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6 Lecture 6

(4 February 2016)

6.1 Theory of Entanglement

This type of material is usually encountered at the end of textbooks on quantum information, but
we will cover it earlier.

The main idea is that entanglement can be viewed as a resource. It can be used to perform
quantum teleportation, superdense coding, and other protocols that we will discuss later. Resources
are always viewed in terms of what the limitations are. In this case, the operations that we are
restricted to are the LOCC operations that Alice and Bob can perform.

The most general thing that we can do on any quantum system. It is not just observing the
system, but a measurement is also changing the system. Recall that a measurement is associated
with a collection of operators {Mj} satisfying∑

j

M∗jMj = I.

A unitary operator U can then be viewed as a measurement with one outcome, with associated
operator U , since U∗U = I. If Alice performs a measurement with more than one possible outcome,
she can tell Bob which outcome she received.

6.1.1 LOCC with one round of communication

An arbitrary LOCC operation can be performed as follows. Alice performs a measurement and sends
the result to Bob. Based on the message received from Alice, Bob performs another operation on his
system. He performs a measurement and sends the result to Alice. This can go on back-and-forth
meany many times indefinitely. At the end of the protocol, they will end up with some final state.
It turns out that any arbitrary of this form can be simulated by an LOCC operation with one round
of communication.

Claim 1. LOCC van be simulated with the following protocol:

1. Alice makes a measurement and communicates to Bob.

2. Bob performs a unitary operations on his system.

Consider a composite system consisting of two subsystems (Alice and Bob). Suppose the state
that Alice and Bob initially shared is |ψ〉 ∈ Cn ⊗ Cm. Usually when Alice makes a measurement,
there are many possible outcomes. If she obtained outcome x, the associated measurement operator
is Mx, which is an operator that acts on Alice’s space Cn. Then the resulting (unnormalized) state
is

Mx ⊗ I|ψ〉.
Alice tells Bob that she obtained x. For each different x, Bob performs a unitary Ux that depends
on Alice’s outcome. The resulting (unnormalized) state is now

Mx ⊗ Ux|ψ〉.

Quantum mechanics is not deterministic, so the outcomes are usually different depending on x. But
suppose there were some measurement that Alice can perform and some set of unitaries Bob could
perform such that the outcome was the same no matter what Alice’s result x was. Let’s say this
outcome is |ϕ〉. That is, for all measurement outcomes x,

1

‖Mx ⊗ Ux|ψ〉‖
Mx ⊗ Ux|ψ〉 = |ϕ〉.
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If there exist such a measurement with corresponding unitaries, then we say that |ψ〉 can be converted
into |ϕ〉 by LOCC with one measurement and one round of communication.

Notation. We use the notation
|ψ〉 LOCC−−−→ |ϕ〉

as shorthand for the statement that “|ψ〉 can be converted into |ϕ〉 by LOCC”.

Without loss of generality, we write |ψ〉 is Schmidt form as

|ψ〉 =

n∑
y=1

√
py|y〉|y〉

and |ϕ〉 as

|ϕ〉 =

n∑
y=1

√
qy|y〉|y〉.

The corresponding reduced density matrices are

ρψ =

p1 · · · 0
...

. . .
...

0 · · · pn

 and ρϕ =

q1 · · · 0
...

. . .
...

0 · · · qn

 .

Recall that |ψ〉 LOCC−−−→ |ϕ〉 if and only if there exist unitary matrices Ux and probabilities {rx}x
such that

ρψ =
∑
x

rxU
∗
xρϕUx.

Lemma 6.1. With |ψ〉, |ϕ〉, {pj}, and {qj} as above, it holds that there exist unitaries Ux and
probabilities {rx}x such that

ρψ =
∑
x

rxU
∗
xρϕUx

if and only if there exists a doubly stochastic matrix D such that ~p = D~q.

We use an important and famous result (that we will prove in the assignments).

Lemma 6.2 (Birkoff-von Neumann Theorem). Every n × n doubly stochastic cam be written as a
convex combination of n× n permutation matrices,

D =
∑
x

rxΠx.

Furthermore, the permutation matrices are exactly the extreme points of the convex set of doubly
stochastic matrices.

We denote the n × n doubly stochastic matrices as Dn×n and the n × n permutation matrices
as P. It holds that

Dn×n = conv(Pn×n) and ext(Dn×n) = Pn×n

where conv and ext denote the convex hull and set of extremal points respectively.
Suppose that there exists a doubly stochastic matrix D such that ~p = D~q. By Birkhoff’s theorem,

we can write D as D =
∑
x rxΠx. Hence

~p =
∑
x

rxΠx~q ⇔

p1 · · · 0
...

. . .
...

0 · · · pn

 =
∑
x

rxΠx

q1 · · · 0
...

. . .
...

0 · · · qn

Π∗x.
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Given a vector of probabilities ~p, we can order the probabilities in decreasing order ~p↓ so that
the entries are

p0 ≥ p1 ≥ · · · ≥ pn−1.

For now, assume without loss of generality that ~p = ~p↓ for all our probability vectors.

Lemma 6.3. Given probability vectors ~p and ~q (with entries in decreasing order), there exists a
doubly stochastic matrix D satisfying ~p = D~q if and only if the following hold:

p0 ≤ q0

p0 + p1 ≤ q0 + q1

...

p0 + p1 · · ·+ pn−1 ≤ q0 + q1 + · · ·+ qn−1.

Definition 6.4. We say that ~p is majorized by ~q (or ~q majorizes ~p) if all of the inequalities above
hold. We write ~p ≺ q or ~q � p.

Example 6.5. For all probability vectors ~p, it holds that

(1, 0, . . . , 0) � (p0, p1, . . . , pn−1) �
(

1

n
,

1

n
, . . . ,

1

n

)
.

Indeed, we always have 1 ≥ p0, 1 + 0 ≥ p0 + p1, etc. and p0 ≥ 1
n , p0 + p1 ≥ 2

n , etc, since the values
of ~p are in decreasing order.

Example 6.6. Not all vectors may be compared using this relation. In particular, consider the
vectors

~p =

(
1

2
,

1

2
, 0

)
and ~q =

(
3

4
,

1

8
,

1

8

)
.

Note that 1
2 ≤

3
4 but 1

2 + 1
2 ≥

3
4 + 1

8 . So ~p 6� ~q and ~p 6≺ ~q.

6.1.2 Majorization and LOCC conversion

Theorem 6.7. Let |ψ〉 and |ϕ〉 be pure states of a bipartite system. Then it holds that |ψ〉 LOCC−−−→ |ϕ〉
if and only if ~q � ~p, where ~q and ~p are the vectors of the Schmidt coefficients (probabilities) of |ψ〉
and |ϕ〉 respecitively.

Remark 6.8 (Maximally entangled states). If

|ψ〉 =
1√
n
|00〉+

1√
n
|11〉+ · · ·+ 1√

n
|(n− 1)(n− 1)〉,

then ~p =
(

1
n , . . . ,

1
n

)
. So ~p ≺ ~q for every other n-dimensional probability vector ~q. Hence |ψ〉 can be

converted into any other state |ϕ〉 by LOCC. We say that this state |ψ〉 is maximally entangled .

Remark 6.9. Given any two states |ψ〉, |ϕ〉 ∈ Cn ⊗Cm, determining whetther or not |ψ〉 LOCC−−−→ |ϕ〉
is completely determined by the Schmidt coefficients of the state vector. Two state vectors with the
same Schmidt coefficients are equivalent under LOCC.

Remark 6.10. Given probability vectors ~p and ~q, the condition that ~p ≺ ~q (~p is majorized by ~q) is
equivalent to the condition that

n∑
j=k

pj ≥
n∑
j=k

qj
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holds for all k = 1, 2, . . . , n. (Note that when k = 1, this is trivial since
∑n
j=1 pj = 1.) Define

functions

Ek(ψ) =

n∑
j=k

pj .

Note that Ek(ψ) = 1−
k−1∑
j=1

pj . Hence we have

~p ≺ ~q ⇐⇒ Ek(ψ) ≥ Ek(ϕ) ∀k = 1, . . . , n.

Or equivalently

|ψ〉 LOCC−−−→ |ϕ〉 ⇐⇒ Ek(ψ) ≥ Ek(ϕ) ∀k = 1, . . . , n.

So we can view the Ek’s as entanglement measures. That is, each Ek cannot increase under
LOCC operations. Their values can only decrease.

6.1.3 Probabilistic LOCC conversion

Normally, quantum mechanics is not deterministic. It sould be that Alice and Bob perform some
LOCC operation, but the outcome they achieve is not always the same and it depends on the
measurement outcomes. An ensemble of states is a collection

{(|ϕy〉, ry)}y

of state vectors |ϕy〉 and probabilities ry that sum to 1. The ensemble can be produced by LOCC
if there is a protocol that outputs |ϕy〉 with probability ry. What are the conditions for conversion

|ψ〉 LOCC−−−→ {(|ϕy〉, ry)}?

