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Problem 1 (Problem 4, Chapter 4.1, p. 212). Find all maximal elements of M with respect to the partial
ordering m < n whenever m divides n, where M is

(a) {2,3,4,8}
(b) the set of all prime numbers.

Solution. .

(a) The maximal elements of M = {2,3,4,8} are 3 and 8. Indeed, 3 does not divide any of the other
elements and 2 and 4 both divide 8, wheras 8 does not divide any of the other elements.

(b) Every element of M = {p|p prime} is maximal, since no prime number divides any other prime number.



Problem 2 (Problem 8, Chapter 4.2, p. 218). If a subadditive functional defined on a normed space X is
nonnegative outside of a sphere {z | ||z|| = r}, show that it is nonnegative for all z € X.

Solution. Let p be a subadditive functional on X such that p(z) is nonnegative for all x € X with ||z|| > r.
Note that p(y) = p(y + 0) < p(y) + p(0) for all y € X, and thus

0=p(y) — p(y) < p(0).

Hence 0 < p(0) and thus p(0) is nonnegative. Let € X such that « # 0. If ||z|| > r then p(x) is nonnegative
by assumption, so suppose ||z|| < r. Then there is an n € N such that n > et and thus |nz|| > r. Then

pl@+---+z) <p()+--+plx) =np(r),

n times n times

and thus Lp(nz) < p(z). But p(nz) > 0, so p(z) > 0 as well.



Problem 3 (Problem 8, Chapter 4.3, p. 224). Let X be a nomed space and X’ its dual space. If X # {0},
show that X’ cannot be {0}.

Solution. Let z € X such that  # 0. By the Hahn-Banach Theorem, there exists a functional f € X’ such
that f(z) = |||l and || f|| = 1. Hence X’ # {0}.



Problem 4 (Problem 8, Chapter 4.5, p. 238). Let X and Y be normed spaces and T € B(X,Y) such that
T-' € B(Y, X) exists. Show that (T*)™" = (T~1)".

Solution. First note that (1x)* = 1x for any normed space X, where 1x is the identity mapping on X.
Indeed, for any f € X’ and x € X we have

(Lx)*f) (2) = f(Axz) = f(z)

and thus (1x)*f = f for all X'.
Recall that, for operators S and T, we have (ST)* = T*S*. Take S = T~1!, then

Ly = (L) = (T7T)% = TX(T)*,
so (T~1)* is the right-inverse of T*. Similarly,
1y = (]ly)x — (TT—l)x — (T_l)XTX,

so (T~1)* is also the left-inverse of 7. Hence, T is invertible and (T*) " = (T71) .



Problem 5 (Problem 10, Chapter 4.5, p. 239 — Annihilator). Let B be a subset of the dual space X’ of
a nomed space X. The annihilator *B of B is defined to be

“B={zxeX|f(x)=0forall feB}.

Let T: X — Y be a bounded linear operator. Show that R(T) C °N (T*). What does this mean with
respect to the task of solving an equation Tx = y?

Solution. Let f € N (T*), then T* f = 0. That is,
(T*f)(z)=f(Tz)=0 forall z € X.

Since this holds for all f € N(T*), we have Tz € °N(T*) for all x € X and thus R(T) C “N(T*).

This means that if there exists a functional f € A/(T*) such that f(y) # 0, then y & *N(T*) and thus y
is not in the range of T'. Hence T'x = y has no solution. This is equivalent to:

if f(y) # 0 for some functional f € Y’
such that f(Tx) =0 for all z € X,
then Tz = y has no solution.



Problem 6 (Problem 4, Chapter 4.6, p. 246). Show that a Banach space X is reflexive if and only if its
dual space X' is reflexive. (Hint: Show that a closed subspace of a reflexive Banach space is reflexive.)

Solution.
Lemma 1. Any closed subspace of a reflexive Banach space is reflexive.

