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Problem 1

Problem 1 (Naimark’s Theorem). Consider the the rank 1 matrices

Fa =
2

3
|↑n̂a
〉 〈↑n̂a

| , a = 1, 2, 3,

where |↑n̂a〉 ∈ C2 for every a and the unit vectors n̂a ∈ R3 satisfy n̂1 + n̂2 + n̂3 = 0.

(a) Show that the set {Fa} is a POVM.

(b) Find an orthonormal basis {|va〉} in C3 such that {Fa} is realized by {Ea} where Ea = |va〉 〈va|.

Solution. (a) We need to show that
∑
a Fa = I. First note that

∑
a TrFa = 2

3

∑
a Tr |↑n̂a

〉 〈↑n̂a
| = 2

3 ·3 = 2.
Next, we show that

∑
a 〈Fa, σj〉 = 0 for each j = 1, 2, 3, where the operators σj are the standard Pauli

operators. Recall that, for every j = 1, 2, 3 and every unit vector n̂ ∈ R3, we have 〈↑n̂|σj |↑n̂〉 = n̂ · êj
where {êj} are the standard unit vectors in R3. Thus∑

a

〈Fa, σj〉 =
2

3

∑
a

Tr [|↑n̂a
〉 〈↑n̂a

|σj ]

=
2

3

∑
a

〈↑n̂a
|σj |↑n̂a

〉

=
2

3

∑
a

n̂a · êj = 0,

which follows from the assumption that
∑
a n̂a = 0.

(b) The set of vectors {|↑n̂1
〉 , |↑n̂2

〉 , |↑n̂3
〉} must be linearly dependent, since it is a set of three vectors in a

space of dimension 2. This implies that there is a non-trivial linear combination of these vectors such
that

α1 |↑n̂1〉+ α2 |↑n̂2〉+ α3 |↑n̂3〉 = 0,

where α1, α2, α3 ∈ C are not all zero. We may assume that |α1|2 + |α2|2 + |α3|2 = 1 without loss of
generality. Define the vectors

|va〉 =

√
2

3
〈0| ↑n̂a

〉 |0〉+

√
2

3
〈1| ↑n̂a

〉 |1〉+ αa |2〉

for every a = 1, 2, 3 and define the operator

U =
∑
a

|va〉 〈a| .
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In block matrix form, this matrix is

U =

(√
2
3 |↑n1〉

√
2
3 |↑n2〉

√
2
3 |↑n3〉

α1 α2 α3

)
.

We have that

UU∗ =

(√
2
3 |↑n1

〉
√

2
3 |↑n2

〉
√

2
3 |↑n3

〉
α1 α2 α3

)
√

2
3 〈↑n1 | α1√
2
3 〈↑n2

| α2√
2
3 〈↑n3

| α3


=

 2
3

∑
a |↑n̂a〉 〈↑n̂a |

√
2
3

∑
a αa |↑n̂a〉√

2
3

∑
a αa 〈↑n̂a

|
∑
a|αa|2


=

(
I 0
0 1

)
and thus U is a unitary operator. It follows that {|va〉} must be an orthonormal basis of C3.
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Problem 2

Problem 2 (The Density Operator of a Qutrit). Consider a density operator for a qutrit; that is, ρ :

C3 → C3. Let ~λ = (λ1, λ2, . . . , λ8) be a vector of matrices where λi (i = 1, 2, . . . , 8) are some Hermitian
traceless 3 × 3 generalizations of the Pauli matrices (e.g. the Gell-Mann matrices) satisfying the condition
Tr(λiλj) = 2δij (note that also the Pauli matrices satisfy this orthogonality condition).

(a) Show that ρ can be written as:

ρ =
1

3
I + ~P · ~λ,

where ~P is a vector in R8 and I is the 3× 3 identity matrix.

(b) Show that |~P | ≤ 1√
3
.

(c) Show that if ρ is a pure state then |~P | = 1√
3
.

(d) Is it true that every ~P with |~P | ≤ 1√
3

corresponds to a density matrix?

Solution. (a) The space of 3× 3 hermitian matrices is 9-dimensional as a real vector space. Since each λk
is traceless and Trλiλj = δij holds for each pair (i, j), it follows that {I, λ1, . . . , λ8} is an orthogonal
basis. Hence every qutrit density operator can be written uniquely as

ρ = p0I + p1λ1 + · · ·+ p8λ8

for some real numbers p0, . . . , p8. Note that Tr ρ = p0 Tr I = 3p0. Since it must hold that Tr ρ = 1, it
follows that p0 = 1

3 . Defining ~P = (p1, . . . , p8) yields the desired result.