Theorem 6.11. Let |ψ〉 be a bipartite state and {(|ϕy〉, ry)} be an ensemble of bipartite states. Then

|ψ〉 LOCC−−−→ |ϕy〉 with probability ry

if and only if

Ek(ψ) ≥
∑
y

ryEk(ϕy) ∀k = 1, . . . , n.

Corollary 6.12. Let Pmax

(
|ψ〉 LOCC−−−→ |ϕ〉

)
denote the maximal probability over all possible LOCC

protocols of obtaining |ϕ〉 from |ψ〉. It holds that

Pmax

(
|ψ〉 LOCC−−−→ |ϕ〉

)
= min
k=1,...,n

{
Ek(ψ)

Ek(ϕ)

}
.

Sketch of proof of Corollary. Suppose that there was some LOCC protocol that produced |ψ〉 LOCC−−−→
|ϕ〉 with some probability p and produced a separable state |ψ〉 LOCC−−−→ |00〉 with probability 1 − p.
Then, from the theorem, it must hold that

Ek(ψ) ≥ pEk(ϕ) + (1− p)Ek(|00〉).

It is clear to see that

p ≤ min
k=1,...,n

{
Ek(ψ)

Ek(ϕ)

}
.

This shows that

Pmax

(
|ψ〉 LOCC−−−→ |ϕ〉

)
≤ min
k=1,...,n

{
Ek(ψ)

Ek(ϕ)

}
.

(Equality is harder to prove).
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7 Lecture 7

(9 February 2016)

The teleportation protocol is actually an LOCC transformation. Alice and Bob (with systems
labelled A and B) share a Bell state |Bell〉AB. In addition, Alice has an extra system (labelled a)
that is initialized in an extra state |ψ〉a. Then the teleportation protocol looks like

|ψ〉a|Bell〉AB
LOCC−−−→ |Bell〉aA|ψ〉B

where the unknown state |ψ〉 has shifted to Bob’s system. Note that, in the beginning, there is
entanglement between the systems (aA) and (B), but there is no entanglement between Alice and
Bob at the end.

7.1 The Density Operator

The density operator formalism is the most general way to do quantum mechanics.

Definition 7.1. Suppose a quantum system is in one of a number of states |ψi〉 where i is an index
with respective probabilities pi. An ensemble is a collection of pairs of probabilities and states

{(pi, |ψi〉)}.

A density operator is a matrix constructed from an ensemble

ρ =
∑
i

pi|ψi〉〈ψi|.

7.1.1 Unitary evolution of an ensemble

If we have an ensemble of pure states {(pi, |ψi〉)}, we don’t know which of the |ψ〉 we actually have.
If we perform a unitary operation U , we have

{(pi, |ψi〉)} 7→ {(pi, U |ψi〉)}.

So the resulting density operator becomes

ρ 7→ UρU∗.

7.1.2 Measurement of an ensemble

Again, suppose we have an ensemble of pure states {(pi, |ψi〉)}. If the actual state was |ψi〉, the
probability of obtaining result m after performing a measurement with measurement operators {Kx}
is

Prob(m|i) = 〈ψi|KmK
∗
m|ψi〉 = Tr[K∗mKm|ψi〉〈ψi|].

To obtain the probability of obtaining m if we don’t know which i we have,

Prob(m) =
∑
i

Prob(m|i)pi =
∑
i

pi Tr[K∗mKm|ψi〉〈ψi|] = Tr[K∗mKmρ].

So ρ gives the correct measurement outcome probabilities if the initial state is unknown.

Note 7.2. Any vector |ψ〉 and any operator A, it holds that 〈ψ|A|ψ〉 = Tr[|ψ〉〈ψ|A].
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If the initial state was i, the state of the system after obtaining the result m is

|ψ(m)
i 〉 =

1

‖Km|ψi〉‖
Km|ψi〉

where ‖Km|ψi〉‖ =
√
〈ψi|K∗mKm|ψi〉. Define pi|m as the probability that the initial state was i given

that the outcome m was observed. Then the resulting ensemble is{(
pi|m, |ψ

(m)
i 〉

)}
.

How does this affect the density matrix? From conditional probabilities, we know that pipm|i =
pmpi|m, where pi|m = Prob(i|m) is the probability that we will observe outcome m given that the
initial state was i. If we observed m but didn’t know which i we began with, the resulting density
operator is

ρm =
∑
i

pi|m|ψ
(m)
i 〉〈ψ(m)

i |

=
∑
i

pipm|i

pm
|ψ(m)
i 〉〈ψ(m)

i |

=
∑
i

Km|ψi〉〈ψi|K∗m
Tr [K∗mKmρ]

=
KmρK

∗
m

Tr [K∗mKmρ]
.

Suppose two ensembles are decompositions for the same density operator. I.e., consider two
ensembles {pi, |ψi〉} and {qj , |φj〉} such that

ρ =
∑
i

pi|ψi〉〈ψi| =
∑
j

pj |φj〉〈φj |.

They have the same measurement outcome probabilities for any possible measurement you could
perform, and the reulting state after measurement only depends on ρ, not the specific decomposition.
So the two ensembles are completely indisinguishable. All quantum mechanics can be done by
considering only the density operator ρ.

7.1.3 Properties of density operators

Proposition 7.3. For any density operator ρ arising from any ensemble decomposition satisfies the
following properties:

1. Tr[ρ] = 1

2. ρ ≥ 0

3. Tr[ρ2] = 1⇐⇒ ρ = |ψ〉〈ψ|
Proof. Note that Tr[|ψ〉〈ψ|] = 1 for any normalized vector. Since all the |ψi〉 are normalized,

Tr ρ =
∑
i

pi Tr[|ψi〉〈ψi|] = 1.

Note that ρ must have real eigenvalues, so suppose |ψ〉 is a normalized eigenvector of ρ. Then

〈ψ|ρ|ψ〉 =
∑
i

pi〈ψ||ψi〉〈ψi||ψ〉 =
∑
i

pi|〈ψ|ψi〉|2 ≥ 0.

The proof of 3 left as an exersize.

Note 7.4. Given a quantum system with associated Hilbert space Cn, states of the system are
density operators ρ : Cn → Cn (i.e. they are linear operators, or matrices).
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7.1.4 Reformulation of Quantum Mechanics

(See slides online.)

7.1.5 The Bloch Sphere

Denote by H2 the space of 2 × 2 hermitian matrices. This is a real 4-dimensional vector space.
Indeed, for A,B ∈ H2 and any a, b ∈ R, it holds that aA+ bB is also hermitian. This does not hold
if a or b are complex. Furthermore, H2 is spanned by(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
,

(
0 i
−i 0

)
.

Furthermore, these matrices are orthogonal. We can construct an inner product on H2 by

〈A,B〉 = Tr[A∗B].

(This actually works as an inner product over any space of matrices. Note here that A∗ = A since
A is hermitian.) The spanning set listed above is orthogonal in the sense that 〈A,B〉 = 0 for any
A 6= B. We denote these matrices as

I =

(
1 0
0 1

)
, Z =

(
1 0
0 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 i
−i 0

)
.

These are also known as the Pauli matrices if we use the notation σ1 = Z, σ2 = X, σ3 = Y , and
σ0 = I.

Let ρ ∈ H2 be a density matrix. Then Tr ρ = 1. Note that we can write ρ uniquely as

ρ = r0I + r1σ1 + r2σ2 + r3σ3.

Since Trσi = 0 unless i = 0, it follows that 1 = Tr ρ = r0 Tr I = 2r0 and thus r0 = 1
2 .

(more...)

7.1.6 The reduced density matrix

(See slindes online...)
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8 Lecture 8

(11 February 2016)

8.1 Density matrices (continued)

8.1.1 Separable density matrices

Consider a bipartite quantum system with associated Hilbert space H = Cn⊗Cm (with subsystems
corresponding to Alice A and Bob B). A state (i.e. a density operator) of this quantum system is a
linear operator

ρAB : H −→ H.

Suppose Alice can prepare her subsystem in one of two ways, either as state σ
(1)
A or σ

(2)
B , which are

linear operators on Cn. Similarly, Bob can prepare his subsystem in one of two ways, either σ
(1)
B or

σ
(2)
B , which are linear operators on Cm. As a state of the entire system, Alice and Bob together will

either prepare

σ
(1)
A ⊗ σ

(1)
B or σ

(2)
A ⊗ σ

(2)
B

Alice and Bob can then prepare the mixture of these two states in the following manner.

• Alice flips a coin, which produces heads with probability p and tails with probability 1− p.

