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Problem 1 (Problem 8, Chapter 7.2, p. 374). If T is a bounded linear operator and T1 is a linear extension
of T , show that σc(T ) ⊂ σc(T1) ∪ σp(T1).

Solution. Proof. Let λ ∈ σc(T ). If T1
−1
λ does not exist, then λ ∈ σp(T1), so suppose that T1

−1
λ exists. Note

that D
(
T−1λ

)
= R

(
Tλ
)

and D
(
T1
−1
λ

)
= R

(
T1λ
)
. Furthermore, since T1 is an extension of T , we have that

R
(
Tλ
)
⊂ R

(
T1λ
)
. Hence T1λ is unbounded since Tλ is unbounded, and

X = D
(
T−1λ

)
⊂ D

(
T1
−1
λ

)
so D

(
T1
−1
λ

)
is dense in X, and thus λ ∈ σc(T1) as desired.
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Problem 2 (Problem 4, Chapter 7.3, p. 379). Let X = `2 and T : X −→ X be defined by y = Tx, x = (ξi)
and y = (ηi) where ηi = αiξi and (αi) is dense in [0, 1]. Find σp(T ) and σ(T ).

Solution. We have σp(T ) = {αi | i ∈ N}, σ(T ) = [0, 1] and ρ(T ) = (−∞, 0) ∪ (1,+∞).

Proof. We first note that σp(T ) = {αi | i ∈ N}. Indeed, for each αj , consider the sequence

xj = (0, . . . , 0, 1, 0, . . . )

with a 1 in the jth position and zeros elsewhere. Then Txj = αjxj and thus αj ∈ σp(T ). Furthermore, if
λ ∈ σp(T ), then there is a nonzero x = (ξi) such that Tx = λx. In particular, this means that αiξi = λξi for
each i where ξj 6= 0 for at least one j. Hence λ = αj and thus λ ∈ {αi | i ∈ N}.

Note that T is bounded with ‖T‖ ≤ 1, so by the theorem in class (see Theorem 7.3-2 in Kreyszig) we
have that σ(T ) is closed. So [0, 1] = σp(T ) ⊂ σ(T ).

Finally, we note that (−∞, 0) ∪ (1,+∞) ⊂ ρ(T ). Indeed, suppose λ ∈ (−∞, 0) ∪ (1,+∞), then there
exists a δ > 0 such that |αi − λ| > δ for all αi ∈ [0, 1]. Let y ∈ X with y = (ηi) and define ξi = 1

αi−ληi.

Then for each i we have |ξi| = 1
|αi−λ| |ηi| <

1
δ |ηi| and thus√√√√ ∞∑

i=1

|ξi|2 <

√√√√ 1

δ2

∞∑
i=1

|ηi|2 =
1

δ
‖y‖.

So x = (ξi) is in X and ‖x‖ < 1
δ ‖y‖ such that Tλx = y. Hence y ∈ D(T−1λ ) so we have that D(T−1λ ) = X.

Furthermore,

‖T−1λ y‖ = ‖x‖ < 1

δ
‖y‖

so ‖T−1λ ‖ <
1
δ and thus T−1λ is bounded. Hence λ ∈ ρ(T ). Since [0, 1] ⊂ σ(T ) and (−∞, 0)∪ (1,+∞) ⊂ ρ(T ),

we must have that σ(T ) = [0, 1] and ρ(T ) = (−∞, 0) ∪ (1,+∞).
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Problem 3 (Problem 6, Chapter 7.3, p. 379). With X = `2, find a linear operator T : X −→ X whose
eigenvalues are dense in a given compact set K ⊂ C and σ(T ) = K.

Solution. As in the previous problem, let (αi) be dense in K and define T analogously, i.e.

y = Tx with x = (ξi), y = (ηi) and ηi = αiξi.

Then the eigenvalues of T are σp(T ) = {αi | i ∈ N} and we have K = σp(T ) ⊂ σ(T ) since σ(T ) is closed.
If λ 6∈ K, then there exists a δ > 0 such that |αi − λ| > δ for all αi. Let y ∈ X with y = (ηi) and define
ξi = 1

αi−ληi such that x = (ξi) ∈ X with Tλx = y and

‖Tλ−1y‖ = ‖x‖ < 1

δ
‖y‖,

so y ∈ D(T−1λ ). Furthermore, T−1λ is bounded and D(T−1λ ) = X, so λ ∈ ρ(T ). Hence σ(T ) = K.
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Problem 4 (Problem 8, Chapter 7.3, p. 379). Let X = C[0, π] and define T : D(T ) −→ X by x 7−→ x′′,
where

D(T ) = {x ∈ X |x′, x′′ ∈ X, x(0) = x(π) = 0} .

