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Problem 1 (Problem 6, Chapter 4.9, p. 269). Let T;, € B(X,Y), where n = 1,2,.... To motivate the term
“uniform” in Definition 4.9-1 in Kreyszig, show that 7,, — T if and only if for every € > 0 there is an IV,
depending only on ¢, such that for all n > N and all x € X of norm 1 we have

Tz —Tz| < e.

Solution. Proof. By definition, T,, — T implies that ||T}, — T|| — 0. Let € > 0, then uniform convergence
of T, implies that there exists an N € N such that ||T,, — T'|| < ¢ for all n > N. For all z € X with ||z|| =1,
we have
[Tnw = T|| = [[(Tn = T)z|| < [Tn =T |zl
—
1
=T = T
<e

as desired.

For the other direction, let £ > 0. By hypothesis, there is an N. € N such that ||T,,x — Tz| < ¢ for all
n > N, and all z € X with ||z|| = 1. From the definition of the operator norm, we have

IT0 — Tl = sup | Tye — Tal| <&
X

TE
llzll=1

and thus T;, — T as desired. O



Problem 2 (Problem 8, Chapter 4.9, p. 269). Let T,, — T, where T,, € B(X,Y’). Show that for every
e > 0 and every closed ball K C X there is an N such that |7,z — Tz| < e for all n > N and z € K.

Solution. Proof. Let K C X be a closed ball. Then there is a z € X and § > 0 such that z is the centre of
the ball and ¢ is the radius. That is,

K = B(z;9)
={zeX||z—-z| <d}.

Let € > 0. Recall that T,, — T means that ||T,, — T'|| — 0. Then there is an N € N such that

€
T, —T| < +——=
IT =Tl < g
for all n > N. Note that, for all x € K, we have
2] = [z — 2 + 2]
<z -zl + ||z
<0+ |z -

Hence, for all n > N, we have that
|Thz — Tzl < || T =TI ||l
~—
<lzll+6

= (||zl| + )

< —
[l +6
<e€

as desired.



Problem 3 (Problem 10, Chapter 4.9, p. 269). Let X be a separable Banach space and M C X’ a bounded
set. Show that every sequence of elements of M contains a subsequence which is weak® convergent to an
element of X’.

Solution. Without loss of generality, we may assume that X is a complex Banach space.

Proof. By the theorem in class (see Theorem 4.9-6 in Kreyszig), we have that a sequence of functionals {f,, }
in X’ is weak* convergent to an element of X’ if and only if {||f,||} is bounded and the sequence {f,(z)} is
Cauchy for every x in a total subset of X.

Since X is separable, there is a sequence S = {z;} that is dense in X. Note that the set S is also total in
X. Let 0 = {f,} be an arbitrary sequence of functionals in M. Since this is bouded, the sequence { f,(zx)}
in C is bounded for each k. So, by the Bolzano-Weierstrass theorem, there is a convergent subsequence.

Consider a partial ordering of sequences of functionals in X’ defined in the following manner. If p = {g, }
and 7 = {h, } are sequences of functionals with g,, h, € X' for each n, we say

p<T << pis asubsequence of 7.

Construct a sequence of subsequences of o in the following manner. Let o) < o where o) = {£{V} is

a subsequence of o = {f,} such that { fT(Ll)(:zrl)} is convergent in C. Continue by inductively defining the

subsequences
< oB® <@ <o) <

such that o®) = { fy(Lk)} and { fék)(xk)} converges in C for each k. Finally, use the “Cantor diagonal method”
to construct another subsequence of ¢ in the following manner. Define the sequence 7 = {g;} where

g9 =1

This is clearly a subsequence of o = {f,}. Furthermore, it is also ‘eventually’ a subsequence of each
o) = {f,(lk)} in the sense that

{gn}%,  is a subsequence of the shifted sequence  {f{F}2

for each k. Note that each subsequence of a convergent sequence of complex numbers is also convergent to
the same limit, hence {gy(zx)} is convergent in C for each k. So we have constructed a subsequence {gy} of
{fn} that is weak* convergent, as desired. O



Problem 4 (Problem 2, Chapter 4.12, p. 290). Show that an open mapping need not map closed sets onto
closed sets.