(b) Recall that Tr ρ2 ≤ 1 for all density operators ρ, and equality holds if and only if ρ is pure. We have

ρ2 =
1

9
I +

1

3
~P · ~λ+

∑
i,j

PiPjλiλj ,

and thus

Tr ρ2 =
1

9
· 3 + 0 + 2

∑
i

P 2
i =

1

3
+ 2|P |2.

Noting that Tr ρ2 ≤ 1 must hold, it follows that |P |2 ≤ 1
3 and thus |P | ≤ 1√

3
.

(c) Using the same observation as above, since Tr ρ2 = 1 holds for any pure state, it follows that |P | = 1√
3
.

(d) No. Consider the following 3× 3 matrix, which is traceless and has the property that Trλ21 = 2

λ1 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

We may then construct the remaining desired set of traceless matrices λ2, . . . , λ8 using this λ1. Choose
~P = 1√

3
(1, 0, . . . , 0) and consider the matrix

1

3
I + ~P · ~λ =

1

3

1 0 0
0 1 0
0 0 1

+
1

3

1 0 0
0 1 0
0 0 −2

 =
1

3

2 0 0
0 2 0
0 0 −1

 ,

which clearly has a negative eigenvalue even though |~P | = 1√
3
. It follows that |~P | ≤ 1√

3
is not a sufficient

criterion for 1
3I + ~P · ~λ to be a density operator.
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Problem 3

Problem 3 (Teleportation & Superdense Coding). Consider the maximally entangled state in C2 ⊗ Cd
shared between Alice and Bob:

|ψ〉AB =
1√
d

(
|0〉A |0〉B + · · ·+ |d− 1〉A |d− 1〉B

)
.

(a) Find a protocol for faithful teleportation of a qudit from Alices lab to Bobs lab. What are the Kraus
operators representing Alices joint measurement? What are the unitary operators performed by Bob?
How many classical bits Alice transmits to Bob?

(b) Argue that the protocol you found in (a) can be used to teleport any mixed state ρ in d dimensions.

(c) Find a protocol for a super-dense coding using the above state. How many classical bits Alice can encode
in her qudit?

Solution. (a) Let |ϕ〉A
′

=
∑d−1
m=0 αm |m〉

A′
be an arbitrary state of a qudit (of an ancillary system labeled

A′) that Alice wants to teleport. Consider the unitary operators defined by

X =

d∑
j=0

|j + 1〉 〈j| and Z =

d∑
j=0

ωj |j〉 〈j|

where ω = ei2π/d is the principal dth root of unity. For each k, l ∈ {0, . . . d− 1}, define unitary operators
Ukl = XkZl and unit vectors |ψkl〉 = (I ⊗U∗kl) |ψ〉. Note that ZX = ωXZ and U∗kl = Z−lX−k. This set
of d2 vectors form an orthonormal basis, since

〈ψk′,l′ |ψkl〉 = 〈ψ| I ⊗ (Xk′Zl
′
Z−lX−k) |ψ〉

= ωk(l−l
′) 〈ψ| I ⊗ (Xk′−kZl

′−l) |ψ〉
= δk,k′δl,l′ .

Define the operators Mkl = |ψ〉 〈ψ|Ukl for each k, l. Note that∑
kl

M∗klMkl =
∑
kl

|ψkl〉 〈ψkl| = I

so these operators define a valid measurement. Suppose Alice performs the corresponding measurement
on her systems. If Alice obtains outcome (k, l), Bob performs the unitary Ukl = (UTkl)

∗ such that the
resulting state is

(Mkl ⊗ Ukl)(|ϕ〉A
′
⊗ |ψ〉AB) = (|ψ〉 〈ψ|A

′A ⊗ IB)
(
IA

′
⊗ UAkl ⊗ Ukl

B
)(
|ϕ〉A

′
⊗ |ψ〉AB

)
= (|ψ〉 〈ψ|A

′A ⊗ I)
(
|ϕ〉A

′
⊗ |ψ〉AB

)
=

1

d

∑
i,j,m

(αm 〈i|m〉 〈i|j〉)
(
|ψ〉A

′A ⊗ |j〉B
)

=
1

d

∑
m

αm |ψ〉A
′A ⊗ |m〉B =

1

d
|ψ〉A

′A ⊗ |ϕ〉B ,

where we use the fact that U ⊗ U |ψ〉 = |ψ〉 for every unitary operator U acting on the maximally
entangled state vector |ψ〉.
In this scheme, Alice tells Bob which of the d different outcomes she obtains, so she must transmit log2 d
bits of information.