Show that σ(T ) is not compact.

Solution. Consider the sequence {xn} of functions in D(T ) given by xn(t) = sin(nt). Then for yn := Txn
we have

yn(t) = −n2 sin(nt) = −n2xn(t).

Hence −n2 ∈ σp(T ) for all n ∈ N, so σ(T ) is unbounded and thus not compact.
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Problem 5 (Problem 10, Chapter 7.3, p. 379). Let T : `p −→ `p be defined by x 7−→ (ξ2, ξ3, . . . ) where x is
given by x = (ξ1, ξ2, . . . )., and 1 ≤ p ≤ +∞. If |λ| = 1, is λ an eigenvalue of T?

Solution. No. Suppose to the contrary that there is a λ with |λ| = 1 such that λ is an eigenvalue. Then
there is a nonzero sequence x = (ξi) such that ξk+1 = λkξk for each k, and thus ξk = λk−1ξ1. However, the
norm

‖x‖p =

 ∞∑
j=1

|ξj |p
1/p

=

 ∞∑
j=1

|λ|k−1︸ ︷︷ ︸
=1

|ξ1|p
1/p

= |ξ1|

 ∞∑
j=1

1

1/p

does not converge so x 6∈ `p.
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Problem 6 (Problem 4, Chapter 7.4, p. 385). Let X be a complete Banach space, T ∈ B(X,X) and p a
polynomial. Show that the equation

p(T )x = y

has a unique solution x for every y ∈ X if and only if p(λ) 6= 0 for all λ ∈ σ(T ).

Solution. (For one direction, I’m not sure how to prove this without using complex analysis and the Spectral
Theorem...)

Proof. Suppose that p(T )x = y has a unique solution, then p(T ) is ivertible. Suppose that p(λ) = 0 for some
λ ∈ σ(T ). Then p(z) = (z − λ)q(z) for some polynomial q, but

p(T ) = (T − λI)q(T ) = q(T )(T − λI)

would not be invertible, since T − λI is not invertible, a contradiction to the assumption.

Now suppose that p(λ) 6= 0 for all λ ∈ σ(T ). Then the function q(z) = 1
p(z) is holomorphic on some

domain Ω that contains σ(T ), so we may define q(T ) and σ(q(T )) = q(σ(T )). Furthermore, we have

q(T )p(T ) = p(T )q(T ) = (p · q)(T )

but p · q = 1 and is defined on Ω ⊃ σ(T ). Hence (p · q)(T ) = I, so q(T ) = [p(T )]−1 and thus p(T ) is
invertible.

(Addendum: the correct solution is:

Solution. Note that p(λ) 6= 0 for all λ ∈ σ(T ) is equivalent to 0 /∈ p(σ(T )) = σ(p(T )). This in turn means
0 ∈ ρ(p(T )), and thus p(T )−1 exists and is defined everywhere. So x = p(T )−1y is unique.

Conversely suppose that p(T )x = y has a unique x ∈ X for all y. Then p(T ) is bijective and bounded,
so p(T )−1 exists and is bounded by the open mapping theorem. Hence 0 ∈ ρ(T ).
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Problem 7 (Problem 10, Chapter 7.5, p. 394). Show that the existence of the limit in

rσ(T ) = lim
n→∞

n
√
‖Tn‖

already follows from ‖Tm+n‖ ≤ ‖Tm‖‖Tn‖.
(Hint: set an = ‖Tn‖, bn = ln an, α = inf(bn/n) and show that bn/n −→ α. See eq. (7) in Sec 2.7.)

Solution. Define the sequences an = ‖Tn‖ and bn = 1
n ln an. We want to show that the sequence bn is

decreasing. (I honestly have no idea where to go from here.....)
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Problem 8 (Problem 8, Chapter 7.6, p. 403). Let A be a complex Banach algebra with identity and let G
be the set of all invertible elements of A. Show that the mapping G −→ G given by x 7−→ x−1 is continuous.

Solution. We first prove the following lemma.

Lemma 1. Let x0 ∈ G. Suppose that x ∈ A is an element such that ‖x− x0‖ < 1
‖x−1

0 ‖
. Then x ∈ G and

‖x−1 − x−10 ‖ <
‖x−10 ‖

2‖x− x0‖
1− ‖x−10 ‖‖x− x0‖

.

