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Problem 1 (Problem 4, Chapter 4.1, p. 212). Find all maximal elements of M with respect to the partial
ordering m ≤ n whenever m divides n, where M is

(a) {2, 3, 4, 8}

(b) the set of all prime numbers.

Solution. .

(a) The maximal elements of M = {2, 3, 4, 8} are 3 and 8. Indeed, 3 does not divide any of the other
elements and 2 and 4 both divide 8, wheras 8 does not divide any of the other elements.

(b) Every element of M = {p | p prime} is maximal, since no prime number divides any other prime number.
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Problem 2 (Problem 8, Chapter 4.2, p. 218). If a subadditive functional defined on a normed space X is
nonnegative outside of a sphere {x | ‖x‖ = r}, show that it is nonnegative for all x ∈ X.

Solution. Let p be a subadditive functional on X such that p(x) is nonnegative for all x ∈ X with ‖x‖ > r.
Note that p(y) = p(y + 0) ≤ p(y) + p(0) for all y ∈ X, and thus

0 = p(y)− p(y) ≤ p(0).

Hence 0 ≤ p(0) and thus p(0) is nonnegative. Let x ∈ X such that x 6= 0. If ‖x‖ > r then p(x) is nonnegative
by assumption, so suppose ‖x‖ ≤ r. Then there is an n ∈ N such that n > r

‖x‖ and thus ‖nx‖ > r. Then

p(x+ · · ·+ x︸ ︷︷ ︸
n times

) ≤ p(x) + · · ·+ p(x)︸ ︷︷ ︸
n times

= np(x),

and thus 1
np(nx) ≤ p(x). But p(nx) ≥ 0, so p(x) ≥ 0 as well.
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Problem 3 (Problem 8, Chapter 4.3, p. 224). Let X be a nomed space and X ′ its dual space. If X 6= {0},
show that X ′ cannot be {0}.

Solution. Let x ∈ X such that x 6= 0. By the Hahn-Banach Theorem, there exists a functional f ∈ X ′ such
that f(x) = ‖x‖ and ‖f‖ = 1. Hence X ′ 6= {0}.
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Problem 4 (Problem 8, Chapter 4.5, p. 238). Let X and Y be normed spaces and T ∈ B(X,Y ) such that

T−1 ∈ B(Y,X) exists. Show that (T×)
−1

=
(
T−1

)×
.

Solution. First note that (1X)× = 1X′ for any normed space X, where 1X is the identity mapping on X.
Indeed, for any f ∈ X ′ and x ∈ X we have(

(1X)×f
)

(x) = f(1Xx) = f(x)

and thus (1X)×f = f for all X ′.
Recall that, for operators S and T , we have (ST )× = T×S×. Take S = T−1, then

1X′ = (1X)× = (T−1T )× = T×(T−1)×,

so (T−1)× is the right-inverse of T×. Similarly,

1Y ′ = (1Y )× = (TT−1)× = (T−1)×T×,

so (T−1)× is also the left-inverse of T×. Hence, T× is invertible and (T×)
−1

=
(
T−1

)×
.
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Problem 5 (Problem 10, Chapter 4.5, p. 239 – Annihilator). Let B be a subset of the dual space X ′ of
a nomed space X. The annihilator aB of B is defined to be

aB = {x ∈ X | f(x) = 0 for all f ∈ B} .

Let T : X −→ Y be a bounded linear operator. Show that R(T ) ⊂ aN (T×). What does this mean with
respect to the task of solving an equation Tx = y?

Solution. Let f ∈ N (T×), then T×f = 0. That is,

(T×f)(x) = f(Tx) = 0 for all x ∈ X.

Since this holds for all f ∈ N (T×), we have Tx ∈ aN (T×) for all x ∈ X and thus R(T ) ⊂ aN (T×).