• Alice communicates the result to Bob.

• If heads was obtained, Alice and Bob prepare σ
(1)
A ⊗ σ

(1)
B . If tails was obtained, Alice and Bob

prepare σ
(2)
A ⊗ σ

(2)
B .

• Alice and Bob subsequently ‘forget’ which result was obtained.

• The resulting state can be described as

ρ = p σ
(1)
A ⊗ σ

(1)
B + (1− p)σ(2)

A ⊗ σ
(2)
B .

Likewise, we can consider any probability distribution {pj} and any set of states of the form {σ(j)
A ⊗

σ
(j)
B } that Alice and Bob can prepare separately. Using the ensemble {(pj , σ(j)

A ⊗ σ
(j)
B )}, Alice and

Bob can ‘forget’ which outcome j was obtained and the resulting state is the density operator

ρAB =
∑
j

pjσ
(j)
A ⊗ σ

(j)
B . (8.1)

Definition 8.1. A density operator ρAB : H −→ H is separable if and only if it can be written in
the form of (8.1).

Lemma 8.2. A density operator ρAB is separable if and only if it can be written as

ρAB =
∑
j

pj |vj〉〈vj | ⊗ |wj〉〈wj |

for some collections of vectors {|vj〉} and {|wj〉} and probabilities {pj}.

Note that the {|vj〉} and {|wj〉} do not have to be orthogonal. They are just any collection of
unit vectors in the appropriate space!
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Proof. Suppose ρAB is separable. It follows that

ρAB =
∑
x

qxσ
(x)
A ⊗ σ(x)

B =
∑
x

qx

(∑
y

ty|x|ψy|x〉〈ψy|x|

)
︸ ︷︷ ︸

σ
(x)
A

⊗

(∑
z

sz|x|φz|x〉〈φz|x|

)
︸ ︷︷ ︸

σ
(x)
B

=
∑
x,y,z

qxty|xsz|x|ψy|x〉〈ψy|x| ⊗ |φz|x〉〈φz|x|.

Define the index j to be the tuple j = (x, y, z) where j runs over all possible values for x, y, and z.
Then each pj is defined as

pj = qxty|xsz|x ≥ 0

and it holds that
∑
j pj =

∑
x,y,z qxty|xsz|x = 1. The vectors |vj〉 and |wj〉 are defined as

|vj〉 = |ψy|x〉 and |wj〉 = |φz|x〉,

so there are many js that have the same |vj〉 and |wj〉.

Almost by definition, separable states are states that have no entanglement. (Or perhaps we can
define entanglement this way).

8.1.2 Classical-quantum states

We now examine a certain subset of the separable states.

Definition 8.3. Consider a classical random variable X on a system X. The possible outcomes x
are associated with a set of orthonormal vectors {|x〉}. The classical-quantum states are those
that can be written as

ρXB =
∑
x

px|x〉〈x|X ⊗ σ(x)
B

where the states {σ(x)
B } are arbitrary density operators of Bob’s system.

Classical-quantum states are those that are only ‘classically correlated’. The states of a classical
system cannot be superimposed, because it is not quantum. The only allowable states are the
orthonormal |x〉.

We can think of it as a die1. Alice rolls a die, and tells Bob what the outcome was. Bob prepares
a corresponding state. Alice and Bob then ‘forget’ which outcome the die had. Alice can then later
‘re-examine’ the die by looking at it. If she does, then she knows exactly what state Bob’s system
is in.

Definition 8.4. A classical -classical state is a density operator that can be written as

ρ =
∑
x,y

pxy|x〉〈x| ⊗ |y〉〈y|

for some orthonormal sets of vectors {|x〉} and {|y〉}.

We can imagine a classical-classical state simply as a pair of random variables X and Y that are
correlated, where the joint probability distribution is {pxy}.

1Gilad says ‘a dice’ here, but this is incorrect. The correct singular form is ‘one die’ and the plural form is ‘many
dice’. Look it up in any dictionary!
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8.1.3 Entanglement of mixed states

Recall that, for pure states |ψ〉 and |φ〉 in Cn ⊗ Cm, it holds that

|ψ〉 LOCC−−−→ |φ〉 ⇐⇒ ~pψ ≺ ~pφ.

What about necessary and sufficient conditions for converting arbitrary mixed states ρAB
LOCC−−−→ σAB?

The states ρ can be written in infinitely many different decompositions

ρAB =
∑
x

px|ψx〉〈ψx|.

There are no simple ways of writing necessary and sufficient conditions for ρAB
LOCC−−−→ σAB.

For certain cases, we do know. If σAB is separable, we can always convert any ρAB into σAB
via LOCC. The method is simple: Alice and Bob can ‘throw away’ ρAB and just prepare σAB as
discussed earlier.

But for arbitrary states that are not separable, the question is incredibly difficult to answer. In
fact, the number of rounds of communication that are allowed changes whether or not the conversion
can take palce. That is, if Alice and Bob can only perform single-round LOCC (that is, Alice
performs a measurement and tells Bob what it is, then Bob performs a measurement, and that’s it),
then the states that Alice and Bob can obtain from ρAB might be different than the ones obtainable
using an unlimited number of communication rounds (or two rounds, etc...).

8.1.4 Entanglement monotones – necessary conditions

Although it is impossible to have a simple necessary AND sufficient condition for determining if

ρAB
LOCC−−−→ σAB is possible, we can find easy necessary conditions for ρAB

LOCC−−−→ σAB to be possible.
Consider (as always) a bipartite system Cn⊗Cm with subsystems labelled A and B. Let HAB

nm,+,1

denote the set of all density operators on the system:

HAB
nm,+,1 = {ρ : Cn ⊗ Cm → Cn ⊗ Cm | ρ∗ = ρ, ρ ≥ 0, Tr ρ = 1} .

(This is the set of nm-dimensional hermitian matrices that are positive and have unit trace.) The
set of all bipartite density operators in all dimensions will be denoted HAB

+,1 (which I suppose we can
think of as the disjoint union

HAB
+,1 =

∞∐
n,m=2

HAB
nm,+,1

of all of these.)

Definition 8.5. A function E : HAB
+,1 −→ R+ is an entanglement monotone if

ρAB
LOCC−−−→ σAB =⇒ E(ρAB) ≥ E(σAB).

Example 8.6. For pure states, recall that |ψ〉 LOCC−−−→ |φ〉 if and only if Ek(~pψ) ≥ Ek(~pφ) holds for
all k = 1, . . . , n, where Ek are the functions

Ek(~p) :=

n∑
j=k

(
~p↓
)

= j.

Hence, for pure states, the Ek’s are entanglement monotones.
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Note 8.7. In fact, any function that is Shur-concave on vectors is an entanglement monotone for
pure states. A function f of probability vectors is said to be Schur-concave if

~p ≺ ~q ⇐⇒ f(~p) ≥ f(~q)

hodls for all probability vectors ~p and ~q.
Why are they called Shur-concave? In fact, any function on probability vectors that is both

symmetric and concave is also Schur-concave (but not vice versa). Recall also that ~p ≺ ~q holds if
and only if ~q = D~p for some doubly stochastic matrix D, i.e.

~q = D~p =
∑
j

tjΠj~p

for some probabilities {tj} and projection matrices Πj . And this resembles the definition of a regular
convex combination.

Perhaps the most well-known and most often used Schur-concave function in information theory
is the Shannon entropy:

S(~p) =
∑
j

pj log pj .

Exercise 8.8. Find an example of a function that is Shur-concave but not concave.

Let f be a Schur-concave function and define an entanglement monotone on pure states as

Ef (ψ) = f(~pψ).

Then this entanglement monotone can be extended to mixed states in the following manner. For a
density operator ρAB, we define

E(ρAB) = min
{(pj ,|ψj〉)}

∑
j

pjEf (ψj)

where the minimum is taken over all ensembles that are decompositions {(pj , |ψj〉)} of ρAB,

ρAB =
∑
j

pj |ψj〉〈ψj |.

This computation is unfortunately very difficult to perform on a computer in general. In fact,
determining whether or not a state is separable at all is as hard as computing the value of E(ρ)
above.

8.2 Detecting if a state is separable

When we are ‘given’ a state, for example of a system of two qubits ρAB : C2⊗C2 → C2⊗C2, we are
given a matrix with elements

ρ =


ρ11 ρ12 · · ·
...

. . .
...

 .
We want to determine if the state is separable. That is, we want to know if it can be written as

ρ =
∑
j

pjσ
(j)
A ⊗ σ

(j)
B .