Proof. Define the element y = e− x−10 x. We have that

‖y‖ = ‖e− x−10 x‖ ≤ ‖x−10 ‖‖x0 − x‖ < 1.

By the theorem in class (see Them. 7.7-1 in Kreyszig), we have that e− y is invertible and

(e− y)−1 = e+

∞∑
i=1

yn

and this series converges. Since ‖y‖ < 1, we have that ‖yn‖ < ‖y‖n for all n. Note that e − y = x−10 x and
thus

‖e− (x−10 x)−1‖ =
∥∥e− (e− y)−1

∥∥ ≤ ∥∥ ∞∑
i=1

yn
∥∥

≤
∞∑
i=1

‖y‖n

≤
∞∑
i=1

(
‖x−10 ‖‖x− x0‖

)n
=

‖x−10 ‖‖x− x0‖
1− ‖x−10 ‖‖x− x0‖

since this is a geometric sum and ‖y‖ < ‖x−10 ‖‖x− x0‖ < 1. Finally, we have∥∥x−10 − x−1
∥∥ =

∥∥x−10

(
e− x0x−1

)∥∥
≤ ‖x−10 ‖‖e− x0x−1‖

<
‖x−10 ‖

2‖x− x0‖
1− ‖x−10 ‖‖x− x0‖

as desired.

We now show that the inverse is continuous.

Proof. Fix x0 ∈ G and let ε > 0. Then let δ = ε

‖x−1
0 ‖(‖x

−1
0 ‖+ε)

and note that δ < 1
‖x−1

0 ‖
. Suppose that x ∈ A

is an element such that
‖x− x0‖ < δ.

Since ‖x− x0‖ < δ < 1
‖x−1

0 ‖
, we have that

0 < 1− ‖x−10 ‖δ < 1− ‖x−10 ‖‖x− x0‖
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and thus
1

1− ‖x−10 ‖‖x− x0‖
<

1

1− ‖x−10 ‖δ
.

From the lemma, we have that

∥∥x−1 − x−10

∥∥ < ‖x−10 ‖
2‖x− x0‖

1− ‖x−10 ‖‖x− x0‖

<
‖x−10 ‖

2
δ

1− ‖x−10 ‖δ

= ‖x−10 ‖
ε

‖x−10 ‖+ ε

1(
1− ε

‖x−1
0 ‖+ε

)
=

ε‖x−10 ‖
‖x−10 ‖+ ε− ε

= ε.

Hence, for all ε > 0 there exists a δ > 0 such that ‖x− x0‖ < δ implies ‖x−1 − x−10 ‖ < ε. So the inverse is
continuous.
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Problem 9 (Problem 10, Chapter 9.1, p. 465). Let T be a linear operator on a Hilbert space H that satisfies

〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H.

Then T is bounded. (Use the uniform bounded theorem to prove)

Solution. Suppose to the contrary that T is unbounded. Then there is a sequence {yn} in H such that
‖yn‖ = 1 and ‖Tyn‖ −→ ∞. Consider the sequence of functionals fn defined by fn(x) = 〈Tx, yn〉. Then fn
is bounded for each n since

|fn(x)| = |〈Tx, yn〉| ≤ ‖Tx‖ ‖yn‖︸︷︷︸
=1

= ‖Tx‖.

Furthermore, the sequence {fn(x)} is bounded for all x ∈ H since |fn(x)| = |〈Tx, yn〉| ≤ ‖Tx‖. By the
Uniform Boundedness Theorem, the sequence ‖fn‖ is bounded. That is there exists a c > 0 such that
‖fn‖ < c for all n. Finally, note that

‖Tyn‖2 = 〈Tyn, Tyn〉 = |fn(Tyn)| ≤ c‖Tyn‖

for all n and thus ‖Tyn‖ ≤ c, a contradiction to the assumption that ‖Tyn‖ −→ ∞.
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Problem 10 (Extra problem 1). Show that the product AB of two operators A and B is positive if A and
B are positive and [A,B] = 0.

Solution. Proof. Note that A and B must be self-adjoint linear operators since they are positive. If A = 0
then the statement is trivial, so suppose that ‖A‖ 6= 0. Define the operator A1 = 1

‖A‖A such that 0 ≤ A1 ≤ I
and A1 also commutes with B. The goal is to construct a sequence of operators positive self-adjoint operators
(An)n∈N such that 0 ≤ An ≤ I and [An, B] = 0 for each n and

∞∑
k=1

Ak
2x = A1x

for all x ∈ H. Then we would have that

〈ABx, x〉 = ‖A‖〈A1B, x, x〉 = ‖A‖

〈 ∞∑
k=1

Ak
2(Bx), x

〉

= ‖A‖
∞∑
k=1

〈AkBx,Anx〉

= ‖A‖
∞∑
k=1

〈B(Akx), (Akx)〉︸ ︷︷ ︸
≥0

≥ 0

and thus AB ≥ 0.

