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Problem 1 (Problem 8, Chapter 7.2, p. 374). If T' is a bounded linear operator and 77 is a linear extension
of T, show that o.(T) C o.(Th) Uo,(T1).

Solution. Proof. Let A € o.(T). If Tlxl does not exist, then A € 0,(11), so suppose that T1;1 exists. Note
that D(T/\_l) = R(TA) and D(Tl/(l) = R(Tl)\). Furthermore, since T} is an extension of T, we have that
R(T ,\) - R(T1 A). Hence 77 is unbounded since T} is unbounded, and

X =D(T;') c D(Th}")

SO D(Tlgl) is dense in X, and thus A € 0.(77) as desired. O



Problem 2 (Problem 4, Chapter 7.3, p. 379). Let X = ¢? and T: X — X be defined by y = Tz, v = (&)
and y = (1;) where n; = o;§; and (o) is dense in [0, 1]. Find 0,(7T") and o(T).

Solution. We have 0,(T) = {e; |i € N}, o(T) = [0, 1] and p(T) = (—00,0) U (1, +00).
Proof. We first note that o,,(T) = {«; | i € N}. Indeed, for each o, consider the sequence
zj=(0,...,0,1,0,...)

with a 1 in the j*® position and zeros elsewhere. Then Tz; = ajz; and thus a; € o,(T). Furthermore, if
X € 0,(T), then there is a nonzero = (§;) such that Tx = Az. In particular, this means that «;& = \¢; for
each i where §; # 0 for at least one j. Hence A = ¢ and thus A € {o; |7 € N}.

Note that T is bounded with ||T]] < 1, so by the theorem in class (see Theorem 7.3-2 in Kreyszig) we
have that o(T") is closed. So [0,1] = ¢,(T") C o(T).

Finally, we note that (—o0,0) U (1,4+00) C p(T). Indeed, suppose A € (—00,0) U (1,+00), then there
exists a 0 > 0 such that |a; — A| > § for all o; € [0,1]. Let y € X with y = (n;) and define §; = ﬁm

Then for each ¢ we have |{;| = ﬁ\m\ < %|n;| and thus

Z|§z‘\ < 572|ni| = 5||y\|~
=1 =1

So x = (&) is in X and ||z|| < }|ly|| such that Thz = y. Hence y € D(T} ') so we have that D(T5 ") = X.
Furthermore,

- 1
175wl =l < 5yl

so | T < + and thus Ty ! is bounded. Hence A € p(T). Since [0,1] C o(T) and (—o0,0)U(1,+00) C p(T),
we must have that o(T") = [0,1] and p(T) = (—00,0) U (1, +00). O



Problem 3 (Problem 6, Chapter 7.3, p. 379). With X = /2, find a linear operator T: X — X whose
eigenvalues are dense in a given compact set K C C and o(T) = K.

Solution. As in the previous problem, let («;) be dense in K and define T analogously, i.e.

y=Txr withz= (&), y= () and 1; = a;&;.

Then the eigenvalues of T are ¢,(T) = {a; |i € N} and we have K = 0,(T") C o(T') since o(T) is closed.
If A\ ¢ K, then there exists a § > 0 such that |a; — A| > 0 for all o;. Let y € X with y = (1;) and define
&= ﬁm such that x = (&) € X with Thz = y and

1
1T =191l = llall < 5l

so y € D(Ty'). Furthermore, T5 ' is bounded and D(T5 ') = X, so A € p(T). Hence o(T) = K.



Problem 4 (Problem 8, Chapter 7.3, p. 379). Let X = C[0,n] and define T: D(T) — X by z — 2",

where
D(T)={zreX|z,2" € X, z(0) = z(r) =0}.

Show that ¢(T) is not compact.

Solution. Consider the sequence {z,} of functions in D(T') given by x,(t) = sin(nt). Then for y, = Tz,

we have
yn(t) = —n?sin(nt) = —n2x, ().

Hence —n? € 0,(T) for all n € N, so o(T) is unbounded and thus not compact.



Problem 5 (Problem 10, Chapter 7.3, p. 379). Let T: £/ — (P be defined by x — (&2,&3,...) where z is
given by x = (£1,&2,...)., and 1 <p < 4o0. If |A| =1, is A an eigenvalue of T?

Solution. No. Suppose to the contrary that there is a A with |A| = 1 such that A is an eigenvalue. Then
there is a nonzero sequence = = (&;) such that &1 = A\F&, for each k, and thus & = \*~1¢;. However, the
norm

~ 1/p
e, = | Y14
j=1
- 1/p
= (D el
=1
1/p

= |&1] Zl

Jj=1

does not converge so x & (P.