Can we come up with some necessary criterion for determining if such a state is separable?
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The transpose operator is defined as T (σ) = σT for matrices σ. Consider density operators on a
bipartite system Cn ⊗ Cm. Define the partial transpose operator in the following way:

I ⊗ T (σ ⊗ τ) = σ ⊗ τT

and extended linearly to any linear combination of product operators. Suppose that ρAB is separable.
It follows that I ⊗ T (ρAB) is a positive operator:

I ⊗ T (ρAB) = I ⊗ T

∑
j

pjσ
(j)
A ⊗ σ

(j)
B

 =
∑
j

pjσ
(j)
A ⊗

(
σ

(j)
B

)T
≥ 0.

Each σ
(j)
A and σ

(j)
B is a positive operator and σT ≥ 0 holds whenever σ ≥ 0. The tensor product of

positive operators is positive, and the sum sum of positive operators is also positive. Therefore, the
partial transpose applied to any separable state will always be a positive operator.

Let’s look at the partial transpose applied to another operator |ψ〉〈ψ| when |ψ〉 is the Bell state

|ψ〉 =
1√
t

(|00〉+ |11〉) .

Note that I ⊗ T (|ij〉〈kl|) = |i〉〈k| ⊗ T (|j〉〈l|) = |il〉〈kj|. Now

I ⊗ T (|ψ〉〈ψ|) =
1

2
I ⊗ T

(
|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|

)
=

1

2

(
|00〉〈00|+ |01〉〈10|+ |10〉〈01|+ |11〉〈11|

)
.

In matrix form, this is

I ⊗ T (|ψ〉〈ψ|) =
1

2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 6≥ 0,

hence the partial transpose of |ψ〉〈ψ| is not positive definite (since the matrix has at least one
negative eigenvalue). So we see that |ψ〉 is in fact not separable.

Note 8.9. For bipartite systems Cn ⊗ Cm, the partial transpose condition is actually a necessary
and sufficient condition for determining if a density operator is separable if and only if nm ≤ 6.
(Proving this will be one of the possible end-of-course projects.)
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9 Lecture 9

(23 February 2016)

9.1 Quantum channels

9.1.1 Classical noise

How do we model the transmission of classical information? Suppose we have some physical means
of transmitting bits (a fiber optic, an antenna, etc) which we will call a channel. Consider an
information source X that has some prior probability distribution that yields either 0 or 1. We want
to transmit this bit of information using our channel, but the channel is noisy (it is not perfect).
The receiver receives the bit Y , which may not be the same bit that the sender sent! We model it
like this:

X [channel] Y

0 0

1 1

p

1−p

q
1−q

where p is the probability that a 0 is transmitted perfectly and q is the probability that a 1 is
transmitted perfectly.

What is the probability that the receiver receives the correct information that the sender intended
to send? Well, we can look at the following probabilities:

Pr(Y = 0|X = 0) = p

Pr(Y = 1|X = 0) = 1− p
Pr(Y = 1|X = 1) = q

Pr(Y = 0|X = 1) = 1− q

How can we describe the probability distribution of the receiver? It looks like this:

Pr(Y = y) =
∑
x=0,1

Pr(Y = y|X = x) Pr(X = x).

If we write sy = Pr(Y = y) and tx = Pr(X = x), we have that the probability vectors corresponding
to the distributions of X and Y can be written in matrix form as ~s = E~t, or(

s0

s1

)
=

(
p 1− q

1− p q

)(
t0
t1

)
,

where E =
( p 1−q

1−p q

)
is the transition matrix. The matrix elements of E are

Exy = Pr(Y = y|X = x)

Note that this matrix is column stochastic, since
∑
y Exy = 1 for all x.

What is X? It is a random source. The sender can be thought of as sampling the distribution pX
over and over again, where each x occurs with probability pX(x) = Pr(X = x) (where the outcomes
don’t have to be just 0 and 1; there could be more). The sender then sends this information through
the channel, which may not transmit the information perfectly. We can think of transmitting a
message (in English) by looking at the individual letters of the message. The letters may be thought
of as occuring ‘randomly’. For example, there is more probability that the letter ‘s’ will be typed than
the letter ‘z’ for example. In fact, we can assign a probability of each letter occuring in “standard
English” and use this probability distribution on the letters as the distribution of the source.
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9.1.2 The quantum case

Suppose we have a sender who wants to send a quantum state ρ to a receiver through a quantum
channel. If ρ ∈ L(Cn) is the input state and σ ∈ L(Cm) is the output state, we have

ρ σE

σ = E(ρ)

One trivial example of a channel is just the identity mapping I(ρ) = ρ. But there are other channels
that are more interesting.

What are the conditions that the transformation E must satisfy? If ρ is a density operator, the
output σ = E(ρ) must also be a density operator. Hence, if ρ ≥ 0 with Tr ρ = 1, then E(ρ) ≥ 0 and
Tr E(ρ) = 1 must also hold. So the map E must be

• trace-preserving : Tr[E(ρ)] = Tr ρ = 1

• positive : E(ρ) ≥ 0 if ρ ≥ 0

It must also be the case that E is linear . That is, if we have an ensemble {px, ρx}, then

E

(∑
x

pxρx

)
=
∑
x

pxE(ρx)

must hold. But that’s not all! The map E must also be completely positive . That is, suppose we
have the channel E that only acts on one part (A) of a composite system (AB), as in the following
diagram:

ρAB

{
EA

B

}
σAB

which we can write as σAB =
(
EA ⊗ IB→B

)
(ρAB). For any state ρAB ≥ 0 of the composite system,

the result (
EA ⊗ IB→B

)
(ρAB) ≥ 0

must also be positive. And this must hold for any possible state on any possible extension of A to
AB.

Example 9.1. Here we give an example of a mapping that is trace-preserving and positive, but not
completely positive. Consider the transpose map E(ρ) = ρT . Recall from a previous lecture that

E ⊗ I(|φ+〉〈φ+|) 6≥ 0

where |φ+〉 = |00〉+|11〉√
2

.

Definition 9.2. Let n and m be integers. Recall that Hn is the real vector space of n×n hermitian
matrices. Let E be a linear mapping that acts on Hn. Then E is said to be m-positive if the
mapping E ⊗ IHm on Hn⊗Hm is a positive map, and E is completely positive if it is m-positive
for every m.

Proposition 9.3. It holds that E : Hn → Hn is completely positive if and only if it is n-positive.

Note that it’s possible for a map to be m-positive for every m < n, even if the map is not
completely positive. However, if E : Hn → Hn is n-positive then it is m-positive for every m ≥ n.
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9.1.3 Definition and examples of quantum channels

Definition 9.4. A quantum channel is a linear map E : Cn×n → Cm×m that satisfies the following
properties:

(a) E is completely positive (CP)

(b) E is trace-preserving (TP)

(i.e. E is a linear CPTP map).

Example 9.5. Examples of quantum channels.

1. A unitary channel is a linear mapping of the form E(ρ) = UρU∗ for some unitary operator
U . This is clearly trace-preserving, since Tr[UρU∗] = Tr[ρU∗U ] = Tr ρ, and also clearly
positive, since the specturm of ρ will be the same as UρU∗ for any unitary U . (It’s also clearly
completely positive...)

2. A replacement channel is a mapping of the form

E(A) = Tr(A)σ

for all A ∈ Cn×n, where σ ∈ Hm,+,1 is some density operator (on a possibly different space
than the input space). This is clearly CPTP.

3. A classical-quantum channel takes a classical input and outputs a quantum state. For example,

E(x) = ρx, ∀x ∈ {1, 2, . . . , n}.

We can think of this as a honest-to-goodness quantum channel in the following way. Consider
the space K = span{|x〉〈x|} where {|x〉} is an orthonormal basis of Cn, and define a map
E : K → Hm by E(|x〉〈x|) = ρx. By linearity, for

∑
x px|x〉〈x| ∈ K, we have

E

(∑
x

px|x〉〈x|

)
=
∑
x

pxE(|x〉〈x|) =
∑
x

pxρx.

9.2 Representation and characterizations of CPTP maps

9.2.1 The natural representation

(This is the least useful representation that we will consider.) Consider a linear map E : Cn×n →
Cm×m. Note that Cn×n (the space of n × n matrices with complex entries) is isomorphic to Cn2

(the regular n2-dimensional vector space). So there is an isomorphism

vec : Cn×n → Cn
2

which ‘vectorizes’ n × n matrices into n2-dimensional vectors. Recall that we can define an inner
product on Cn×n by

〈A,B〉 = Tr[A∗B].

Let σ = E(ρ). Under the isomorphism vec, we get vec(σ) = vec(E(ρ)). Since E is a linear map,

there exists some matrix AE ∈ Cm2×n2

such that

vec(σ) = AE vec(ρ).