Solution. Proof. Let f : R?> — R be the projection mapping onto the first coordinate, i.e.

flx,y) =2  for all (z,y) € R

This is clearly bounded and linear, and thus an open map by the Open Mapping Theorem. However, it is
not closed. Indeed, consider the closed subset M C R? defined by

v {2

This is indeed closed, since it is the pre-image M = p~1{0} under the continuous multiplication map

p: R — R?
(z,y) — zy,
and {0} C R is closed (and the pre-image of a closed set under a continuous map is closed). However, we

have that
(M) = {z € Rz # 0}

which is not closed in R since 0 is a limit point. O



Problem 5 (Problem 6, Chapter 4.12, p. 290). Let X and Y be Banach spaces and T : X — Y be an
injective bounded linear operator. Show that 7! : R(T) — X is bounded if and only if R(T) is closed
inY.

Solution. Proof. If R(T) is closed in Y, then it is complete since Y is complete. By the Open Mapping
Theorem, we have that the inverse is bounded.

Now suppoose that 7! is bounded. We want to show that R(T) is closed, so let {y,} be a Cauchy
sequence in R(7T'). Then there is a sequence {z,,} in X such that y,, = T, and thus z,, = T~ 'y,. But {z,,}
is also Cauchy. Indeed, we have

|Zn — Tm| = ||T71yn - TﬁlymH
= ||T_1H ”yn - ym“ —0
since T~! is bounded and {y,} is Cauchy. Since X is complete, we have that x, — x for some z € X.

Since T is bounded, we have that
Ty, — Tx

and thus y, = Tx,, — Tx. So the Cauchy sequence {y,} converges in R(T) and thus R(T) is closed. O



Problem 6 (Problem 8, Chapter 4.12, p. 291). Let ||-||; and [|-||, be norms on a vector space X such that
X1 = (X,[]]l;) and Xy = (X, |-||5) are complete. If ||z,||; — 0 always implies ||z, ||, — 0, show that
convergence in X; implies convergence Xo and conversely, and there are positive numbers a and b such that
forall z € X

allzlly < fl=lly < bl -

Solution. Proof. Suppose that there is no number b such that ||z||, < b||z||; for all # € X. Then for each
n € N we can find an z,, € X such that ||z, |, > n|z,[|;. Without loss of generality, we may assume that
|zyn|l, = 1, and thus

zally < ~
ol

for all n. Hence ||z,||; — 0, but ||z,||, = 1 and thus ||z,[|; — 0, a contradiction to the assumption that
|zy|]; — 0 always implies ||z, |, — 0.

Now consider the identity map T : X7 — Xo, that is, Tz = x for all x € X. This is clearly bounded,
since ||Tz||, = ||z||, < b||z|; for all z € X. Since T is clearly invertible, namely 7'z = z, the Bounded

Inverse Theorem tells us that 7~ is also bounded. Hence we have
Hle = HT_lel < HT_1H ||$||27

and thus ﬁ llz||; < |lz||, for all z € X, so we may chose a = HTlle'

Next we show that convergence in one implies convergence in the other. Let {x,} be a Cauchy sequence
in X such that x, — « for some = € X. This implies that ||z, — x|, — 0. From the arguments above,
we have that

[ —zlly < bllan =zl — 0

so {z,} also converges to  in X,. Similarly, if we have the convergent sequence ||z, —z|, — 0 in X,
then

1
lzn = 2lly < —flzn — 2], — 0,

so {x,} converges in Xj. O



Problem 7 (Problem 10, Chapter 4.12, p. 291). Each norm on a vector space X defines a topology on X. If
we have two norms on X such that X; = (X, ||-||;) and X» = (X, ||-||,) are Banach spaces and the topologies
Ty and Ty defined by |[|-||; and ||-||, satisfy 7; 2 T2, show that 71 = Ts.

Solution. Proof. As in the previous problem, consider the identity map 7 : X; — X5 that takes x AN
Given an open set U € Tz, we have that T-1(U) = U is in T;. Hence T is continuous and thus bounded.
By the Open Mapping Theorem, we have that T is also an open map, and thus T(V) € T for each open set
V € 71, and thus 71 = 7. O



Problem 8 (Problem 6, Chapter 4.13, p. 296). Let T be a closed linear operator. If two sequences {x,}
and {Z,} in D(T') converge with the same limit = and if {T'z, } and {TZ,} both converge, show that {Tz,}
and {T'Z,} have the same limit.

Solution. Proof. We have the linear operator T' : D(T) — Y with D(T) C X. From the theorem in
class (see Theorem 4.13-3 in Kreyszig), we have the following: since T is closed, the sequence {z,} in D(T)
converges to ¢ € X and Tz, — y for some y € Y, we have that z € D(T) and Tax = y. Similarly, by
convergence of Z,, — x and TZ,, — ¢ for some ¢ € Y, we have Tx = j. Thus, we have y = ¢ as desired. [



Problem 9 (Problem 8, Chapter 4.13, p. 296). Let X and Y be normed spaces and let T: X — Y be a
closed linear operator.