4



(b) Define a channel Λ on the system A′ ⊗A⊗B by Λ(σ) =
∑
kl(Mkl ⊗ Ukl)σ(M∗kl ⊗ UT

kl). It is clear that

Λ(|ϕ〉 〈ϕ|A
′
⊗ |ψ〉 〈ψ|AB) = |ψ〉 〈ψ|A

′A ⊗ |ϕ〉 〈ϕ|B

holds for every pure state |ϕ〉. By linearity, it holds that Λ(ρA
′ ⊗ |ψ〉 〈ψ|AB) = |ψ〉 〈ψ|A

′A⊗ ρB for every
density operator ρ on Cd.

(c) Alice and Bob start by sharing the maximally entangled state |ψ〉AB of two qudits. She can send one of
the d2 messages of the form (k, l) ∈ {0, . . . , d− 1}2. Alice chooses her message to be (k, l) and performs
the unitary U∗kl on her half of the system and subsequently transmit her qudit to Bob. The resulting
state that Bob obtains is

U∗kl ⊗ I |ψ〉 .

Bob then performs the measurement corresponding to the measurement operators {Mk′l′} defined by
Mk′l′ = |ψ〉 〈ψ| (Uk′l′ ⊗ I) (the same measurement that Alice performed is the previous problem). Note
that he obtains the result (k, l) with unit probability, since

Mk′l′(U
∗
kl ⊗ I) |ψ〉 = 〈ψ| (Uk′l′U∗kl ⊗ I) |ψ〉︸ ︷︷ ︸

δkk′δll′

|ψ〉 ,

and thus faithfully receives the intended message sent to him by Alice.
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Problem 4

Problem 4. Consider the entangled state shared between Alice and Bob:

|ψ〉AB =
√
p0 |0〉A |0〉B + · · ·+√pn−1 |n− 1〉A |n− 1〉B .

1. Prove the following theorem: Faithful teleportation of a qudit is possible if, and only if,

Et(|ψ〉AB) log2 pmax ≥ log2 d,

where pmax = maxk pk. That is, teleportation is possible if, and only if, none of the Schmidt coefficients
are greater than 1/d. This also implies that the Schmidt rank n is greater or equal to d.

2. Find a protocol for faithful teleportation of a qubit from Alices lab to Bobs lab assuming Alice and
Bob sharing the partially entangled state

|ψ〉AB =
1√
2
|00〉AB +

1

2
|11〉AB +

1

2
|22〉AB .

In particular, determine the projective measurement performed by Alice and the unitary operators
performed by Bob. What is the optimal classical communication cost? That is, how many classical
bits Alice has to send to Bob?

Solution. We suppose that the teleportation scheme is performed by the following operations: (1) Alice
and Bob first convert |ψ〉 to a maximally entangled state of two qudits (i.e. two d-dimensional systems), and
(2) Alice and Bob use the maximally entangled state to teleport |ϕ〉 (an arbitrary pure state of a qudit).

(a) Proof. Suppose that − log2 pmax ≥ log2 d. It follows that pk ≤ 1/d for every k and thus n ≥ d. Without
loss of generality, we may suppose that the pk are in decreasing order, i.e. p1 ≥ · · · ≥ pn−1 ≥ 0. For
each k = 1, . . . , d− 1, it holds that

k∑
i=0

pi ≤
k

d
=

k∑
i=0

1

d

and for each k = d, . . . , n− 1 it holds that

k∑
i=0

pi ≤ 1 =

d−1∑
i=0

1

d
.

It follows that (p1, . . . , pn−1) �
(
1
d , . . . ,

1
d , 0, . . . , 0

)
and thus |ψ〉 can be converted into the maximally

entangled state of two qudits via LOCC.

On the other hand, suppose that |ψ〉 can be converted into the maximally entangled state of two qudits
via LOCC. By the majorization condition, it follows that p1 ≤ 1

d . Since pn−1 ≤ · · · ≤ p1, it holds that
pmax = maxk{pk} ≤ 1

d and thus − log2 pmax ≥ log2 d.

(b) Consider the following operators:

M1 =
1√
2
|0〉 〈0|+ |1〉 〈1| =

 1√
2

0 0

0 1 0
0 0 0


M2 =

1√
2
|0〉 〈0|+ |2〉 〈2| =

 1√
2

0 0

0 0 0
0 0 1
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Note that

M∗1M1 =
1

2
|0〉 〈0|+ |1〉 〈1| =

 1
2 0 0
0 1 0
0 0 0


and

M∗2M2 =
1

2
|0〉 〈0|+ |2〉 〈2| =

 1
2 0 0
0 0 0
0 0 1


and thus M∗1M1 + M∗2M2 = I, so the operators {M1,M2} define a valid measurement. Furthermore
consider the unitary operators

U1 = |0〉 〈0|+ |1〉 〈1|+ |2〉 〈2|

and
U2 = |0〉 〈0|+ |1〉 〈2|+ |2〉 〈1| ,

so that U1 = I is the identity matrix and U2 is the permutation matrix that swaps 1 and 2. It holds
that

M1 ⊗ U1 |ψ〉 = M2 ⊗ U2 |ψ〉 =
1√
2

(|00〉+ |11〉) .