Indeed, we construct the sequence of operators (An)n∈N defined by A1 = 1
‖A‖A and

An+1 = An −An2 for n ≥ 1.

For each n, the operator An is a polynomial in A and thus An is self-adjoint. Similarly, we have [An, B] = 0
for all n since A commutes with B.

We show by induction that 0 ≤ An ≤ I for all n. Suppose that 0 ≤ Ak ≤ I for some k ≥ 1 and thus we
have 0 ≤ I −Ak as well. We will show that 0 ≤ Ak+1 ≤ I.

• We first show that 0 ≤ Ak+1. Observe that

Ak+1 = Ak −Ak2 = Ak +Ak
2 − 2An +Ak

3 −Ak3

= Ak
2(I −Ak) +Ak(I −Ak)2.

Note that (I −Ak) and Ak commute. Hence, for all x ∈ H we have

〈Ak+1x, x〉 =
〈
Ak

2(I −Ak)x, x
〉

+
〈
An(I −Ak)2x, x

〉
= 〈Ak(1−Ak)x,Akx〉+ 〈(I −Ak)Akx, (I −Ak)x〉
= 〈(I −Ak)Anx,Akx〉︸ ︷︷ ︸

≥0

+ 〈Ak(I −Ak)x, (I −Ak)x〉︸ ︷︷ ︸
≥0

≥ 0

since 0 ≤ (I −Ak) and 0 ≤ Ak by the induction hypothesis. So 0 ≤ Ak+1 as desired.

• We now show that 0 ≤ I −Ak+1 and hence Ak+1 ≤ I. Note that

I −Ak+1 = I − (Ak − Tk2) = (I −Ak) +Ak
2.
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So for all x ∈ H we have

〈(I −Ak+1)x, x〉 = 〈(I −Ak)x, x〉+
〈
Ak

2x, x
〉

= 〈(I −Ak)x, x〉︸ ︷︷ ︸
≥0

+ 〈Akx,Akx〉︸ ︷︷ ︸
≥0

≥ 0

since 0 ≤ (I − Ak) and 0 ≤ Ak by the induction hypothesis. So I − Ak+1 ≥ 0 and thus Ak+1 ≤ I as
desired.

Next, we note that Ak
2 = Ak −Ak+1 for each k and thus

n∑
k=1

Ak
2 = A1

2 +

n∑
k=2

(Ak −Ak+1) = A1
2 +

n∑
k=2

Ak −
n∑
k=2

Ak+1

= A1
2 +A2︸ ︷︷ ︸
A1

−An+1

= A1 −An+1

so we have
∑n
k=1Ak

2 = A1 −An+1. Furthermore, note that A1 −An+1 ≤ A1. Hence for all x ∈ H we have

n∑
k=1

‖Anx‖2 =

n∑
k=1

〈Akx,Akx〉 =

〈
n∑
k=1

(
Ak

2
)
x, x

〉
= 〈(A1 −An+1)x, x〉
≤ 〈A1x, x〉

and thus thes series
∑n
k=1 ‖Anx‖

2
converges. This implies that ‖Tnx‖ −→ 0 and thus Anx −→ 0 for all x.

Hence ( n∑
k=1

Ak
2

)
x = A1x−An+1x −→ A1x,

so we may write

∞∑
k=1

Ak
2x = A1x for all x ∈ H.
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Problem 11 (Extra problem 2). Show that a positive self-adjoint linear operator has a unique positive
square root.

Solution.

Claim. Let X be a Banach space and T a positive self-adjoint bounded linear operator. Then there exists a
unique positive operator A such that A2 = T .

Proof. If T = 0 then A = 0, so we may assume that ‖T‖ 6= 0. Without loss of generality, we may assume
that T ≤ I. Otherwise, we may define S = 1

‖T‖T such that S ≤ I. If B is the unique positive linear operator

such that B2 = S, then A =
√
‖T‖B is the unique operator such that A2 = ‖T‖B2 = ‖T‖S = T .

To show the existence of a positive square root, we construct a sequence of operators (An)n∈N in the
following manner. Define A0 = 0 and

An+1 = An +
1

2
(T −An2) for n = 1, 2, . . . .

