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Problem 1 (Problem 6, Chapter 4.9, p. 269). Let Tn ∈ B(X,Y ), where n = 1, 2, . . . . To motivate the term
“uniform” in Definition 4.9-1 in Kreyszig, show that Tn −→ T if and only if for every ε > 0 there is an N ,
depending only on ε, such that for all n > N and all x ∈ X of norm 1 we have

‖Tnx− Tx‖ < ε.

Solution. Proof. By definition, Tn −→ T implies that ‖Tn − T‖ −→ 0. Let ε > 0, then uniform convergence
of Tn implies that there exists an N ∈ N such that ‖Tn − T‖ < ε for all n ≥ N . For all x ∈ X with ‖x‖ = 1,
we have

‖Tnx− Tx‖ = ‖(Tn − T )x‖ ≤ ‖Tn − T‖ ‖x‖︸︷︷︸
1

= ‖Tn − T‖
< ε

as desired.

For the other direction, let ε > 0. By hypothesis, there is an Nε ∈ N such that ‖Tnx− Tx‖ < ε for all
n > Nε and all x ∈ X with ‖x‖ = 1. From the definition of the operator norm, we have

‖Tn − T‖ = sup
x∈X
‖x‖=1

‖Tnx− Tx‖ ≤ ε

and thus Tn −→ T as desired.
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Problem 2 (Problem 8, Chapter 4.9, p. 269). Let Tn −→ T , where Tn ∈ B(X,Y ). Show that for every
ε > 0 and every closed ball K ⊂ X there is an N such that ‖Tnx− Tx‖ < ε for all n > N and x ∈ K.

Solution. Proof. Let K ⊂ X be a closed ball. Then there is a z ∈ X and δ > 0 such that z is the centre of
the ball and δ is the radius. That is,

K = B(z; δ)

= {x ∈ X | ‖x− z‖ ≤ δ} .

Let ε > 0. Recall that Tn −→ T means that ‖Tn − T‖ −→ 0. Then there is an N ∈ N such that

‖Tn − T‖ <
ε

‖z‖+ δ

for all n > N . Note that, for all x ∈ K, we have

‖x‖ = ‖x− z + z‖
≤ ‖x− z‖+ ‖z‖
≤ δ + ‖z‖ .

Hence, for all n > N , we have that

‖Tnx− Tx‖ ≤ ‖Tn − T‖ ‖x‖︸︷︷︸
≤‖z‖+δ

<
ε

‖z‖+ δ
(‖z‖+ δ)

< ε

as desired.
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Problem 3 (Problem 10, Chapter 4.9, p. 269). Let X be a separable Banach space and M ⊂ X ′ a bounded
set. Show that every sequence of elements of M contains a subsequence which is weak∗ convergent to an
element of X ′.

Solution. Without loss of generality, we may assume that X is a complex Banach space.

Proof. By the theorem in class (see Theorem 4.9-6 in Kreyszig), we have that a sequence of functionals {fn}
in X ′ is weak∗ convergent to an element of X ′ if and only if {‖fn‖} is bounded and the sequence {fn(x)} is
Cauchy for every x in a total subset of X.

Since X is separable, there is a sequence S = {xk} that is dense in X. Note that the set S is also total in
X. Let σ = {fn} be an arbitrary sequence of functionals in M . Since this is bouded, the sequence {fn(xk)}
in C is bounded for each k. So, by the Bolzano-Weierstrass theorem, there is a convergent subsequence.

Consider a partial ordering of sequences of functionals in X ′ defined in the following manner. If ρ = {gn}
and τ = {hn} are sequences of functionals with gn, hn ∈ X ′ for each n, we say

ρ ≤ τ ⇐⇒ ρ is a subsequence of τ.