Proof. Let X be a reflexive Banach space and Y C X be a closed subset. Let ¢ € Y and define ¢ € X" by

o(f) =¢(fly) forall fe X'

Since X is reflexive, ¢ is of the form ¢ = 1), for some x € X where

Vo (f) = f(z) forall fe X'

So o(fly) = f(z). We claim that v € Y. Indeed, otherwise z ¢ Y and there exists a bounded linear
functional on X such that f|y =0 and f(z) # 0 (see Lemma 4.6-7 in Kreyszig). But this is a contradiction
to the fact that

f(x) =o(fly) = ¢(0) =0,

since f|y = 0. By the Hahn-Banach Theorem, every linear functional g on Y C X can be written as g = f|y
for some f € X', and thus

o(g) = o(fly) = ¢(f) = ha(f) = f(z) = flv (z) = g(2)
where x € Y. Hence for each ¢ € Y there is an # € Y such that ¢(g) = g(z), and thus YV is reflexive. O
Proposition 2. A Banach space X is reflexive if and only if its dual space X' is reflexive.

Proof. Assume that X is reflexive and let C7 : X — X" be the canonical isometry. Consider X"’ = (X"’
and let Cy : X’ — X' be the canonical embedding that maps f € X' to functional £; € X"’ such that
Er(p) = (f) for all p € X”. Let £ € X" and define a functional fr € X’ by

fe(x) = §(Cr(x)).

Since X is reflexive, for each ¢ € X" there is an x € X such that ¢ = C1(z). Hence

(C2(fe)) () = @(fe) = fe(x) = E(Ci(x)) = ()

and thus £ = Ca(fe). So the embedding C is surjective and is therefore an isometry, so X' is reflexive.
Now suppose that X’ is reflexive. By the argument above, we have that X" is reflexive as well. Consider

R(C1) C X", which is isometric to X. Since R(C4) is closed in X", by the lemma above we have that R(C})

and thus X are also reflexive. O



Problem 7 (Problem 6, Chapter 4.6, p. 246). Show that different closed subspaces Y7 and Y3 of a normed
space X have different annihilators.

Solution. Proof. Let Y7,Ys C X be two closed subspaces of X with Y7 # Y5. Without loss of generality, we
may assume that Y7 \ Y3 # (), then let y € Y7 \Y3. Since y € Ys, by the Hahn-Banach Theorem (see Lemma
4.6-7) there exists a functional f € X’ such that f(y) # 0 and f|y, = 0. Thus f € (Y2)* but f & (¥1)%,
hence (Y1) # (Y2)?. O



Problem 8 (Problem 8, Chapter 4.6, p. 246). Let M be any subset of a normed space X. Show that an
xo € X is an element of A = span M if and only if f(zo) = 0 for every f € X’ such that f|,, =0.

Solution. Using the ‘annihilator’ notation, this is equivalent to saying that span M = %(M,).

Proof. Now suppose that xyp ¢ A = span M. By the Hahn-Banach Theorem (see Lemma 4.6-7), there is
a linear functional f € X’ such that f(zp) # 0 and f|4 = 0. But M is a subset of A, so f|y = 0 with
f(zo) # 0 and thus z¢ € *(M,). O



Problem 9 (Problem 4, Chapter 4.7, p. 254). Find a meager dense subset in R2.

Solution. Note that Q is meager and dense in R. Futhermore, Q is countable and we may enumerate it as
Q=1{q1,492,q3,- .- }. Consider the subset M C R? defined by

M= UM“ where M; = {(g;,x) |z € R}.

i=1

That is, M consists of the union of parallel lines intersecting the z-axis at each rational point. Then M is
clearly dense in R?, and each M; is rare is R?. Since M is a countable union of rare sets, it is meager in R2.



Problem 10 (Problem 6, Chapter 4.7, p. 255). Show that the complement M€ of a meager subset M of a
complete metric space X is nonmeager.

Solution. If X = () then this is true vacuously. Let X # () be a complete metric space and let M C X be a
meager subset. Note that we may write X as a union

X =MuUM°.

If M¢ were meager, then it may be written as a countable union of rare sets. Hence X is a countable union
of rare sets (since it is a union of two sets that are countable unions of rare sets), and thus X is meager
in itself. But this is a contradiction to Baire’s Category Theorem, which states that a nonempty complete
normed space must be non-meager in itself.

10



Problem 11 (Problem 8, Chapter 4.7, p. 255). Show that completeness of X is essential in the statement
of the Uniform Boundedness Theorem. (Hint: Consider X C ¢>° consisting of all finite sequences = = {z,},
that is, ; nonzero for only finitely many j, and consider the operator T,z = f,z = nx,.)

Solution. Recall the statement of the theorem.

