|jzl* -

<|Jall?

since H\T;ﬁ)zlz > 0, a contradiction to the fact that ||z|| < ||z + ay|| for all a.



Problem 2 (Problem 10, Chapter 3.3, p. 150 in Kreyszig). If M # () is any subset of a Hilbert space H,
show that M=+~ is the smallest closed subspace of H which contains M. That is, M+~ is contained in any
closed subspace Y C H such that M C Y.

Solution. We first show that for any M C H, M~ is closed. Indeed, for any x € H the inverse image of
{0} C H under the continuous mapping

y— (y,)
is closed since {0} is closed. That is, {y € H | (y,x) = 0} is closed for all z € H. Since M~ is the intersection
of a family of such closed sets, namely

M+ = () {yeH|(y,z) =0},
reM

it is also closed. Hence M+~ is closed as well. Since span(M) is the smallest closed subspace that contains M,
it remains to show that span(M) = M++.

By the lemma in class, for a nonempty subset N C Hj of a Hilbert space, the set span(N) is dense in H;
if and only if N+ = {0}. Note that M1~ itself is a Hilbert space since it is closed, and M C M+t is a
subset. Denote H; = M*1 and note that span(M) C H;. Since we have that M+ N M++ = {0}, this
implies that span(M) = M++.



Problem 3 (Problem 4, Chapter 3.4, p. 159 in Kreyszig). Give an example of an = € ¢? such that the Bessel

inequality
oo
>l en))? < lall?
k=1

is a strict inequality.

Solution. Let {¢;}52, be the standard orthonormal basis of %, i

jth position

and let {e;}?2; be the orthonormal set defined by ex = éxy1 (namely, we have ‘thrown away’ the first
element). Let x € (2 be &,
x=¢é =(1,0,0,...).

Then ||z|| = 1, but clearly (z,ex) = 0 for all k. So

oo
D e =0< 1= |z
k=1



Problem 4 (Problem 6, Chapter 3.4, p. 159 in Kreyszig — Minimum property of Fourier coefficients).

Let {e1,...,en} be an orthonormal set in an inner product space X, where n is fixed. Let 2 € X be any
fixed element and y = f1e1 + - -+ + Bnen. Then ||z — y|| depends on B4, ..., 5,. Show by direct calculations
that ||z — y|| is minimum if and only if §; = (z,¢;), where j =1,...,n.

(a; — Bi)e; and we
1

Solution. Let o; = (z,¢e;) and define & = — (aye; + - + ape,). Thenz —y =&+

n
1=

have (Z,e;) = 0 for all j. So

|z -y’ =(z—y,z—y)

i—1 j=1
=(Z,7) + 2;(0% Bi) <i§z> +§j: (o — By) <€:j> +§,J:(ai = Bi)(ey — By) <€y;‘ fi>
= 1ZI” + Z |loe; — B3l ?
> ||Z?,

with equality if and only if a; = B; for all 4. So this is at a minimum if and only if 8; = «;.



Problem 5 (Problem 4, Chapter 3.5, p. 166 in Kreyszig). If {z;} is a sequence in an inner product space X
such that the series ||z1]|+||x2||+- - - converges, show that {s,} is a Cauchy sequence, where s, = 1+ +,,.

Solution. (This follows from the fact that inner product spaces are normed spaces.)
Define the sequence {t,} with ¢, = ||z1|| + -+ + ||zx]|- Since {t,} converges, let ¢ > 0 and let N such
that ||t,, —t,|] < € for all n,m > N. Let m,n > N and assume without loss of generality that n < m. Then

|[8m = snll = [|Tn41 + Tnta + -+ + Tp]|
<zl + - + |[zm]|
= llzpall 4 4 [l
= [[tm — tal|
<e,

so the sequence {s,} is Cauchy.