Construct a sequence of subsequences of σ in the following manner. Let σ(1) ≤ σ where σ(1) = {f (1)n } is

a subsequence of σ = {fn} such that {f (1)n (x1)} is convergent in C. Continue by inductively defining the
subsequences

· · · ≤ σ(3) ≤ σ(2) ≤ σ(1) ≤ σ

such that σ(k) = {f (k)n } and {f (k)n (xk)} converges in C for each k. Finally, use the “Cantor diagonal method”
to construct another subsequence of σ in the following manner. Define the sequence τ = {gj} where

gj = f
(j)
k .

This is clearly a subsequence of σ = {fn}. Furthermore, it is also ‘eventually’ a subsequence of each

σ(k) = {f (k)n } in the sense that

{gn}∞n=k is a subsequence of the shifted sequence {f (k)n }∞n=k

for each k. Note that each subsequence of a convergent sequence of complex numbers is also convergent to
the same limit, hence {gn(xk)} is convergent in C for each k. So we have constructed a subsequence {gn} of
{fn} that is weak∗ convergent, as desired.
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Problem 4 (Problem 2, Chapter 4.12, p. 290). Show that an open mapping need not map closed sets onto
closed sets.

Solution. Proof. Let f : R2 −→ R be the projection mapping onto the first coordinate, i.e.

f(x, y) = x for all (x, y) ∈ R2.

This is clearly bounded and linear, and thus an open map by the Open Mapping Theorem. However, it is
not closed. Indeed, consider the closed subset M ⊂ R2 defined by

M =

{(
x,

1

x

) ∣∣∣∣x 6= 0

}
.

This is indeed closed, since it is the pre-image M = µ−1{0} under the continuous multiplication map

µ : R2 −→ R2

(x, y) 7−→ xy,

and {0} ⊂ R is closed (and the pre-image of a closed set under a continuous map is closed). However, we
have that

f(M) = {x ∈ R |x 6= 0}

which is not closed in R since 0 is a limit point.
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Problem 5 (Problem 6, Chapter 4.12, p. 290). Let X and Y be Banach spaces and T : X −→ Y be an
injective bounded linear operator. Show that T−1 : R(T ) −→ X is bounded if and only if R(T ) is closed
in Y .

Solution. Proof. If R(T ) is closed in Y , then it is complete since Y is complete. By the Open Mapping
Theorem, we have that the inverse is bounded.

Now suppoose that T−1 is bounded. We want to show that R(T ) is closed, so let {yn} be a Cauchy
sequence in R(T ). Then there is a sequence {xn} in X such that yn = Txn and thus xn = T−1yn. But {xn}
is also Cauchy. Indeed, we have

‖xn − xm‖ =
∥∥T−1yn − T−1ym∥∥

=
∥∥T−1∥∥ ‖yn − ym‖ −→ 0

since T−1 is bounded and {yn} is Cauchy. Since X is complete, we have that xn −→ x for some x ∈ X.
Since T is bounded, we have that

Txn −→ Tx

and thus yn = Txn −→ Tx. So the Cauchy sequence {yn} converges in R(T ) and thus R(T ) is closed.
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Problem 6 (Problem 8, Chapter 4.12, p. 291). Let ‖·‖1 and ‖·‖2 be norms on a vector space X such that
X1 = (X, ‖·‖1) and X2 = (X, ‖·‖2) are complete. If ‖xn‖1 −→ 0 always implies ‖xn‖2 −→ 0, show that
convergence in X1 implies convergence X2 and conversely, and there are positive numbers a and b such that
for all x ∈ X

a ‖x‖1 ≤ ‖x‖2 ≤ b ‖x‖1 .

Solution. Proof. Suppose that there is no number b such that ‖x‖2 ≤ b ‖x‖1 for all x ∈ X. Then for each
n ∈ N we can find an xn ∈ X such that ‖xn‖2 > n ‖xn‖1. Without loss of generality, we may assume that
‖xn‖2 = 1, and thus

‖xn‖1 <
1

n

for all n. Hence ‖xn‖1 −→ 0, but ‖xn‖2 = 1 and thus ‖xn‖1 X−→ 0, a contradiction to the assumption that
‖xn‖1 −→ 0 always implies ‖xn‖2 −→ 0.