The resulting state can be used by Alice and Bob to perform perfect teleportation using the standard
means.

To first convert |ψ〉 into the Bell state, Alice must transmit one bit of information (either 1 or 2). To
perform the teleportation protocol, Alice must transmit 2 bits of information to Bob. The composition
of these two actions requires that Alice send a total of 3 bits to Bob. It’s possible that Alice and Bob
could transport the state |ϕ〉 directly without converting |ψ〉 into a Bell state first and use fewer bits,
but that is beyond the scope of this assignment.
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Problem 5

Problem 5 (Majorization). .

(a) Find the extreme points of the convex set of all n× n column stochastic matrices.

(b) Show that a matrix A is doubly stochastic if and only if A~x is majorized by ~x for all vectors ~x (do not
use Birkhoff’s theorem).

(c) Show that ~x ≺ ~y if and only if ~x = D~y for some doubly stochastic matrix D.

Solution. Note that in this solution we will be concerned with n × n matrices and n-dimensional vectors
for some fixed positive integer n.

(a) We will show that the extreme points of the set of n× n column stochastic matrices is the set of n× n
matrices that have exactly one 1 in each column and zeros elsewhere.

Proof. It is clear that these matrices are indeed column stochastic. To show that these matrices are also
the extreme points of the set of column stochastic matrices, we will show that matrices not of this form
are not extreme points.

Suppose A is not of this form. There is at least one pair of indices (i1, j1) such that ai1j1 ∈ (0, 1). Since
A is column stochastic, there must be at least one other entry ai2j1 in the same column but different
row, with i1 6= i2, such that ai2j1 ∈ (0, 1). Let ε = min{ai1j1 , ai2j1} and define a new n× n matrix B by

B = ε (Ei1j1 − Ei2j1)

where Eij is the n×n matrix with a 1 in the (i, j)-entry and zeros elsewhere for every i, j. The sum of the
columns of B are all zero, so it follows that both A+B and A−B are column stochastic. Furthermore,
we see that

A =
1

2
(A−B) +

1

2
(A+B)

and thus A is not an extreme point.

(b) For each i, j ∈ {1, . . . , n}, let aij = ~ei
TA~ej denote the matrix elements of A, where the vectors {~ej} are

the standard basis vectors of Rn.

Proof. Suppose A is doubly stochastic. Let ~x be a vector and let ~y = A~x. Without loss of generality,
we may assume that the elements of both ~x and ~y are in decreasing order. Indeed, if ~x and ~y are not in
decreasing order, let Px and Py be permutation matrices that order the entries of ~x and ~y respectively
(i.e. such that ~x↓ = Px~x and ~y↓ = Py~y). Note that ~x ≺ ~y ⇐⇒ ~x↓ ≺ ~y↓ and that

~y↓ = A′~x↓

where A′ = PyAP
−1
x is another doubly stochastic matrix.

From the above argument, it is clear that we only need to prove the case where the entries of both ~x
and ~y are in decreasing order. For every i, k ∈ {1, . . . , d}, define the values

tik =

k∑
j=1

aij .

It holds that 0 ≤ tik ≤ 1 for every i and k. Furthermore, note that k =
∑n
i=1 tik for every k, since this

is the sum of the entries in the first k columns of A (and each column must sum to 1). Now, for every
k we have that

k∑
j=1

yj −
k∑
j=1

xj =

k∑
j=1

n∑
i=1

aijxi −
k∑
j=1

xj
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=

n∑
i=1

tikxi −
k∑
j=1

xj

=

n∑
i=1

tikxi −
k∑
j=1

xj +

(
k −

n∑
i=1

tik

)
xk

=

k∑
i=1

(tik − 1)︸ ︷︷ ︸
≤0

(xi − xk)︸ ︷︷ ︸
≥0

+

n∑
i=k+1

tik︸︷︷︸
≥0

(xi − xk)︸ ︷︷ ︸
≤0

≤ 0.

Thus
∑k
j=1 yj ≤

∑k
j=1 xj holds for every k. Furthermore, it is clear that

∑n
j=1 yj =

∑n
j=1 xj since A is

doubly stochastic. It follows that ~y ≺ ~x.