Problem 6 (Problem 4, Chapter 7.4, p. 385). Let X be a complete Banach space, T € B(X,X) and p a
polynomial. Show that the equation

p(T)z =y
has a unique solution z for every y € X if and ouly if p(\) # 0 for all A € o(T).

Solution. (For one direction, I'm not sure how to prove this without using complex analysis and the Spectral
Theorem...)

Proof. Suppose that p(T)z = y has a unique solution, then p(T") is ivertible. Suppose that p(A) = 0 for some
A € o(T). Then p(z) = (z — N)g(z) for some polynomial ¢, but

p(T) = (T = M)q(T) = q(T)(T — M)
would not be invertible, since T — AI is not invertible, a contradiction to the assumption.

Now suppose that p(A) # 0 for all A € o(T). Then the function ¢(2) = ;5 is holomorphic on some
domain Q that contains ¢(T'), so we may define ¢(T') and o(q(T)) = q(o(T)). Furthermore, we have

q(T)p(T) = p(T)q(T) = (p- g)(T)

but p- g = 1 and is defined on Q D o(T). Hence (p-q)(T) = I, so ¢(T) = [p(T)]~! and thus p(7T) is
invertible. 0

(Addendum: the correct solution is:

Solution. Note that p(A) # 0 for all A € o(T) is equivalent to 0 ¢ p(o(T)) = o(p(T)). This in turn means
0 € p(p(T)), and thus p(T)~! exists and is defined everywhere. So x = p(T) 1y is unique.

Conversely suppose that p(T)z = y has a unique x € X for all y. Then p(T) is bijective and bounded,
so p(T)~! exists and is bounded by the open mapping theorem. Hence 0 € p(T).



Problem 7 (Problem 10, Chapter 7.5, p. 394). Show that the existence of the limit in

ro(T) = T {/[[T7]|
already follows from || 7™ | < || T™||||T™]|.
(Hint: set a, = [|T"||, by, = Ina,, a = inf(b,/n) and show that b, /n — a. See eq. (7) in Sec 2.7.)
1

Solution. Define the sequences a, = [|T"|| and b, = - Ina,. We want to show that the sequence b, is

decreasing. (I honestly have no idea where to go from here.....)



Problem 8 (Problem 8, Chapter 7.6, p. 403). Let A be a complex Banach algebra with identity and let G
be the set of all invertible elements of A. Show that the mapping G — G given by x — 2! is continuous.

Solution. We first prove the following lemma.

Lemma 1. Let xo € G. Suppose that x € A is an element such that ||x — x| < Then z € G and

1
.
llzo "

2
ey e Pl = ol
ot — gt < S L .
1= Jlzg e = ol

Proof. Define the element y = e — xalx. We have that
lyll = lle — =g 2l < flag | [l2o — || < 1.

By the theorem in class (see Them. 7.7-1 in Kreyszig), we have that e — y is invertible and
o0
e—y) 't =et+d ¢
i=1

and this series converges. Since ||y|| < 1, we have that ||y"|| < |ly||" for all n. Note that e —y = x5 = and
thus

o0
le = (zg'e) | = Jle—(e—») || < D v
o20:1
< Iyl
=1
o0
— n
<3 (g e - zol)
=1

g lllz = @l

since this is a geometric sum and [jy|| < ||zg |||}z — zo|| < 1. Finally, we have

g™ = 27| = [leg ™ (e = woa™H)]|

<l lllle — w0z ™|

[E
1— [lzg [l = o

112
r—x
- g Pl = ol

as desired. O

We now show that the inverse is continuous.

and note that 6 < —L—. Suppose that = € A

—.
llzg =l

Proof. Fix zp € G and let € > 0. Then let § =

is an element such that

£
2o 1 (llzg HlI+¢)

|z — ol <.
Since ||z — xol| < d < ﬁ, we have that
0

0<1—flag'lld < 1= lag* [llw — @l



and thus
1 1

— < — .
1= llag llle = zoll ~ 1= lzg (|0

From the lemma, we have that

=5 |l — o
_ 1 — &0
lo™t =25 < T
— llazg Ml = ol
_ 2
i
1= [y "6
-1 g 1
= [|T
lzg " ll+e
_ el
lzg |+ —e
= €.

Hence, for all € > 0 there exists a § > 0 such that ||z — 2¢|| < § implies ||z~ — 25| < e. So the inverse is

continuous.