Now consider the identity map T : X1 −→ X2, that is, Tx = x for all x ∈ X. This is clearly bounded,
since ‖Tx‖2 = ‖x‖2 ≤ b ‖x‖1 for all x ∈ X. Since T is clearly invertible, namely T−1x = x, the Bounded
Inverse Theorem tells us that T−1 is also bounded. Hence we have

‖x‖1 =
∥∥T−1x∥∥

1
≤
∥∥T−1∥∥ ‖x‖2 ,

and thus 1
‖T−1‖ ‖x‖1 ≤ ‖x‖2 for all x ∈ X, so we may chose a = 1

‖T−1‖ .

Next we show that convergence in one implies convergence in the other. Let {xn} be a Cauchy sequence
in X1 such that xn −→ x for some x ∈ X. This implies that ‖xn − x‖1 −→ 0. From the arguments above,
we have that

‖xn − x‖2 ≤ b ‖xn − x‖1 −→ 0

so {xn} also converges to x in X2. Similarly, if we have the convergent sequence ‖xn − x‖2 −→ 0 in X2,
then

‖xn − x‖1 ≤
1

a
‖xn − x‖2 −→ 0,

so {xn} converges in X1.
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Problem 7 (Problem 10, Chapter 4.12, p. 291). Each norm on a vector space X defines a topology on X. If
we have two norms on X such that X1 = (X, ‖·‖1) and X2 = (X, ‖·‖2) are Banach spaces and the topologies
T1 and T2 defined by ‖·‖1 and ‖·‖2 satisfy T1 ⊇ T2, show that T1 = T2.

Solution. Proof. As in the previous problem, consider the identity map T : X1 −→ X2 that takes x
T7−→ x.

Given an open set U ∈ T2, we have that T−1(U) = U is in T1. Hence T is continuous and thus bounded.
By the Open Mapping Theorem, we have that T is also an open map, and thus T (V ) ∈ T2 for each open set
V ∈ T1, and thus T1 = T2.
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Problem 8 (Problem 6, Chapter 4.13, p. 296). Let T be a closed linear operator. If two sequences {xn}
and {x̃n} in D(T ) converge with the same limit x and if {Txn} and {T x̃n} both converge, show that {Txn}
and {T x̃n} have the same limit.

Solution. Proof. We have the linear operator T : D(T ) −→ Y with D(T ) ⊂ X. From the theorem in
class (see Theorem 4.13-3 in Kreyszig), we have the following: since T is closed, the sequence {xn} in D(T )
converges to x ∈ X and Txn −→ y for some y ∈ Y , we have that x ∈ D(T ) and Tx = y. Similarly, by
convergence of x̃n −→ x and T x̃n −→ ỹ for some ỹ ∈ Y , we have Tx = ỹ. Thus, we have y = ỹ as desired.
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Problem 9 (Problem 8, Chapter 4.13, p. 296). Let X and Y be normed spaces and let T : X −→ Y be a
closed linear operator.

(a) Show that the image T (C) of a compact subset C ⊂ X is closed in Y .

(b) Show that the inverse image of T−1(K) of a compact subset K ⊂ Y is closed in X.

Solution. Since this was not covered in the lecture, I’ll include Kreyszig’s definition of compact here.

Definition. Let X be a metric space. A subset M ⊂ X is said to be (sequentially) compact if every sequence
of elements in M has a convergent subsequence that converges to an element in M .

(a) Let {yn} be a Cauchy sequence in T (C), such that yn −→ y for some y ∈ Y . Then for each n we
have yn = Txn for some xn ∈ C. Since C is compact, the sequence {xn} has a convergent subsequence

{xnk
} such that xnk

k→∞−−−−→ x for some x ∈ C. Then {Txnk
} = {ynk

} is a subsequence of {yn} and thus
converges to the same limit, i.e.

Txnk

k→∞−−−−→ y.