This means that if there exists a functional f ∈ N (T×) such that f(y) 6= 0, then y 6∈ aN (T×) and thus y
is not in the range of T . Hence Tx = y has no solution. This is equivalent to:

if f(y) 6= 0 for some functional f ∈ Y ′
such that f(Tx) = 0 for all x ∈ X,

then Tx = y has no solution.
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Problem 6 (Problem 4, Chapter 4.6, p. 246). Show that a Banach space X is reflexive if and only if its
dual space X ′ is reflexive. (Hint: Show that a closed subspace of a reflexive Banach space is reflexive.)

Solution.

Lemma 1. Any closed subspace of a reflexive Banach space is reflexive.

Proof. Let X be a reflexive Banach space and Y ⊂ X be a closed subset. Let ϕ ∈ Y ′′ and define ϕ̃ ∈ X ′′ by

ϕ̃(f) = ϕ(f |Y ) for all f ∈ X ′.

Since X is reflexive, ϕ̃ is of the form ϕ̃ = ψx for some x ∈ X where

ψx(f) = f(x) for all f ∈ X ′.

So ϕ(f |Y ) = f(x). We claim that x ∈ Y . Indeed, otherwise x 6∈ Y and there exists a bounded linear
functional on X such that f |Y = 0 and f(x) 6= 0 (see Lemma 4.6-7 in Kreyszig). But this is a contradiction
to the fact that

f(x) = ϕ(f |Y ) = ϕ(0) = 0,

since f |Y = 0. By the Hahn-Banach Theorem, every linear functional g on Y ⊂ X can be written as g = f |Y
for some f ∈ X ′, and thus

ϕ(g) = ϕ(f |Y ) = ϕ̃(f) = hx(f) = f(x) = f |Y (x) = g(x)

where x ∈ Y . Hence for each ϕ ∈ Y ′′ there is an x ∈ Y such that ϕ(g) = g(x), and thus Y is reflexive.

Proposition 2. A Banach space X is reflexive if and only if its dual space X ′ is reflexive.

Proof. Assume that X is reflexive and let C1 : X −→ X ′′ be the canonical isometry. Consider X ′′′ = (X ′′)′

and let C2 : X ′ −→ X ′′′ be the canonical embedding that maps f ∈ X ′ to functional ξf ∈ X ′′′ such that
ξf (ϕ) = ϕ(f) for all ϕ ∈ X ′′. Let ξ ∈ X ′′′ and define a functional fξ ∈ X ′ by

fξ(x) = ξ(C1(x)).

Since X is reflexive, for each ϕ ∈ X ′′ there is an x ∈ X such that ϕ = C1(x). Hence

(C2(fξ))(ϕ) = ϕ(fξ) = fξ(x) = ξ(C1(x)) = ξ(ϕ)

and thus ξ = C2(fξ). So the embedding C2 is surjective and is therefore an isometry, so X ′ is reflexive.
Now suppose that X ′ is reflexive. By the argument above, we have that X ′′ is reflexive as well. Consider

R(C1) ⊂ X ′′, which is isometric to X. Since R(C1) is closed in X ′′, by the lemma above we have that R(C1)
and thus X are also reflexive.
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Problem 7 (Problem 6, Chapter 4.6, p. 246). Show that different closed subspaces Y1 and Y2 of a normed
space X have different annihilators.

Solution. Proof. Let Y1, Y2 ⊂ X be two closed subspaces of X with Y1 6= Y2. Without loss of generality, we
may assume that Y1rY2 6= ∅, then let y ∈ Y1rY2. Since y 6∈ Y2, by the Hahn-Banach Theorem (see Lemma
4.6-7) there exists a functional f ∈ X ′ such that f(y) 6= 0 and f |Y2

= 0. Thus f ∈ (Y2)a but f 6∈ (Y1)a,
hence (Y1)a 6= (Y2)a.
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Problem 8 (Problem 8, Chapter 4.6, p. 246). Let M be any subset of a normed space X. Show that an
x0 ∈ X is an element of A = spanM if and only if f(x0) = 0 for every f ∈ X ′ such that f |M = 0.

Solution. Using the ‘annihilator’ notation, this is equivalent to saying that spanM = a(Ma).