Theorem 3 (Uniform Boundedness Theorem). Let {T,} be a sequence of bounded linear operators T, :
X — Y from a Banach space X into a normed space Y such that {||T,z||} is bounded for every x € X.
That is, for every x there exists a ¢, such that ||T,z|| < ¢, for all n. Then the sequence of the norms |1, ||
1s bounded.

As in the problem statement, let X C ¢°° be the subspace consisting of finite sequences. Then X is not
complete. For each n let T,, = f,, be the linear functional defined by f,(z) = nz,. Let € X, then z = {z,}
and there exists an N € N such that z; = 0 for all j > N. Then

[Tnz]] = [fn(2)] = [nan| = nlza| < n ]
where ¢, = ||z|| depends on the choice of , and thus {||T,,«||} is bounded for each = € X. However, |T,|| =n
for each n. Indeed, from the above analysis we see that || T, || < n, and choosing z = {1,1,...,1,0,0,---}
—_——

n

with [|z|| = 1 we have | T, x| = n so | T,|| > n for each n. Thus {||T},||} is not bounded.
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Problem 12 (Problem 12, Chapter 4.7, p. 255). Let X and Y be Banach spaces and T,, € B(X,Y) such
that {T,x} is Cauchy in Y for every x € X. Show that T,,x — Tz for some T € B(X,Y).

Solution. Since every Cauchy sequence is bounded, we have that {||T,z||} is bounded for all 2 € X and
thus {||T%,||} is bounded by the Uniform Boundedness Theorem. Thus sup |7}, is finite.
neN

Since Y is complete and the sequence {T;,z} is Cauchy in Y for each « € X, each {T},z} converges to an
element in Y. Define a mapping T': X — Y by

Tr= lim T,z.
n—oo

This is clearly linear, since by the linearity of T;, we have
T(axz +by) = lim T, (ax + by) = lim (aT,z + bT,y) = aTx + 0Ty
n—oo n—oo
for all x,y € X and a, b in the field F. This operator is also bounded, since for all x € X we have

I7e) = |

lim T,z ‘ = lim ||T,x||
n—oo n— oo

< sup || T | [|l=]] ,
neN

[ T]]
(&3]

where we use the fact that the norm is continuous, so it commutes with limits. Hence <sup [T, || < oo
neN
for all = # 0, but this is finite and thus ||T']| < sup ||T,| < oo, so T is also bounded and thus 7' € B(X,Y)
neN

as desired.
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Problem 13 (Problem 14, Chapter 4.7, p. 255). If X and Y are Banach spaces and T,, € B(X,Y) for
each n, show that the following statements are equivalent:

(a) {||T%]|} is bounded,

(b) {||Tnz||} is bounded for all z € X,

(¢) {|g(Tnz)|} is bounded for all x € X and g € Y.
Solution. We first prove the following lemma.

Lemma 4. If {z,} is a sequence in a Banach space X such that {f(x,)} is bounded for each functional
f ey’ then {||z,|} is bounded.

Proof. For each f € X', define the sequence {p,} in X" by ¢,(f) = f(zn). Then the sequence {¢,(f)}
is bounded for each f € X’ by assumption, and hence {||¢,(f)||} is bounded for each f. By the Uniform
Boundedness Theorem, we have that {||¢,||} is also bounded, but @, || = ||z || for each n and thus {||z,]| }
is bounded. O

We now proceed to prove the problem statement.

e (a) = (b). Since {||T},||} is bounded, there is a constant ¢ > 0 such that ||T,,|| < ¢ for all n. Define the
constant ¢, = c||z|| for each z € X. Then

[To|| < [Tl ll2]] < ca,
and thus {||T,,z||} is bounded for each z € X.
e (b) = (a). This follows from the Uniform Boundedness Theorem.

e (a) = (c). Let g € Y’ and define the functionals f,, € X’ for each n by f,(x) = g(T,,x). Since {||T,,||}
is bounded, there is a constant ¢ such that ||T},|| < ¢ for all n. Then we have

(@) = lg(Tuz)| < gl 1Tl ll]]
< lglf e [l

for each x € X and thus || f.|| < ¢||g]|, so the sequence {||f||} is bounded. From the (a) = (b) part of
this problem, this implies that {|f.(x)|} = {|g(Tnx)|} is bounded for all .

e (¢) = (b). Let x € X and define the sequence {y,} in Y by y, = T,x. Then the sequence {g(yn)}
is bounded for each g € Y’. Since Y is a Banach space, Lemma 4 from above says that {|ly.|} is
bounded, and thus {||T,x| } is bounded.
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Problem 14 (Problem 2, Chapter 4.8, p. 262). Let X and Y be normed spaces, T € B(X,Y) and {z,} a
sequence in X. If z,, — z, show that Tz,, — Tz.