More explicitly, denote Exy = |x〉〈y| for every x, y ∈ {1, . . . , n}, where |x〉 and |y〉 are standard basis
elements of Cn. Then the Exy span the entire space of n×n matrices. Similarly, define Fwz = |w〉〈z|
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for every z, w ∈ {1, . . . , n}, where |w〉 and |z〉 are standard basis elements of Cm. These matrices
form an orthonormal basis of Cn×n and Cm×m respectively, since

〈Exy, Ex′y′〉 = Tr[EyxEx′y′ ] = δxx′δyy′ and 〈Fwz, Fw′z′〉 = Tr[FzwFw′z′ ] = δww′δzz′ .

From the vec isomorphism, we also have that {vec(Exy)} and {vec(Fwz)} are orthonormal bases of

Cn2

and Cm2

respectively. We can find the matrix elements of AE in these bases. Every ρ ∈ Cn×n
can be written as

ρ =
∑
x,y

ρxyExy

where ρxy = 〈Exy, ρ〉. Similarly, with σwz = 〈Fwz, σ〉, we can write

σ =
∑
w,z

σwzFwz.

This allows us to find the matrix elements of AE in the following manner. The matrix elements of σ
are

σwz = 〈Fwz, E(ρ)〉 =
∑
x,y

ρxy〈Fwz, E(Exy)〉 =
∑
x,y

ρxy Tr[F ∗wzE(Exy)]

and so the matrix elements of EE are

(AE)xz,xy = 〈Fwz, E(Exy)〉 = Tr[F ∗wzE(Exy)].

Exercise 9.6. Let E : Cn×n → Cm×m be a linear map. Check that AE∗ = (AE)
∗
, where E∗ is the

dual map to E . (It is the unique linear map such that

〈A, E(B)〉 = 〈E∗(A), B〉

holds for all B ∈ Cn×n and A ∈ Cm×m.) It follows that AE is a hermitian matrix if E∗ = E .

Note 9.7. This representation helps us understand quantum channels as linear mappings (i.e.
matrices). Why is this representation not useful? Because the matrix representationAE does not help
us determine if the mapping E is trace-preserving or completely positive. The other representations
that we will discuss later will be more useful.
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10 Lecture 10

(25 February 2016)

10.1 Representations of Quantum Channels (cont.)

Recall that a quantum channel is a linear CPTP map E : Hn −→ Hm.

10.1.1 The Choi representation

Definition 10.1. Let E : HA′

n −→ HA
m be a CPTP map. Then the Choi matrix of E is J(E) ∈ HAR

mn

(or also written as σAR ∈ HAR
mn) and is defined as

J(E) = σAR = (E ⊗ idR)
(
|φ+〉〈φ+|A′R

)
where E is a mapping on systems A′ → A, idR is the identity linear map on R, and

|φ+〉 =

n∑
x=1

|x〉A′ |x〉R

is an unnormalized vector. Using the notation Exy = |x〉〈y|, we have

|φ+〉〈φ+| =
∑
x,y

|xx〉〈yy| =
∑
x,y

Exy ⊗ Exy

and
J(E) = σAB =

∑
x,y

E(Exy)⊗ Exy.

This map J is actually a bijection. The notation ‘R’ denotes a ‘reference system’ that is inde-
pendent of the input space A′ and output space A. The dimension of R must be n, the same as the
dimension of the input space A′.

What happens when we take the partial trace of J(E) with respect to A? We see that

TrA J(E) = TrA σAR =
∑
x,y

Tr (E(Exy))Exy =
∑
xy

δxyExy =
∑
x

Exx = IR,

where IR here is the identity matrix on the space R.

Now we show that J is actually a bijection between channels E : HA′

n −→ HA
m and density

operators on HAR
mn. That is, to every density matrix σAR ∈ HAR

mn we can define a channel in the
following manner. For every ρ ∈ HA

n define

E(ρ) = TrR
[
σAR(IA ⊗ ρT

)
],
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where ρT can be considered as an operator on HR
n since dimR = dimA = n. Then

TrA
[
σAR(IA ⊗ ρT )

]
=
∑
x,y

TrR
[
(E(Exy)⊗ Exy) (I ⊗ ρT )

]
=
∑
x,y

TrR
[
E(Exy)⊗ ExyρT

]
=
∑
x,y

E(Exy) Tr
(
Exyρ

T
)

=
∑
x,y

E(Exy) Tr
(
|x〉〈y|ρT

)
=
∑
x,y

E(Exy)〈y|ρT |x〉

where we note that Tr[|x〉〈y|A] = 〈y|A|x〉, since

Tr[|x〉〈y|A] =
∑
x′

〈x′| (|x〉〈y|A) |x′〉 =
∑
x′

δxx′〈y|A|x′〉 = 〈x|A|y〉.

Continuing, we see

∑
x,y

E(Exy)〈y|ρT |x〉 =
∑
x,y

E(Exy) 〈x|ρ|y〉︸ ︷︷ ︸
ρxy

= E

(∑
x,y

ρxyExy

)
= E(ρ).

Why is this representation useful? The Choi isomorphism J can help determine when a map E
is completely positive and trace-preserving.

Theorem 10.2. A linear map E : Hn −→ Hm is CPTP if and only if it holds that

J(E) ≥ 0 and TrA J(E) = IR.

Proof. Suppose that E is CPTP. Then E ⊗ id (|φ+〉〈φ+|) ≥ 0 because E is completely positive (and
|φ+〉〈φ+| is a positive n2 × n2 matrix1). Also note that TrA J(E) = IR (which we proved earlier).

Now suppose that J(E) ≥ 0 and that TrA J(E) = IR. We need to show that (E ⊗ id)(ρAR) ≥ 0
holds for every ρAB ≥ 0. Every positive semi-definite operator ρAB can be written as some linear
combination of rank-1 positive semi-definite operators

ρAB =
∑
j

|ψj〉〈ψj |,

where |ψj〉 is a (not necessarily normalized) vector on the system A′R. Furthermore, each such vector
can always be written as

|ψj〉 =
∑
x,y

M (j)
xy |x〉|y〉 =

∑
x

(I ⊗Mj |xx〉

for some M
(j)
xy ∈ C, and we denote Mj as the n× n matrix whose entries are M

(j)
xy

Mj |x〉 =

n∑
y=1

M (j)
xy |y〉.

1What are the eigenvalues of |φ+〉〈φ+|? It is a rank-1 matrix with one eigenvalue equal to ‖|φ+〉‖ = n. The
remaining n2 − 1 eigenvalues are all equal to zero.



10 Lecture 10, v. 4-7 22

Now, what is E ⊗ id(ρAB), for any arbitrary positive semidefinite operator ρAR?

(E ⊗ id)(ρAB) = (E ⊗ id)

∑
j

I ⊗Mj |φ+〉〈φ+|I ⊗M∗j


=
∑
j

(I ⊗Mj)
(

(E ⊗ id)
(
|φ+〉〈φ+|

)︸ ︷︷ ︸
J(E)

)
(I ⊗M∗j )

where we note that the different parts of the above equation ‘commute’ in the following sense.
Suppose we defined a map η(X) = MXM∗ for some M . Then it is clear that

(E ⊗ id)(id⊗η)(σ) = (E ⊗ η)(σ) = (id⊗η)(E ⊗ id)(σ)

holds for all σ.
Continuing, we see that

(E ⊗ id)(ρAB) =
∑
j

M̃jJ(E)M̃∗j ≥ 0, (10.1)

where we define the matrices M̃j = I ⊗Mj . The positivity of the matrix in (10.1) is due to Lemma
10.3 below.

We now need to show that E is trace preserving. Let ρ ∈ Hn be an arbitrary density operator.
From the definition of E obtained from σAB, we have

Tr E(ρ) = TrA

(
TrR

[
σAR(I ⊗ ρT )

]︸ ︷︷ ︸
E(ρ)

)
= TrR

(
TrA

[
σAR(I ⊗ ρT )

])
= TrR

(
TrA [σAR(I ⊗ I)] ρT

)
= TrR ρ

T = Tr ρ

(I may have missed something here.... he kind of rushed at the end).

Lemma 10.3. Let A and B be matrices (of appropriate sizes). If A ≥ 0, it holds that BAB∗ ≥ 0.