Problem 6 (Problem 8, Chapter 3.5, p. 166 in Kreyszig). Let {ex} be an orthonormal sequence in a Hilbert
space H, and let M = span{ey}. Show that for any € H we have « € M if and only if 2 can be represented

by
o0
> axer
k=1

with coefficients ay = (x, eg).
o0

Solution. To say that x can be represented by the series in Z ager means that = is equal to the limit of
k=1

Z ager. Namely, for all € > 0 there exists an IV € N such that

k=1
n
Hx—Zakek||<e for all n > N.
k=1

o0 n
Suppose x = Z arer and define the sequence of partial sums with z,, = Z apey, which is in M. Then {z,}

k=1 k=1
is a sequence in M and lim 2, = z. So x € M. Furthermore,

n—oo

<$,€k> = <zna€k> = k.

im
n— oo

Now suppose that * € M and define o, = (z,e;). Since z is in the closure of M, for each ¢ > 0 there
exists a z € M such that ||z — z|| < e. We can define a sequence {y,} in M in the following manner. For
each n € N, there exists a z, € M such that ||z — z,|| < 1. Since z, is in span{ey}, it must be written as a
finite sum of the form

Zn = Z 6](€n)ek
k=1
Np
Then define the sequence {y,} by y, = Z ager. Now {ek}ivgl is an orthonormal set in H, so by Problem 4
k=1

(Minimum Fourier Coefficients) we have that ||z — y,|| is minimal over all y € span{ej}+ ", such that
1z = ynll <|lz = zal],

hence ||z — yn|| < L. Thus {y,} converges to x. Note that {y,} is a subsequence of the sequence {z,,}

defined by
rn =3 apen.
k=1

o0 o0 oo
but Z |ok)? < ||z||* due to Bessel’s inequality. Thus the sum Z |ok|? converges, so that the sum Z ageg

k=1 k=1 k=1
converges as well. Since {y,} and {x,,} are both Cauchy sequences and one is a subsequence of the other,

they must converge to the same point and thus

o0
Xr = E ALEL
k=1

as desired.



Problem 7 (Problem 10, Chapter 3.6, p. 175 in Kreyszig). Let M be a subset of a Hilbert space H, and
let v,w € H. Suppose that (v,2) = (w,x) for all z € M implies v = w. If this holds for all v,w € H, show
that M is total in H.

Solution. By the first totality theorem stated in class, a subset M is total in H if and only if M+ = {0}.
Let y € M+, then (y,x) = 0 for all z € M and

(ay,x) = (y,z) =0 for all scalars o and all x € M.

Hence, by assumption, ay = y for all scalars «, which can only occur if y = 0. So M+ = {0} and thus M is
total in H.



Problem 8 (Problem 8, Chapter 3.8, p. 194 in Kreyszig). Show that any Hilbert space H is isomprphic to
its second dual space H” = (H')’. (Hint: see question 7 on the same page.)

Solution. We first show that H' and H" are Hilbert spaces.

Lemma 1. If H is a Hilbert space with inner product (-,-), then H' is Hilbert space with inner product (-,-),
given by

(fz: fw)y = (z0) = (w, 2),
where f,(x) = (z,z) and fy,(z) = (z,w).

Proof. By the Riesz representation, for all f € H’ there is a vector z € H such that f = f, (that is
f(z) = f.(x) = (z,2)) and [|f]| = ||z||. So we can write H' = {f, |z € H}. Furthermore we have

f2(2) + fulz) = (2,2) + (z,0) = (2,2 + W) = frrw(x)
so f. + fu = fi+w, and similarly
af:(r) = alr,z) = (z,az) = fa(2)

so af, = fz.. Using (-,-); defined as above on H' x H’, we claim that this is an inner product. Indeed, for
any fzafz’afw € H/ we have

L. <fz + fz’7fw>1 = <fz+z’afw> = <w,z+z/> = <w,z> + <w,zl> = <fz7fw>1 + <fz’7fw>1

2. <afzvfw>1 = <fazufw> = <w>az> = a<w72> =« <fzyfw>1

3. ([ fw)y = (w,2) = (z,w) = (fu, f2)
.

4. {fs, f2), = (z,2) = ||2||* > 0 and (f., f.), = (2,2) = ||2]|* = 0 if and only if z = 0 and thus f, = 0.
Furthermore, we have \/(f., f.); = \/(z,2) = ||z]| = ||f-||. Hence (-,-), satisfies all the requirements for
being an inner product and this inner product gives the same norm. Since the dual space H' is also complete,
this is also a Hilbert space. O

Corollary 2. If H is a Hilbert space, the second dual space H" is a Hilbert space with inner product given
by

(Fy, Fy)y =(fr9)1 = {9,
where F¢(h) = (h, f); and F,(h) = (h,g), for f,g,h € H'. Furthermore, H" can be written as
H" ={F¢|fe H'} ={Fy. |z € H}.
Proof. The proof follows exactly as above. In particular, we have F,,y = @Ff and Fyi 4 = Fr + F,. O
Proposition 3. Any Hilbert space H is isomorphic to its second dual space H".
Proof. By the lemma and corollary above, H” is indeed a Hilbert space. Define the map

C:H— H"
2 Fy_.