O



Problem 9 (Problem 10, Chapter 9.1, p. 465). Let T be a linear operator on a Hilbert space H that satisfies
(Tz,y) = (x,Ty) forall z,y € H.
Then T is bounded. (Use the uniform bounded theorem to prove)

Solution. Suppose to the contrary that T' is unbounded. Then there is a sequence {y,} in H such that
lynll = 1 and || T'yy|| —> oo. Consider the sequence of functionals f,, defined by f,(x) = (Tx,y,). Then f,
is bounded for each n since

(@) = (T, yn)| < || T| lynl| = [T
~—

=1

Furthermore, the sequence {f,(x)} is bounded for all € H since |fn(z)| = |(Tz,yn)| < ||Tz|. By the
Uniform Boundedness Theorem, the sequence || fy| is bounded. That is there exists a ¢ > 0 such that
I/l < ¢ for all n. Finally, note that

2
HTynH = (Tyn, Tyn) = ‘fn(Tyn” < CHTynH

for all n and thus || Ty, || < ¢, a contradiction to the assumption that ||Ty, | — oo.

10



Problem 10 (Extra problem 1). Show that the product AB of two operators A and B is positive if A and
B are positive and [A, B] = 0.

Solution. Proof. Note that A and B must be self-adjoint linear operators since they are positive. If A =0
then the statement is trivial, so suppose that || A|| # 0. Define the operator A; = mA such that 0 < 4; <1

and A; also commutes with B. The goal is to construct a sequence of operators positive self-adjoint operators
(An)nen such that 0 < A,, < I and [A,, B] = 0 for each n and

Z AkQZ‘ = All‘
k=1

for all x € H. Then we would have that

oo

(ABz,x) = [|Al[(A1B, z, x) = ||A||< AkQ(Bx)afC>

k=1
oo

= [|A] Y (Ax Bz, Auz)
k=1

= [14]] ; <B(Ak$>)(; (Apx))
>0

and thus AB > 0.

Indeed, we construct the sequence of operators (A, )nen defined by A; = mA and
Apy1 = A, — A2 forn>1.

For each n, the operator A, is a polynomial in A and thus A, is self-adjoint. Similarly, we have [A,, B] =0

for all n since A commutes with B.
We show by induction that 0 < A,, < I for all n. Suppose that 0 < Ay < I for some k£ > 1 and thus we
have 0 < I — Ay, as well. We will show that 0 < Agyq < 1.

e We first show that 0 < Ay,1. Observe that
Appr = Ap — Ap® = A + Ay® — 24, + A — A4
= Ak2(1 — Ak) + Ak(.[ — Ak)2.
Note that (I — Ay) and Ay commute. Hence, for all z € H we have
<Ak+1$,1‘> = <Ak2(I — Ak)x,x> + <An(l - Ak)2$,$>
= <Ak(1 — Ak)x, Ak$> + <(I — Ak)Akx, ([ — Ak)LIL‘)
= (I — Ap)Anzx, Agx) + (Ap(I — Ag)z, (I — Ag)z)

>0 >0

>0
since 0 < (I — Ag) and 0 < Ay, by the induction hypothesis. So 0 < Ay as desired.
e We now show that 0 < I — Agy; and hence Agy 1 < I. Note that

I —Appr=1— (A — T2 = (I — Ap) + A2

11



So for all x € H we have

(I = Agg1)z,2) = (I — Ap)z, 2) + (A2, )
= (I — Ag)z,x) + (Agx, Apx)

>0 >0

>0

since 0 < (I — Ag) and 0 < Ay by the induction hypothesis. So I — Ag+1 > 0 and thus Ag4q < [ as
desired.

Next, we note that 4,2 = Aj, — Ag41 for each k and thus

ZAk2 = A” + Z(Ak — A1) =A% + ZAk - Z A1
k=1 k=2 k=2 k=2

= A2 4 A, —Ant1
——
Ay
=A - A

so we have ZZ=1 A2 = Ay — Ap41. Furthermore, note that A; — A,4+1 < A;. Hence for all x € H we have

Z | Apa]|” = Z (Apz, Apx) = <Z(Ak2)$,x>
k=1

k=1 k=1
= ((A1 — Any1)z, @)
< (Ajz,x)

and thus thes series > ,_, | Anz||*> converges. This implies that | T,z| — 0 and thus A,z — 0 for all 2.
Hence

(Z Ak2>x =Aix — Apw — Ay,
k=1

o0
SO we may write ZAkzx = Az forallz € H. O
k=1
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Problem 11 (Extra problem 2). Show that a positive self-adjoint linear operator has a unique positive
square root.