Proof. Note that a matrix A is positive if and only if 〈ψ|A|ψ〉 ≥ 0 for all vectors |ψ〉. Let |ψ〉 be an
arbitrary vector (of the appropriate size). Define |ψ〉 = B∗|φ〉. Then

〈ψ|BAB∗|ψ〉 = 〈φ|A|φ〉 ≥ 0

by positivity of A.
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11 Lecture 11

(1 March 2016)

11.1 Homework hint

In question 2 of assignment 3, we are asked to consider a state |ψ〉 and an ensemble {rj , |φj〉}. We
must prove that |ψ〉 can be converted into |φj〉 with probability rj if and only if

Ek(ψ) ≥
∑
j

rjEk(φj)

for all k = 1, . . . , n. (All states are vectors in Cn ⊗ Cn.)
Let |φ〉 =

∑
i,j φij |i〉|j〉 be an arbitrary pure state and let φ be the n × n matrix whose entries

are φij . It holds that

Ek(φ) =

d∑
l=k

λl(φφ
∗)

where λl(φφ
∗) is the lth eigenvalue of the matrix φφ∗ (where the eigenvalues are considered in

decreasing order). You may use the fact that, for any matrices σ1 and σ2,

n∑
l=k

λl
(
tσ1 + (1− t)σ2

)
≤ t

n∑
l=k

λl(σ1) + (1− t)
n∑
l=k

λl(σ2)

(i.e. convexity of the Ky-Fan norms). We can then set

|φj〉 =
1

‖·‖
(
Mj ⊗ Uj

)
|ψ〉 =

1

‖·‖
(
(MjA)⊗ Uj

)
|φ+〉

for some matrices Mj and A (where ‖·‖ are the correct normalization constants).

11.2 Representations of quantum channels (cont.)

Consider Hilbert spaces A′, A, and R, where these spaces have dimensions dimA = dimR = n
and dimA′ = m. We denote the (unnormalized) operator of the maximally entanged state by
Φ+ = |φ+〉〈φ+|, where |φ+〉 is the unnornalized vector

|φ+〉 =

n∑
x=1

|x〉A|x〉R.

Recall that a linear map E : HA′

n −→ HA
m is CPTP if and only if J(E) = (EA′→A ⊗ id)(Φ+) ≥ 0 and

TrA J(E) = IR. As we said last time, this J is an isomorphism. That is, given a operator σAR, we
can also define a mapping by

E(ρR) = TrR[σAR(IA ⊗ ρT )].

Let σAR ∈ Hnm be an arbitrary positive semi-definite operator. Then it can be cecomposed as

σAR =
∑
j

|ψj〉〈ψj |

for some collection of (unnoralized) vectors |ψj〉. Furthermore, each |ψj〉 can be written as

|ψj〉 =

m∑
x=1

n∑
y=1

M (j)
xy |x〉A|y〉R = (Mj ⊗ I)

n∑
y=1

|y〉A|y〉R = (Mj ⊗ I)|φ+〉
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where each Mj is some m × n matrix with entries M
(j)
xy . Now we examamine the mapping E . We

have

E(ρ) =
∑
j

TrR[|ψj〉〈ψj |(IA ⊗ ρT )]

=
∑
j

TrR
[
(Mj ⊗ I)|φ+〉〈φ+|AR(M+

j ⊗ I)(IA ⊗ ρT )
]

=
∑
j

Mj

(
TrR[|φ+〉〈φ+|AR(I ⊗ ρT )]

)
M∗j

=
∑
j

Mj

(
TrR[|φ+〉〈φ+|AR(ρ⊗ I)]

)
M∗j

=
∑
j

Mj

(
TrR[|φ+〉〈φ+|AR]︸ ︷︷ ︸

I

)
ρM∗j

=
∑
j

MjρM
∗
j ,

where we used the fact that (A⊗ I)|φ+〉 = (I⊗AT )|φ+〉 holds for any matrix A. Note that the Mj ’s
are not unique, because we could have chosen a different representation of σAR. What properties
must the operators Mj satisfy? We have∑

j

M∗jMj =
∑
j

M∗j IMj =
∑
j

M∗j TrA[|φ+〉〈φ+|]Mj

=
∑
j

TrA
[
(M∗j ⊗ I)|φ+〉〈φ+|(Mj ⊗ I)

]
=
∑
j

TrA
[
(Mj ⊗ I)|φ+〉〈φ+|(M∗j ⊗ I)

]
(since this is Hermitian)

=
∑
j

TrA|ψj〉〈ψj |

= TrA[σAR]

= I = I.

This the Kraus representation of the channel E .

Theorem 11.1. Every CPTP map E can be written as

E(ρ) =
∑
j

MjρM
∗
j

for some matirces Mj that satisfy
∑
j

M∗jMj = I.
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This map is in fact trace-preserving, since1

Tr E(ρ) =
∑
j

Tr[MjρM
∗
j ]

=
∑
j

Tr[M∗jMjρ]

= Tr
[∑

j

M∗jMj︸ ︷︷ ︸
I

ρ
]

= Tr ρ.

Theorem 11.2. Let E : Hn −→ Hm be a CPTP map. It is always possible to find a Kraus
representation E with at most nm Kraus operators.

Proof. Let σAR be the Choi representation of E . Note that σAR is an nm× nm matrix, so it can be
decomposed into its eigenvectors

σAR =

nm∑
j=1

|ψj〉〈ψj |.

Taking |ψj〉 = Mj ⊗ I|φ+〉 in the derivation of the Kraus representation above, we get nm matrices
Mj .

Theorem 11.3. Let {Fl} and {Mj} be families of Kraus operators. It holds that∑
l

FlρF
∗
l =

∑
j

MjρM
∗
j

(i.e. they are Kraus representations of the same channel) if and only if there is a unitary matrix U
with entries Ujl satisfying

Mj =
∑
l

UjlFl.

Proof. Suppose there exists a unitary U satisfying Mj =
∑
l UjlFl. Now∑

j

MjρM
∗
j =

∑
j

∑
l

∑
l′

UjlU jl′FlρFl′

=
∑
l,l′

δll′FlρFl′

=
∑
l

FlρF
∗
l .

The other direction is left as an exercise. (Hint: If they represent the same channel, then the channels
have the same Choi matrix.)

11.2.1 Kraus representations and measurements

One way of thinking about Kraus representations of channels is as measurements. Suppose we
have a measurement with corresponding operators {Mj}. Recall that these operators must satisfy∑
jM

∗
jMj = I. If we start with a state ρ and measure it with this measurement, we obtain outcome j

with probability pj = Tr[MjρM
∗
j ] and the resulting state is

σj =
MjρM

∗
j

Tr[MjρM∗j ]
=

1

pj
MjρM

∗
j .

1There is another way to show this. Suppose that 〈
∑

j M
∗
jMj , ρ〉 = 〈I, ρ〉 holds for all ρ. This implies that

〈I −
∑

j M
∗
jMj , ρ〉 = 0 holds for all ρ, which can only be true if I −

∑
j M
∗
jMj = 0 or

∑
j M
∗
jMj = I.
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If we subsequently ‘forget’ which measurement outcome we obtained, we are left with the state∑
j

pjσj = MjρM
∗
j = E(ρ),

which is exactly the way we defined the Kraus representation of a channel with Kraus operators
{Mj}.

11.2.2 The Stinespring representation

Theorem 11.4. Let E : HA
n −→ HB

m be a CPTP map. Then there is a space E and a unitary
operator U on AE such that

E(ρ) = TrE[UAE(ρA ⊗ |0〉〈0|E)U∗AE]

=
∑
x

〈x|EUAE|0〉EρA〈0|EU∗AE|x〉E

How is this related to the Kraus representation? Define a set of Kraus operators Mx on A by

Mx = 〈x|EUAE|0〉E

and we have the Kraus representation E(ρ) =
∑
xMxρM

∗
x .
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16 Lecture 16

(17 March 2016)

(Note: I was out-of-town for lectures 12-15.)

16.1 Distance mesaures

Recall the fidelity

F (ρ, σ) = Tr
√
ρ1/2σρ1/2.

Some important theorems:

Theorem 16.1. Let ρ and σ be density operators on the same space. It holds that

F (ρ, σ) = max
|ψ〉,|φ〉

|〈ψ|φ〉|,

where the maximum is taken over all purifications |ψ〉 and |φ〉 of ρ and σ respectively.

For probability distributions {pi} and {qi}, their fidelity is defined as F ({pi}, {qi}) =
∑
i

√
piqi.

Theorem 16.2. Let ρ and σ be density operators on the same space. It holds that

F (ρ, σ) = min
{Ki}

F
(
{Tr[K∗iKiρ]}, {Tr[K∗iKiσ]}

)
,

where the minimization is taken over all possible measurements {Ki}.

Theorem 16.3 (Monotonicity of fidelity). Let ρ and σ be density operators on the same space and
let E be a CPTP map. It holds that

F (ρ, σ) ≤ F
(
E(ρ), E(σ)

)
.

Theorem 16.4 (Strong concavity). For density operators {ρi} and {σi} with probabilities {pi} and
{qj}, it holds that

F

(∑
i

piρi,
∑
i

qiσi

)
≥
∑
i

√
piqiF (ρi, σi).

Proof. Recall from Uhlmann’s theorem that, for density matrices ρA and σA on system A, there exist
purifications |ψ〉AR and |φ〉AR of ρ and σ respectively such that F (ρ, σ) = 〈ψ|φ〉.