Proof. Now suppose that x0 6∈ A = spanM . By the Hahn-Banach Theorem (see Lemma 4.6-7), there is
a linear functional f ∈ X ′ such that f(x0) 6= 0 and f |A = 0. But M is a subset of A, so f |M = 0 with
f(x0) 6= 0 and thus x0 6∈ a(Ma).
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Problem 9 (Problem 4, Chapter 4.7, p. 254). Find a meager dense subset in R2.

Solution. Note that Q is meager and dense in R. Futhermore, Q is countable and we may enumerate it as
Q = {q1, q2, q3, . . . }. Consider the subset M ⊂ R2 defined by

M =

∞⋃
i=1

Mi, where Mi = {(qi, x) |x ∈ R} .

That is, M consists of the union of parallel lines intersecting the x-axis at each rational point. Then M is
clearly dense in R2, and each Mi is rare is R2. Since M is a countable union of rare sets, it is meager in R2.

9



Problem 10 (Problem 6, Chapter 4.7, p. 255). Show that the complement M c of a meager subset M of a
complete metric space X is nonmeager.

Solution. If X = ∅ then this is true vacuously. Let X 6= ∅ be a complete metric space and let M ⊂ X be a
meager subset. Note that we may write X as a union

X = M ∪M c.

If M c were meager, then it may be written as a countable union of rare sets. Hence X is a countable union
of rare sets (since it is a union of two sets that are countable unions of rare sets), and thus X is meager
in itself. But this is a contradiction to Baire’s Category Theorem, which states that a nonempty complete
normed space must be non-meager in itself.
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Problem 11 (Problem 8, Chapter 4.7, p. 255). Show that completeness of X is essential in the statement
of the Uniform Boundedness Theorem. (Hint: Consider X ⊂ `∞ consisting of all finite sequences x = {xj},
that is, xj nonzero for only finitely many j, and consider the operator Tnx = fnx = nxn.)

Solution. Recall the statement of the theorem.

Theorem 3 (Uniform Boundedness Theorem). Let {Tn} be a sequence of bounded linear operators Tn :
X −→ Y from a Banach space X into a normed space Y such that {‖Tnx‖} is bounded for every x ∈ X.
That is, for every x there exists a cx such that ‖Tnx‖ ≤ cx for all n. Then the sequence of the norms ‖Tn‖
is bounded.

As in the problem statement, let X ⊂ `∞ be the subspace consisting of finite sequences. Then X is not
complete. For each n let Tn = fn be the linear functional defined by fn(x) = nxn. Let x ∈ X, then x = {xj}
and there exists an N ∈ N such that xj = 0 for all j > N . Then

‖Tnx‖ = |fn(x)| = |nxn| = n|xn| ≤ n ‖x‖

where cx = ‖x‖ depends on the choice of x, and thus {‖Tnx‖} is bounded for each x ∈ X. However, ‖Tn‖ = n
for each n. Indeed, from the above analysis we see that ‖Tn‖ ≤ n, and choosing x = {1, 1, . . . , 1︸ ︷︷ ︸

n

, 0, 0, · · · }

with ‖x‖ = 1 we have ‖Tnx‖ = n so ‖Tn‖ ≥ n for each n. Thus {‖Tn‖} is not bounded.
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Problem 12 (Problem 12, Chapter 4.7, p. 255). Let X and Y be Banach spaces and Tn ∈ B(X,Y ) such
that {Tnx} is Cauchy in Y for every x ∈ X. Show that Tnx −→ Tx for some T ∈ B(X,Y ).

Solution. Since every Cauchy sequence is bounded, we have that {‖Tnx‖} is bounded for all x ∈ X and
thus {‖Tn‖} is bounded by the Uniform Boundedness Theorem. Thus sup

n∈N
‖Tn‖ is finite.

Since Y is complete and the sequence {Tnx} is Cauchy in Y for each x ∈ X, each {Tnx} converges to an
element in Y . Define a mapping T : X −→ Y by

Tx = lim
n→∞

Tnx.