We show the following:

(i) An ≤ I for all n;

(ii) An ≤ An+1 for ann n;

(iii) for all x ∈ H, the sequence (Anx) converges to Ax where A is an operator such that A2 = T ;

(iv) [A,S] = 0 for all bounded linear operators S on H such that [S, T ] = 0.

This proves the existence of a positive square root of T .

(i) We first show that An ≤ I for each n. Indeed, for n = 0 we have T0 = 0 ≤ I and for n = 1 we have
A1 = 1

2T ≤ I since we assumed that T ≤ I. So suppose that Ak ≤ I for some k ≥ 1, then 0 ≤ I − Tk
by the induction hypothesis and 0 ≤ I − T . By the previous problem, we also have that 0 ≤ (I − Tk)2.
Since Ak+1 = Ak + 1

2 (T −Ak2), we have

I − Tk+1 = I − Tk − 1
2 (T − Tk2)

= 1
2I + 1

2I − Tk −
1
2T + 1

2Tk
2

= 1
2 (I − 2Tk + Tk

2) + 1
2 (I − T )

= 1
2 (I − Tk)2︸ ︷︷ ︸

≥0

+ 1
2 (I − T )︸ ︷︷ ︸

≥0

≥ 0

and thus Tk+1 ≤ I.

(ii) Next, note that A0 = 0 ≤ 1
2T = A1 and thus A0 ≤ A1. Suppose that Ak−1 ≤ Ak for some k ≥ 1. Since

Ak ≤ I and Ak−1 ≤ I, we have 1
2 (Ak +Ak−1) ≤ I. Then

Ak+1 −Ak = Ak + 1
2 (T −Ak2)−

[
Ak−1 − 1

2 (T −Ak−12)
]

= (Ak −Ak−1)︸ ︷︷ ︸
≥0

(
I − 1

2 (Ak −Ak−1)
)︸ ︷︷ ︸

≥0

(1)

≥ 0.

Indeed, each Ak is a polynomial in T , hence all the Ak’s and T all commute with one anothe. So
the two positive operators in (1) commute with each other and thus their product is another postive
operator. Hence Ak ≤ Ak+1 as desired.
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(iii) We have the monotone sequence of self-adjoint operators

A0 ≤ A1 ≤ A2 ≤ · · · ≤ I

and I is bounded. Hence, the Monotone Sequence Theorem (Theorem 9.3-1 in Kreyszig) implies the
existence of a bounded self-adjoint linear operator A such that Anx −→ Ax for all x ∈ H. Since
An+1x−Anx = 1

2 (Tx−An2x), we have

1
2 (Tx−An2x) = An+1x−Anx −→ 0

and thus Tx = A2x for all x.

Furthermore, note that 0 ≤ A since 〈Anx, x〉 ≥ 0 for all n and x implies 〈Ax, x〉 ≥ 0 for all x.

(iv) Suppose that S is a bounded linear operator on H such that [S, T ] = 0. Since each An is a polynomial
in T , we have that [S,An] = 0 for each n. Noting that Anx −→ Ax for each x yields [S,A] = 0.

Lastly, we prove uniqueness of A. Suppose that B is another positive self-adjoint operator such that
A2 = B2 = T . Then BT = BB2 = B2B = TB and thus [B, T ] = 0 such that [A,B] = 0. Let x ∈ H
and define y = (A − B)x such that 〈Ay, y〉 ≥ 0 and 〈By, y〉 ≥ 0 by positivity of A and B. Note that
(A+B)(A−B) = (A2 −B2) and thus

0 = 〈Ay, y〉+ 〈By, y〉 = 〈(A+B)y, y〉 = 〈(A+B)(A−B)x, y〉 =
〈
(A2 +B2)x, y

〉
.

Hence 〈Ay, y〉 = 〈By, y〉 = 0. Since A ≥ 0 is self-adjoint, there is a self-adjoint linear operator 0 ≤ C such
that C2 = A. Then

0 = 〈Ay, y〉 =
〈
C2y, y

〉
= 〈Cy,Cy〉 = ‖Cy‖2

such that Cy = 0 and thus Ay = C2y = 0. Analogously, we can find a self-adjoint linear operator D such
that D2 = B to find that Dy = 0 and thus By = 0. Hence (A−B)y = 0 and thus

‖(A−B)x‖2 = 〈(A−B)x, (A−B)x〉 =
〈
(A−B)2x, x

〉
=
〈
(A−B)y︸ ︷︷ ︸

=0

, x
〉

= 0.

So (A−B)x = 0 and thus Ax = Bx for all x ∈ H.
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