For each ρi and σi, we may use Uhlmann’s theorem to choose purifications |ψi〉AR and |φi〉AR
such that F (ρi, σi) = 〈ψi|φi〉 holds for each i. We may define a new state |Ψ〉ARR′ by

|Ψ〉 =
∑
i

√
pi|ψi〉 ⊗ |i〉.

States of this form are sometimes called flag states. It is straightforward to check that

TrRR′ |Ψ〉〈Ψ|ARR′ =
∑
i

pi TrR|ψi〉〈ψi|AR =
∑
i

piρi.

Similarly, we may define

|Φ〉 =
∑
i

√
qi|φi〉 ⊗ |i〉
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such that TrRR′ |Φ〉〈Φ|ARR′ =
∑
i qiσi. So |Ψ〉 and |Φ〉 are purifications of

∑
i piρi and

∑
i qiσi

respectively. By Uhlmann’s theorem, it holds that

F

(∑
i

piρi,
∑
i

qiσi

)
≥ |〈Ψ|Φ〉|

=
∑
i

√
piqi〈ψi|φi〉

=
∑
i

√
piqiF (ρi, σi)

as desired.

Why are we studying distance measures? Because we want to know when a channel is ‘close’
to being an identity channel. In particular, we want compression schemes that send quantum
information as accurately as possible.

16.1.1 Dynamic measures of distance

Let E be a quantum channel. We can define the following quantities:

F (E) = min
|ψ〉

F
(
|ψ〉〈ψ|, E(|ψ〉〈ψ|)

)
and

D(E) = max
|ψ〉

D
(
|ψ〉〈ψ|, E(|ψ〉〈ψ|)

)
where the minimum and maximum are taken over all pure states of the input system. Note that
only the identity channel will give either D(E) = 0 or F (E) = 1.

Example 16.5. For the depolarizing channel E , it holds that F (E) =
√

1− p
2 .

Note that in the definition of F (E) and D(E) we only optimize over pure states. Why don’t we
define it as the optimization over all states? Well, it turns out that this would give us the same
values! Indeed, if we instead define the quantity

f(E) = min
ρ
F (ρ, E(ρ)),

we see that

F (ρ, E(ρ)) = F

(∑
i

pi|vi〉〈vi|,
∑
i

piE(|vi〉〈vi|)
)

≥
∑
i

piF (|vi〉〈vi|, E(|vi〉〈vi|))

≥ min
i
F (|vi〉〈vi|, E(|vi〉〈vi|))

≥ F (E).

16.1.2 Preservation of Entanglement

Consider a quantum source S = {px, |ϕx〉}. That is, a device that generates the state |ϕx〉 with
probability px. If we don’t know the value of the classical variable x, we consider the state of the
emitted from the source to be

ρ =
∑
x

px|ϕx〉〈ϕx|.
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Given a state ρA, consider a purification |ψ〉AR of ρA. Given a channel E : A −→ A′, we define
the entanglement fidelity of E with respect to ρ as

Fe(ρ, E) = F (RA,RA′) = 〈ψ|(E ⊗ ÎR)(|ψ〉〈ψ|)|ψ〉.

It holds that
F
(
|ψ〉AR, (E ⊗ Î)(|ψ〉〈ψ|AR)

)
≤ F (ρA, E(ρA)).

This follows directly from the monotonicity of fidelity, where we use the fact that the partial trace
is a CPTP map:

F (ρA, E(ρA)) = F
(

TrR (|ψ〉AR) ,TrR

(
(E ⊗ Î)(|ψ〉〈ψ|AR)

))
≥ F

(
|ψ〉AR, (E ⊗ Î)(|ψ〉〈ψ|AR)

)
(where we recall that, for any CPTP map Λ, it holds that F (Λ(ρ1),Λ(ρ2)) ≥ F (ρ1, ρ2) for all states
states ρ1 and ρ2).

Why are we interested in this measure? Note that another way of writing the fidelity is as
F (ρ, σ) = ‖ρ− σ‖1. Here are some important properties of the entanglement fidelity:

(1) The entanglement fidelity is independent of the purification |ψ〉AR.

(2) Fe(ρ, E) = |Tr(ρKi)|2 where Ki are Kraus operators of E .

(3) Fe(ρ, E) ≤
(
F (ρ, E(ρ))

)2
.

(4) Fe
(∑

i piρi, E
)
≤ F (S).

(5) For pures tates, Fe(|ϕ〉, E) =
(
F (|ϕ〉, E(|ϕ〉〈ϕ|))

)2
.

Proof (of (2)).

Fe(ρ, E) = 〈ψ|(E ⊗ Î)(|ψ〉〈ψ|)|ψ〉

=
∑
j

〈ψ|Kj ⊗ I|ψ〉〈ψ|K∗j ⊗ I|ψ〉

=
∑
j

|〈ψ|Kj ⊗ I|ψ〉|2

=
∑
j

|Tr
[
|ψ〉〈ψ|(Kj ⊗ I)

]
|2

=
∑
j

|TrA(TrR(|ψ〉〈ψ|(Kj ⊗ I)))|2

=
∑
j

|TrA(ρAKj)|2.

16.2 Schumacher’s quantum noiseless channel coding theorem

16.2.1 A compression scheme of rate r

ρ⊗n σrn σrn τn
C E=Î D

where C is a compression channel, D is a decompression channel, σrn is the intermediate state after
compression, and τn is the state after decompression.
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16.2.2 Typical subspaces

Let ρ be a density operator and suppose that it has spectral decomposition

ρ =
∑
x

px|x〉〈x|

where |x〉 are some orthonormal vectors. What does ρ⊗n look like? It is∑
x1,x2,...,xn

px1
px2
· · · pxn |x1〉〈x1| ⊗ |x2〉〈x2| ⊗ · · · ⊗ |xn〉〈xn|.

For every positive integer n and ε ≥ 0, the ε-typical subspace of ρ⊗n is

Tq(n, ε) = span {|x1〉|x2〉 · · · |xn〉 | (x1, x2, . . . , xn) is an ε-typical sequence of {px, x}} .

The projection onto the ε-typical subspace is

P (n, ε) =
∑

(x1,...,xn) is ε-typical

|x1〉〈x1| ⊗ · · · ⊗ |xn〉〈xn|
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17 Lecture 17

(22 March 2016)

17.1 Homework hint

In the homework (problem 2 of assignment 4) we are asked to find necessary and sufficient conditions
for when

S(ρAB) = |S(ρA)− S(ρB)|.

There is a condition given in Nielsen and Chuang, but it is too complicated. Look instead at the
discussion of this problem in that book that appears just before that. In fact, it is sufficient to show
that ρAR = ρA ⊗ ρR. (And you need to prove this.)

17.2 Typical Subspaces (cont.)

We’ll see that, in a way, the quantum notion of typical subspaces is simpler than the classical notion
of typical sequences.

As before, consider a density operator ρ : Cd → Cd and its spectral decomposition

ρ =
∑
y

qy|ψy〉〈ψy| =
∑
x

px|x〉〈x|

for some orthonormal basis {|x〉}. Then the n-fold tensor product of ρ is

ρ⊗n =
∑

x1, x2, . . . , xn︸ ︷︷ ︸
xn

px1
px2
· · · pxn︸ ︷︷ ︸

pxn

|x1〉〈x1| ⊗ |x2〉〈x2| ⊗ · · · ⊗ |xn〉〈xn|︸ ︷︷ ︸
|xn〉〈xn|

=
∑
xn

pxn |xn〉〈xn|

where we use the notation xn = (x1, x2, . . . , xn) to denote an arbitrary sequence. (Here we think
about these sequences as indepentent results from as an i.i.d. classical source.)

The (quantum) ε-typical subspace of ρ⊗n is defined as

Tq(n, ε) = span{|xn〉 |xn is ε-typical}

where the sequences xn = (x1, . . . , xn) are ε-typical in the classical sense. The projector onto the
ε-typical subspace is defined by

P (n, ε) =
∑

xn is ε-typical

|xn〉〈xn|.

Theorem 17.1 (Theorem of typical subspaces). Let ρ be a density operator on H = Cd.

(1) Fix ε > 0. For any δ > 0, there exists an n > 1 such that

Tr
[
P (n, ε)ρ⊗n

]
> 1− δ.

(2) Fix ε, δ > 0. Then there exists an n > 1 such that

(1− δ)2n(S(ρ)−ε) ≤ dimTq(n, ε) ≤ 2n(S(ρ)+ε).
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(3) Let r < S(ρ) be a nonnegative real number and for every postitive integer n let Sn ⊂ H⊗n be
a subspace with dimSn ≤ 2nr. For any δ > 0, there exists an n > 1 such that

Tr[ΠSnρ
⊗n] ≤ δ

where ΠSn is the projection operator onto the subspace Sn.