This is clearly linear, since by the linearity of Tn we have

T (ax+ by) = lim
n→∞

Tn(ax+ by) = lim
n→∞

(aTnx+ bTny) = aTx+ bTy

for all x, y ∈ X and a, b in the field F. This operator is also bounded, since for all x ∈ X we have

‖Tx‖ =
∥∥∥ lim
n→∞

Tnx
∥∥∥ = lim

n→∞
‖Tnx‖

≤ sup
n∈N
‖Tn‖ ‖x‖ ,

where we use the fact that the norm is continuous, so it commutes with limits. Hence ‖Tx‖‖x‖ ≤ sup
n∈N
‖Tn‖ <∞

for all x 6= 0, but this is finite and thus ‖T‖ ≤ sup
n∈N
‖Tn‖ < ∞, so T is also bounded and thus T ∈ B(X,Y )

as desired.
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Problem 13 (Problem 14, Chapter 4.7, p. 255). If X and Y are Banach spaces and Tn ∈ B(X,Y ) for
each n, show that the following statements are equivalent:

(a) {‖Tn‖} is bounded,

(b) {‖Tnx‖} is bounded for all x ∈ X,

(c) {|g(Tnx)|} is bounded for all x ∈ X and g ∈ Y ′.

Solution. We first prove the following lemma.

Lemma 4. If {xn} is a sequence in a Banach space X such that {f(xn)} is bounded for each functional
f ∈ Y ′, then {‖xn‖} is bounded.

Proof. For each f ∈ X ′, define the sequence {ϕn} in X ′′ by ϕn(f) = f(xn). Then the sequence {ϕn(f)}
is bounded for each f ∈ X ′ by assumption, and hence {‖ϕn(f)‖} is bounded for each f . By the Uniform
Boundedness Theorem, we have that {‖ϕn‖} is also bounded, but ‖ϕn‖ = ‖xn‖ for each n and thus {‖xn‖}
is bounded.

We now proceed to prove the problem statement.

• (a)⇒ (b). Since {‖Tn‖} is bounded, there is a constant c ≥ 0 such that ‖Tn‖ ≤ c for all n. Define the
constant cx = c ‖x‖ for each x ∈ X. Then

‖Tnx‖ ≤ ‖Tn‖ ‖x‖ ≤ cx,

and thus {‖Tnx‖} is bounded for each x ∈ X.

• (b)⇒ (a). This follows from the Uniform Boundedness Theorem.

• (a)⇒ (c). Let g ∈ Y ′ and define the functionals fn ∈ X ′ for each n by fn(x) = g(Tnx). Since {‖Tn‖}
is bounded, there is a constant c such that ‖Tn‖ ≤ c for all n. Then we have

|fn(x)| = |g(Tnx)| ≤ ‖g‖ ‖Tn‖ ‖x‖
≤ ‖g‖ c ‖x‖

for each x ∈ X and thus ‖fn‖ ≤ c ‖g‖, so the sequence {‖fn‖} is bounded. From the (a)⇒ (b) part of
this problem, this implies that {|fn(x)|} = {|g(Tnx)|} is bounded for all x.

• (c) ⇒ (b). Let x ∈ X and define the sequence {yn} in Y by yn = Tnx. Then the sequence {g(yn)}
is bounded for each g ∈ Y ′. Since Y is a Banach space, Lemma 4 from above says that {‖yn‖} is
bounded, and thus {‖Tnx‖} is bounded.
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Problem 14 (Problem 2, Chapter 4.8, p. 262). Let X and Y be normed spaces, T ∈ B(X,Y ) and {xn} a

sequence in X. If xn
w−→ x, show that Txn

w−→ Tx.

Solution. Let g ∈ Y ′ and define a functional f ∈ X ′ by f(x) = g(Tx). Then g(Txn) = f(xn) and thus

g(Txn) −→ g(Tx) if and only if f(xn) −→ f(x), which is true since xn
w−→ x. Hence g(Txn) −→ g(Tx) for

all g ∈ Y ′ and thus Txn
w−→ Tx.
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Problem 15 (Problem 4, Chapter 4.8, p. 262). Show that xn
w−→ x implies lim inf

n→∞
‖xn‖ ≥ ‖x‖.