Now suppose that A~x ≺ ~x for all vectors ~x. We will show that A has nonnegative entries and that all of
the rows and columns of A sum to unity. Consider the standard basis vectors {~ej}. These are probability

vectors, so it follows that A~ej is a probability vector for each j since it holds that A~~ej ≺ ~ej . For each j,
summing the entries of the jth column of A yields

n∑
i=1

aij =

n∑
i=1

~eTi A~ej = 1

since the sum of the entries of A~ej must sum to 1. Furthermore, this shows that all of the entries of A
are nonnegative since each A~ej must have nonnegative entries. To show that the rows of A also sum to
unity, consider the vector

~x =
1

d

1
...
1

 .

Recall that every d-dimensional probability vector majorizes x. Since it must hold that A~x ≺ ~x, it
follows that A~x = ~x. For every i, the sum of the ith row of A is

n∑
j=1

aij = ~eTi A

 n∑
j=1

~ej

 = d~eTi Ax = d~eTi x = d
1

d
= 1,

as desired.

(c) Proof. 1 If there exists a doubly stochastic matrix D such that ~x = D~y, we see that ~x ≺ ~y is clear from
part (b). We prove the converse by induction on n. If n = 1, the statement is trivial so we may assume
that n ≥ 2 and assume that the statement holds for all vectors in Rn−1. Let ~x, ~y ∈ Rn and suppose that
~x ≺ ~y. Without loss of generality, we may suppose that the entries of ~x and ~y are in decreasing order.
It is clear that x1 ≤ y1 and that yn ≤ xk. Hence yn ≤ x1 ≤ y1 since xn ≤ x1.

Let s ∈ {1, . . . , n} be the smallest integer satisfying ys ≤ x1 ≤ y1. In the case that s = 1, it follows that

~w =

x2...
xn

 ≺
y2...
yn

 = ~z

where ~w and ~z are vectors in Rn−1. By the induction hypothesis, there exists an (n−1)× (n−1) doubly
stochastic matrix B satisfying ~w = B~z and we can define an n× n doubly stochastic matrix D by

D =

(
1 0
0 B

)
1The idea for this proof came from the proof of Theorem 13.2 in Theory of Quantum Information by John Watrous
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that satisfies ~x = D~y.

In the case that s > 1, it holds that ys ≤ x1 < y1 and so there must exist a real number p ∈ [0, 1) such
that x1 = py1 + (1− p)ys. Define the vectors ~w = (w2, . . . , wn) and ~z = (z2, . . . , zn) in Rn−1 as

~w = (x2, . . . , xn)

~z = (y2, . . . , ys−1, (1− p)y1 + pys, ys+1, . . . , yn).

Note that yj > x1 holds for every j = 1, . . . , s− 1, since s is the smallest value for which ys ≤ x1 holds.
Hence, for every k ∈ {2, . . . , s− 1} it holds that

k∑
j=1

zj = z2 + · · ·+ zk = y2 + · · ·+ ym > (k − 1)x1 ≥ x2 + · · ·xm = w2 + · · ·+ wk =

k∑
j=1

wj .

Furthermore, for every k ∈ {s, . . . , n} it holds that

k∑
j=1

zj = z2 + · · ·+ zm = (1− p)y1 + y2 + · · ·+ ys−1 + pys + ys+1 + ym

= y1 + · · ·+ ym − (py1 + (1− p)ys)
= y1 + · · ·+ ym − x1
≥ x1 + · · ·xm − x1

= x2 + · · ·+ xm = w2 + · · ·+ wm =

k∑
j=1

wj .

Since ~x ≺ ~y, it must hold that x1 + · · ·+ xn = y1 + · · ·+ yn. We see that

n∑
j=2

zj =

n∑
j=1

yj − (py1 + (1− p)ys) =

n∑
j=1

xj − x1 =

n∑
j=2

wj .

This shows that ~w ≺ ~z. By the induction hypothesis, there exists an (n− 1)× (n− 1) doubly stochastic
matrix B such that ~w = B~z. Define an n× n matrix A by

A~e1 = p~e1 + (1− p)~es
A~es = (1− p)~e1 + p~es

and A~ej = ~ej whenever j 6= 1 and j 6= s. This matrix is clearly doubly stochastic, so we can define
another n× n doubly stochastic matrix D by

D =

(
1 0
0 B

)
A,

which is doubly stochastic since it is the product of doubly stochastic matrices. It holds that

A~y =

(
x1
~z

)
and thus

D~y =

(
1 0
0 B

)(
x1
~z

)
=

(
x1
~w

)
= ~x.
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