(a)
(b)

Show that the image T'(C) of a compact subset C' C X is closed in Y.

Show that the inverse image of T~!(K) of a compact subset K C Y is closed in X.

Solution. Since this was not covered in the lecture, I’ll include Kreyszig’s definition of compact here.

Definition. Let X be a metric space. A subset M C X is said to be (sequentially) compact if every sequence
of elements in M has a convergent subsequence that converges to an element in M.

(a)

Let {y,} be a Cauchy sequence in T(C), such that y, — y for some y € Y. Then for each n we
have y,, = Tx,, for some x,, € C. Since C is compact, the sequence {x,} has a convergent subsequence

{zn,} such that z,, E2% 2 for some z € C. Then {Tzn,} = {yn,} is a subsequence of {y,} and thus

converges to the same limit, i.e.
k—o0

Tz, —y.
Since T is closed, by the theorem in class (see Theorem 4.13-3 in Kreyszig) we have that Ta = y. Since
x € C, we have that y € T(C) and thus every Cauchy sequence in T'(C) converges to something in T'(C').
So T(C) is closed, as desired.

Let {z,} be a Cauchy sequence in T~(K) such that z,, — z for some x € X. Since x,, € T7}(K),
we have that y,, = Tz, € K for each n. Since K is compact, the sequence {y,} in K has a convergent
subsequence {y,, } that converges to some element

k—oo
Txn, =Yn, —— Y

with y € K. Since z,, 200 & and Txp, koo, y, by closedness of T" we have that Tx = y. Then
x € T71(K) since y € K, and thus every Cauchy sequence in T~!(K) converges to something in 7! (K).
Hence T~!(K) is closed, as desired.



Problem 10 (Problem 10, Chapter 4.13, p. 296). Let X and Y be normed spaces and X compact. If
T: X — Y is a bijective closed linear operator, show that 7! is bounded.

Solution. (I'm confused why we are assuming that X is compact... Isn’t {0} the only compact normed
space? That must be a typo in the book. I'm just going to ignore this assumption, since it is not needed.)

Proof. Since T is closed, we have that T(M) is closed in Y for each closed subset M C X. Since T is
bijective, its inverse T~! exists, and furthermore we have that (T‘l)_1 = T. Hence, for each closed set

M € X, we have that its preimage under 7!, namely (T*I)f1 (M) = T(M), is closed in Y. This is the
definition of continuity of 77!, and thus 7! is also bounded. O

10



Problem 11 (Problem 12, Chapter 4.13, p. 296). Let X and Y be normed spaces. If T;: X — Y is a
closed linear operator and Ty € B(X,Y), show that T} + T is a closed linear operator.

Solution. Proof. Let x,, — x be a convergent sequence in X such that (77 + T5)x, — y for some y € Y.
Since T is bounded, we have that z,, — x implies Tox,, —> Tox. Therefore, we have that

Tlxn = (Tl + TQ):En - TZ-rn — Y- T2$7
—_—— =~

—y —Tox
so Tix =y — Tox since T; is closed. Hence
(Th + To)z =y,

and thus 77 + T» is closed by Theorem 4.13-3 (in Kreyszig), since x,, — x and (T} + 1)z, — y implies
(T, + Tr)z = y. O

11



Problem 12 (Problem 14, Chapter 4.13, p. 297). Assume that the terms of the series u; + us + --- are
continuously differentiable on the interbal [0, 1] and that the series is uniformly convergent on [0, 1] and has
the sum z. Furthermore, suppose that u} +u} + - -+ also converges unigivenformly on [0, 1]. Show that then
x is continuously differentiable on [0,1] and 2’ = u} + uh +---.

Solution. Proof. Note that the differential operator

T:D(T) — X
x—

where X = C[0,1] and D(T") C X is the subspace of differentiable functions on [0, 1], is a closed operator.
Hence, if 2, — = and 2], — y for some y € C[0, 1], we have that € D(T) and Tz = y.

By the notation in the problem statement, we have u; : [0,1] — R is continuously differentiable for each
i, and that z : [0,1] — R is the function

o0
(t) =Y wilt),
i=1
and this is uniformly convergent. Hence, we have that the partial sums
n
Tn(t) =Y ui(t)
i=1

converge to x, that is x,, — =. By hypothesis, we have that the partial sums of the derivatives, given by

converges uniformly to some function y € C[0,1]. That is, 2}, = Tz, — y. Since the differential operator
is closed, we have that
y=Tz =21,

as desired. O]
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