Solution.

Claim. Let X be a Banach space and T a positive self-adjoint bounded linear operator. Then there exists a
unique positive operator A such that A> =T.

Proof. If T = 0 then A = 0, so we may assume that ||T|| # 0. Without loss of generality, we may assume
that T' < I. Otherwise, we may define S = ﬁT such that S < I. If B is the unique positive linear operator
such that B? = S, then A = \/||T|| B is the unique operator such that A? = ||T||B? = ||T||S = T.

To show the existence of a positive square root, we construct a sequence of operators (A, )nen in the
following manner. Define Ag = 0 and

1
An+1:An+§(T—An2) form=1,2,....

We show the following:

(i)
(i)
(i)

iv)

(iv

A, < I for all n;
A, < A,y for ann n;
for all z € H, the sequence (A,z) converges to Az where A is an operator such that A? = T}

[A,S] =0 for all bounded linear operators S on H such that [S,T] = 0.

This proves the existence of a positive square root of 7.

(i)

(i)

We first show that A, < I for each n. Indeed, for n = 0 we have Ty = 0 < I and for n = 1 we have
A = %T < I since we assumed that T' < I. So suppose that Ay < I for some k > 1, then 0 < I — T}
by the induction hypothesis and 0 < I — 7. By the previous problem, we also have that 0 < (I —T},)2.
Since Apy1 = A + %(T — A;f)7 we have
I—Thy1=1-Tp — (T -T},”)
1 1 1 1 2
=5l +351—Tp — 5T+ 5Tk
=il -2+ W%+ 3(I - T)

S LI-T (-
——— S——

>0 >0

>0

and thus Tj1q < 1.

Next, note that 4g =0 < %T = A; and thus Ag < A;. Suppose that A;_1 < A for some k& > 1. Since
A < T and Agp_q < I, we have %(Ak + Ag—1) <I. Then

App1 — A = Ap + (T — Ap®) — [Ap—1 — 3(T — Ap_1?)]
= (A — A1) (I — 5(Ax — A1) (1)

>0 >0

> 0.

Indeed, each Ay is a polynomial in T, hence all the Ax’s and T all commute with one anothe. So
the two positive operators in (1) commute with each other and thus their product is another postive
operator. Hence Ay, < Ay as desired.
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(iii) We have the monotone sequence of self-adjoint operators
Ag <A <Ay <--- <

and I is bounded. Hence, the Monotone Sequence Theorem (Theorem 9.3-1 in Kreyszig) implies the
existence of a bounded self-adjoint linear operator A such that A,z — Ax for all x € H. Since
Apiix — Apx = %(Tx - Anzx)7 we have

%(Tx — An2x) =App1z— Ay — 0
and thus Tz = A%z for all z.
Furthermore, note that 0 < A since (A,z,z) > 0 for all n and = implies (Az,x) > 0 for all .

(iv) Suppose that S is a bounded linear operator on H such that [S,T] = 0. Since each 4,, is a polynomial
in T, we have that [S, 4,,] = 0 for each n. Noting that A, — Ax for each z yields [S, A] = 0.

Lastly, we prove uniqueness of A. Suppose that B is another positive self-adjoint operator such that
A?=PB?=T. Then BT = BB? = B?B = TB and thus [B,T] = 0 such that [4,B] = 0. Let v € H
and define y = (A — B)z such that (Ay,y) > 0 and (By,y) > 0 by positivity of A and B. Note that
(A+ B)(A — B) = (A? — B?) and thus

0= (Ay,y) + (By,y) = (A+ B)y,y) = (A+ B)(A = B)z,y) = ((A* + B*)z,y).

Hence (Ay,y) = (By,y) = 0. Since A > 0 is self-adjoint, there is a self-adjoint linear operator 0 < C' such
that C? = A. Then

0= (Ay,y) = (C?y,y) = (Cy, Cy) = || Cy|*

such that Cy = 0 and thus Ay = C%y = 0. Analogously, we can find a self-adjoint linear operator D such
that D? = B to find that Dy = 0 and thus By = 0. Hence (A — B)y = 0 and thus

I(4 = B)z||* = (A~ B)z, (A~ B)a) = (A~ B)*z,z) = (A - B)y,x) = 0.

=0

So (A — B)x =0 and thus Az = Bz for all z € H. O
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