Clearly, C is surjective (by the Riesz Representation Theorem). It is also linear, since

Claz + pw) = Fy, .\ b, = Fyp 154, = Far. + I, = aFy, + BFy, = aC(z) + BC(w).

[e}%

It is injective, since C(z) = 0 means Fy, = 0 and thus f, = 0 which implies z = 0. Finally, C preserves the
inner product, since

<C(Z)’C(w)>2 = <Ffz’Ffw>2 = <fwaf2>1 = (2,w) .

Since C' is an isomorphism that preserves the inner product, we have that H = H” . O



Problem 9 (Problem 4, Chapter 3.9, p. 200 in Kreyszig). Let H; and Hs be Hilbert spaces and T : H; —
H; be a bounded linear operator. If My C H; and My C Hy are such that T(M;) C Ma, show that
T*(My™) € My™*.

Solution. Let 2 € T*(M,h). Then there exists a y € Ma® such that T*y = z. For all z € M,
(z, 2) 2)

= (T"y,
= (y,Tz)
=0

since Tz € M5 and y € MQL. Hence z € Mlj‘.



Problem 10 (Problem 6, Chapter 3.9, p. 200 in Kreyszig). If M; = N(T) = {z|Tz = 0}, where T is the
linear operator in the previous problem, show that

(a) T*(Ha) C My*

(b) (T(Hy))" C N(T*)
(c) My = (T*(Hy))*.
Solution. .

(a) This follows from the previous problem. Indeed, we have M; C Hy and let My = Hy C Hy. Then
T(M,) = {0} C M,. By the previous problem, T*(Ms) C M;* as desired.

(b) Let = € (T'(Hy))". Then (z,y) = 0 for all y € T(H;) and thus (2, Tz) = 0 for all z € H;. And thus
(T*z,2) = (x,T2) =0
for all z in H;. This can only be true if T*z = 0, hence z € N (T™).

(c) First note that, for any subsets M C N, we have N* C M. From part (a), we have T*(Hy) C M=, so
we have M+t = (ML)L C (T*(H,))". Furthermore, we know that M; C M; ", and thus we have

My € M C (T (Hy)) ™.
Finally, let = € (T*(H,))". Then (2, T*z) = 0 for all z € Hy. Hence
(Tx,z) = (x,T"2) =0

for all z € Hy. This is true if and only if Tz = 0 and thus x € N (T) = M;. Hence (T*(Hg))J‘ Cc My
and thus My = (T*(Hy))™

10



Problem 11 (Problem 8, Chapter 3.9, p. 201 in Kreyszig). Let S =1+ T*T : H — H, where T is linear
and bounded. Show that S~': S(H) — H exists.

Solution. Recall that S~! exists if and only if Sz = 0 implies x = 0. Let € H and suppose that Sz = 0.
Then Sz = (I+T*T)x = x+T*Tx = 0, and in particular this means that the inner product (Sz, ) vanishes.
Then

= (Sz, )

={x+T"'Tx, x)

= (z,2) + (I"Tz,x)

= ||z|* + (T, Tx)

= |||* + [| T,

Since both terms in the last line are non-negative, this can only vanish if ||z||*> = 0 and thus z = 0.
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Problem 12 (Problem 6, Chapter 3.10, p. 207 in Kreyszig). If T': H — H is a bounded self-adjoint linear
operator and T # 0, show that

(a) T™ # 0 for every n = 2,4,8,16, ...
(b) T™ # 0 for every n € N.
Solution. Note that, since T # 0, there exists an x € H such that ||Tz||? = (Tz, Tz) # 0.

(a) The proof follows by induction. As a base case, we have that T = 7% # 0. Assume that 72" # 0
for some n € N U {0} and suppose that 72" = 0. Then 72" 'z = 0 for all # € H. Therefore

<T2"+1m,x> = (0, z) vanishes for all z € H and thus

0= <T2n+lx,m>
= <T2nx,T2nx>
= IT*"2|P%,

so T?"x = 0 for all z, a contradiction to 72" # 0. So T # 0. Hence, by induction, 72" # 0 for all
n € NU{0}.

(b) Suppose TV = 0 for some N € N. Then 7™ = 0 for all m > N. But there exists an n € N such that
2" > N, and by part (a) we have that T%" # 0, a contradiction.
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