Solution. By the Hahn-Banach theorem, there exists a functional f ∈ X ′ such that ‖f‖ = 1 and f(x) = ‖x‖.
Since xn weakly converges to x, we have that f(xn) −→ f(x), hence |f(xn)| −→ |f(x)| = ‖x‖. Thus

‖x‖ = |f(x)| = lim
n→∞

|f(xn)|

= lim inf
n→∞

|f(xn)|

≤ lim inf
n→∞

‖f‖︸︷︷︸
=1

‖xn‖

= lim inf
n→∞

‖xn‖ ,

as desired.
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Problem 16 (Problem 6, Chapter 4.8, p. 262). If {xn} is a weakly convergent sequence in a normed space

X, say xn
w−→ x, show that there is a sequence {ym} of linear combinations of elements of {xn} which

converges strongly to x.

Solution. We first prove the following lemma (see problem 4.8.1 in Kreeyszig).

Lemma 5. If xn
w−→ x in a normed space X, then x ∈ Y where Y = span{xn}.

Proof. Suppose otherwise that x 6∈ Y . Then the distance

δ = inf
y∈Y
‖x− y‖

from x to Y is positive. By the theorem in class (Theorem 4.6-7 in Kreyszig), there exists a functional
f ∈ X ′ such that ‖f‖ = 1, f(x) = δ and f(y) = 0 for all y ∈ Y . Hence f(xn) = 0 for each n, and thus f(xn)

does not converge to f(x) = δ, a contradiction to xn
w−→ x.

The proof of the problem statement follows trivially from this lemma. Indeed, since x ∈ Y , there is a
sequence {ym} in Y such that ym −→ x. But Y = span{xn}, and thus each ym is a linear combination of
elements in {xn}.
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Problem 17 (Problem 8, Chapter 4.8, p. 262 – Weak Cauchy sequence). A weak Cauchy sequence in a
real or complex normed space X is a sequence {xn} in X such that for every f ∈ X ′ the sequence {f(xn)}
is Cauchy in R or C, respectively. Show that every weak Cauchy sequence is bounded.

Solution. For clarity, denote F = R or C.

Define the sequence {ϕn} in X ′′ such that ϕn(f) = f(xn) for all f ∈ X ′. Let f ∈ X ′ be arbitrary. Since
{xn} is weak Cauchy, we have that {f(xn)} is Cauchy in F and thus the sequence {|f(xn)|} is bounded.
Hence {|ϕn(f)|} is bounded for each f ∈ X ′. But X ′ is Banach, so we have that {‖ϕn‖} is bounded by the
Uniform Boundedness Theorem. Then {xn} is bounded since ‖xn‖ = ‖ϕn‖.
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Problem 18 (Problem 10, Chapter 4.8, p. 263 – Weak completeness). A normed space X is said to be
weakly complete if each Cauchy sequence in X converges weakly in X. If X is reflexive, show that X is
weakly complete.

Solution. Let {xn} be a Cauchy sequence in X. For each xn ∈ X let ϕn ∈ X ′′ be the functional defined
by ϕn(f) = f(xn) for all functionals f ∈ X ′. Since X is reflexive, we have X ∼= X ′′ so {ϕn} is a Cauchy
sequence in X ′′. Let ε > 0, then there exists an N ∈ N such that ‖ϕn − ϕm‖ ≤ ε

‖f‖ for all n,m ≥ N since

{ϕn} is Cauchy. Then for each n,m ≥ N we have

|f(xn)− f(xm)| = |ϕn(f)− ϕm(f)|
≤ ‖ϕn − ϕm‖ ‖f‖
< ε,

so the sequence {f(xn)} is Cauchy in R and thus {xn} is weakly convergent. Then X is weakly complete,
since every Cauchy sequence in X is weakly convergent.
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