Solution. Let g € Y’ and define a functional f € X' by f(z) = g(Tz). Then g(Tx,) = f(x,) and thus
g(Tx,) — g(Tx) if and only if f(x,) — f(z), which is true since x,, —+ . Hence g(Tx,) — g(Tx) for
all g € Y’ and thus Tz,, — Tz.
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Problem 15 (Problem 4, Chapter 4.8, p. 262). Show that z,, — 2 implies liminf ||z,|| > ||z|.
n— oo

Solution. By the Hahn-Banach theorem, there exists a functional f € X’ such that || f|] = 1 and f(z) = ||z||.
Since x,, weakly converges to x, we have that f(z,) — f(x), hence |f(x,)| — |f(x)| = ||z|]. Thus

lall = 1f(@)| = lim_|f ()
= lim inf | (z,)|

< liminf |[f] [l
n—oo S~~~
=1

= liminf ||z,]| ,
n—oo

as desired.
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Problem 16 (Problem 6, Chapter 4.8, p. 262). If {z,,} is a weakly convergent sequence in a normed space
X, say &, — x, show that there is a sequence {ym} of linear combinations of elements of {x,,} which
converges strongly to x.

Solution. We first prove the following lemma (see problem 4.8.1 in Kreeyszig).
Lemma 5. If x, — x in a normed space X, then x € Y where Y = span{z,}.

Proof. Suppose otherwise that z ¢ Y. Then the distance

5= inf ||z —y|
yeY

from z to Y is positive. By the theorem in class (Theorem 4.6-7 in Kreyszig), there exists a functional
f € X' such that || f|| =1, f(z) =6 and f(y) =0 for all y € Y. Hence f(z,) = 0 for each n, and thus f(z,)
does not converge to f(x) = ¢, a contradiction to x, - . O

The proof of the problem statement follows trivially from this lemma. Indeed, since = € Y, there is a
sequence {y,,} in Y such that y,, — 2. But Y = span{z, }, and thus each y,, is a linear combination of
elements in {z,}.
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Problem 17 (Problem 8, Chapter 4.8, p. 262 — Weak Cauchy sequence). A weak Cauchy sequence in a
real or complex normed space X is a sequence {z,} in X such that for every f € X’ the sequence {f(x,)}
is Cauchy in R or C, respectively. Show that every weak Cauchy sequence is bounded.

Solution. For clarity, denote F = R or C.

Define the sequence {p,} in X" such that o, (f) = f(x,) for all f € X'. Let f € X' be arbitrary. Since
{zn} is weak Cauchy, we have that {f(z,)} is Cauchy in F and thus the sequence {|f(x,)|} is bounded.
Hence {|¢n(f)|} is bounded for each f € X’. But X’ is Banach, so we have that {||¢,]||} is bounded by the
Uniform Boundedness Theorem. Then {z,} is bounded since ||z, || = ||¢n]|-
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Problem 18 (Problem 10, Chapter 4.8, p. 263 — Weak completeness). A normed space X is said to be
weakly complete if each Cauchy sequence in X converges weakly in X. If X is reflexive, show that X is
weakly complete.

Solution. Let {x,} be a Cauchy sequence in X. For each z,, € X let ¢, € X" be the functional defined
by vn(f) = f(x,) for all functionals f € X’. Since X is reflexive, we have X = X" so {¢,} is a Cauchy
sequence in X”. Let € > 0, then there exists an N € N such that ||p, — @m|| < 17y for all n,m > N since

{¢n} is Cauchy. Then for each n,m > N we have

|f(an) = f(@m)] = len(f) — em(f)]
< llen = eml Il
<eg,

so the sequence {f(z,)} is Cauchy in R and thus {z,} is weakly convergent. Then X is weakly complete,
since every Cauchy sequence in X is weakly convergent.
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