Since T is closed, by the theorem in class (see Theorem 4.13-3 in Kreyszig) we have that Tx = y. Since
x ∈ C, we have that y ∈ T (C) and thus every Cauchy sequence in T (C) converges to something in T (C).
So T (C) is closed, as desired.

(b) Let {xn} be a Cauchy sequence in T−1(K) such that xn −→ x for some x ∈ X. Since xn ∈ T−1(K),
we have that yn = Txn ∈ K for each n. Since K is compact, the sequence {yn} in K has a convergent
subsequence {ynk

} that converges to some element

Txnk
= ynk

k→∞−−−−→ y

with y ∈ K. Since xnk

k→∞−−−−→ x and Txnk

k→∞−−−−→ y, by closedness of T we have that Tx = y. Then
x ∈ T−1(K) since y ∈ K, and thus every Cauchy sequence in T−1(K) converges to something in T−1(K).
Hence T−1(K) is closed, as desired.
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Problem 10 (Problem 10, Chapter 4.13, p. 296). Let X and Y be normed spaces and X compact. If
T : X −→ Y is a bijective closed linear operator, show that T−1 is bounded.

Solution. (I’m confused why we are assuming that X is compact. . . Isn’t {0} the only compact normed
space? That must be a typo in the book. I’m just going to ignore this assumption, since it is not needed.)

Proof. Since T is closed, we have that T (M) is closed in Y for each closed subset M ⊂ X. Since T is

bijective, its inverse T−1 exists, and furthermore we have that
(
T−1

)−1
= T . Hence, for each closed set

M ∈ X, we have that its preimage under T−1, namely
(
T−1

)−1
(M) = T (M), is closed in Y . This is the

definition of continuity of T−1, and thus T−1 is also bounded.
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Problem 11 (Problem 12, Chapter 4.13, p. 296). Let X and Y be normed spaces. If T1 : X −→ Y is a
closed linear operator and T2 ∈ B(X,Y ), show that T1 + T2 is a closed linear operator.

Solution. Proof. Let xn −→ x be a convergent sequence in X such that (T1 + T2)xn −→ y for some y ∈ Y .
Since T2 is bounded, we have that xn −→ x implies T2xn −→ T2x. Therefore, we have that

T1xn = (T1 + T2)xn︸ ︷︷ ︸
→y

−T2xn︸ ︷︷ ︸
→T2x

−→ y − T2x,

so T1x = y − T2x since T1 is closed. Hence

(T1 + T2)x = y,

and thus T1 + T2 is closed by Theorem 4.13-3 (in Kreyszig), since xn −→ x and (T1 + T2)xn −→ y implies
(T1 + T2)x = y.
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Problem 12 (Problem 14, Chapter 4.13, p. 297). Assume that the terms of the series u1 + u2 + · · · are
continuously differentiable on the interbal [0, 1] and that the series is uniformly convergent on [0, 1] and has
the sum x. Furthermore, suppose that u′1 + u′2 + · · · also converges unigivenformly on [0, 1]. Show that then
x is continuously differentiable on [0, 1] and x′ = u′1 + u′2 + · · · .

Solution. Proof. Note that the differential operator

T : D(T ) −→ X

x 7−→ x′

where X = C[0, 1] and D(T ) ⊂ X is the subspace of differentiable functions on [0, 1], is a closed operator.
Hence, if xn −→ x and x′n −→ y for some y ∈ C[0, 1], we have that x ∈ D(T ) and Tx = y.

By the notation in the problem statement, we have ui : [0, 1] −→ R is continuously differentiable for each
i, and that x : [0, 1] −→ R is the function

x(t) =

∞∑
i=1

ui(t),

and this is uniformly convergent. Hence, we have that the partial sums

xn(t) :=

n∑
i=1

ui(t)

converge to x, that is xn −→ x. By hypothesis, we have that the partial sums of the derivatives, given by

x′n(t) =

n∑
i=1

u′i(t),

converges uniformly to some function y ∈ C[0, 1]. That is, x′n = Txn −→ y. Since the differential operator
is closed, we have that

y = Tx = x′,

as desired.
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