Proof. Parts (1) and (2) follow directly from the definitions. Only part (3) requires some work.

(1) From the theory of classical typical sequences, we have that

Tr[P (n, ε)ρ⊗n] =
∑

xn ε-typical

〈xn|ρ⊗n|xn〉

=
∑

xn ε-typical

pxn = Pr(an arbitrary sequence is typical) > 1− δ,

as desired.

(2) By definition, we have that

dimTq(n, ε) = Tr[P (n, ε)] = |Tc(n, ε)|

where Tc(n, ε) denotes the (classical) set of typical sequences and |Tc(n, ε)| denotes the number
of elements in that set.

(3) Here, Sn is any subspace that may or may not have anything to do with typicality. We can
break up the space into the typical and nontypical subspaces,

Tr[ΠSnρ
⊗n] = Tr[ΠSnρ

⊗nP (n, ε)] + Tr
[
ΠSnρ

⊗n(I − P (n, ε)
)]
,

and show that both terms on the right-hand side go to zero. For the second term, from part (1)
we know that there is some n large enough such that Tr

[
P (n, ε)ρ⊗n

]
> 1− δ, and thus

Tr
[
ΠSnρ

⊗n(I − P (n, ε)
)]
≤ Tr

[
ρ⊗n

(
I − P (n, ε)

)]
< 1− (1− δ) = δ

for that n. For the first term, note that

Tr[ΠSnρ
⊗nP (n, ε)] =

∑
xn ε-typical

Tr[ΠSnρ
n|xn〉〈xn|]

=
∑

xn ε-typical

〈xn|ΠSnρ
n|xn〉

=
∑

xn ε-typical

pxn〈xn|ΠSn |xn〉

≤ 2−n(S(ρ)−ε)
∑

xn ε-typical

〈xn|ΠSn |xn〉

≤ 2−n(S(ρ)−ε)
∑
xn

〈xn|ΠSn |xn〉︸ ︷︷ ︸
Tr ΠSn<2rn

≤ 2−n(S(ρ)−ε)2rn

= 2−n(S(ρ)−r−ε) n→∞−−−−→ 0,

from the theory of classical typical sequences. Here we use the fact that, for any typical
sequence xn, we have pxn ≤ 2−bn(S(ρ)−ε)c ≤ 2−n(S(ρ)−ε).



17 Lecture 17, v. 4-7 33

17.2.1 Compression-decompression schemes

ρ

C D

ρ I

...
... τ ≈ ρ⊗n

...
ρ I
ρ

Definition 17.2. Let ρ be a density operator. A compression-decompression scheme (C,D) of rate
r is said to be reliable for ρ if

lim
n→∞

Fe(ρ
⊗n, D ◦ C) = 1.

Recall that the entanglement fidelity of a state to a channel is defined by

Fe(ρA, E) = 〈ψ|(ÎR ⊗ E)(|ψ〉〈ψ|)|ψ〉

=
∑
j

|Tr(ρAKj)|2

where |ψ〉 = |ψ〉AR is any purification of ρA to system AR and {Kj} is any Kraus representation of E .

Theorem 17.3 (Schumacher’s noiseless channel coding theorem). Given an i.i.d. quantum infor-
mation source ρ : Cd ⊗ Cd with entropy rate S(ρ), a reliable compression-decompression scheme of
rate r exists if and only if r > S(ρ).

Proof. Suppose r > S(ρ) and let ε > 0 such that r > S(ρ)+ ε. From the theory of typical subspaces,
given any δ > 0 there exists a sufficiently large n such that

Tr[ρ⊗nP (n, ε)] > 1− δ.

Moreover, it holds that

dimTq(n, ε) = Tr[P (n, ε)] ≤ 2bn(S(ρ)+ε)c ≤ 2bnrc.

It follows that there exists a subspace W ⊂ H⊗n such that dimW = 2bnrc and Tq(n, ε) ⊂W . Define
a compression map C : Hdn → H2bnrc by

C(γ) = P (n, ε)γP (n, ε) + Tr
[(
I − P (n, ε)

)
γ
]
|0〉〈0|

where |0〉 is some arbitrary pure state in C2bnrc . Note that C is indeed a CPTP map, since it has a
Kraus representation with Kraus operators.1

The decompression channel D : H2bnrc → Hdn that we should use then is just an embedding
channel

D(σ) = σ ∈ Hdn .

Finally, we compute the entanglement fidelity. We have

Fe(ρ
⊗n, D ◦ C) = |Tr[P (n, ε)ρ⊗n]|2 +

∑
j

|Tr[Kjρ
⊗n]|2 ≥ |Tr[P (n, ε)ρ⊗n]|2

> |1− δ|2 > 1− 2δ,

where the Kraus operators {Kj} are obtained from the footnote.

1Indeed, the Kraus operators can be found in the following manner. Let |ψi〉 be any orthonormal basis such that∑
i|ψi〉〈ψi| = I − P (n, ε). Then we get Kraus operators

Tr
[(
I − P (n, ε)

)
γ
]
|0〉〈0| =

∑
i

〈ψi|γ|ψi〉|0〉〈0| =
∑
i

|0〉〈ψi|︸ ︷︷ ︸
Ki

γ |ψi〉〈0|︸ ︷︷ ︸
K∗i

.

So the Kraus operators for C are {P (n, ε)} ∪ {Ki} such that C(γ) = P (n, ε)γP (n, ε) +
∑

iKiγK
∗
i .
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18 Lecture 18

(24 March 2016)

18.1 What is a quantum source?

Something that we actually haven’t discussed yet in class is what a quantum source actually is! Here
are different ways of thinking about a ‘quantum source’.

(1) Consider a pure state |ψ〉AR on a joint system composed of A and a reference system R. Then
a quantum source would be

ρA = TrR|ψ〉〈ψ|AR
where we only have access to the system A. We could have numerous identical copies of the
same state |ψ〉AR (where for each one we only have access to A), and we then ‘compress’ all of
the A systems into something else and send what we have to Bob through a series of identity
quantum channels.

Figure 18.1: Depiction of a source as many copies of a pure state entangled with a resource system R.

The identity quantum channel is also called the noiseless quantum channel.

(2) Alternatively, we can consider a source as an ensemble {qy, |ψy〉} and have a state

ρ =
∑
y

py|ψy〉〈ψy| =
∑
x

λx|x〉〈x|

where λx are the eigenvalues of ρ. We could randomly sample from the source {qy, |ψy〉} where
we obtain |ψy〉 with probability qy. Given a random string of samples obtained (independently
and identically distributed)

|ψy1〉|ψy2〉 · · · |ψyn〉, (18.1)

we would like to have a compression-decompression scheme such that the string in (18.1) can
be retrieved as close as possible with high probability in the limit of large n. That is, we want∑

xn

pxn (Fe (|ψxn〉, D ◦ C(|ψxn〉)))2 n→∞−−−−→ 1
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18.2 Back to Schumacher compression

We now want to prove the converse of Schumacher’s compression theorem. Consider a density
operator ρ. We want to show that there does not exist a valid compression-decompression scheme
of rate r for any r < S(ρ). Indeed, suppose r < S(ρ) and suppose that we had some compression-
decompression scheme of rate r with compression and decompression channels given by

C : Hdn →W and D : W → Hdn

where W ⊂ Hdn is a subspace with dimW = 2brnc. To show that this compression-decompression
scheme is not reliable, we want to show that

lim
n→∞

Fe
(
ρ⊗n, D ◦ C

)
= 0.

Let δ > 0. We will show that Fe (ρ⊗n, D ◦ C) < δ for n sufficiently large. Now

Fe
(
ρ⊗n, D ◦ C

)
=
∑
j,k

∣∣Tr
(
DkCjρ

⊗n)∣∣2 (18.2)

where {Dk} and {Cj} are Kraus operators for the channels D and C

C(γ) =
∑
j

CjγC
∗
j and D(σ) =

∑
k

DkσD
∗
k

such that
∑
j C
∗
jCj = Idn and

∑
kD
∗
kDk = IW . Note that the matrices Cj are all the same size.

They all have input dimension dn and output dimension 2brnc. Hence dim Range(Cj) ≤ 2nr for
each j and thus1

dim Range(DkCj) ≤ 2rn.

For each pair k, define the subspaces2

Wk = span {Dkv | v ∈W}

and let S
(n)
k be the projection onto Wk. Then Tr[S

(n)
k ] ≤ 2brnc = dimW . Continuing from (18.2),

we have

Fe
(
ρ⊗n, D ◦ C)

)
=
∑
j,k

∣∣Tr
(
DkCjρ

⊗n)∣∣2
=
∑
j,k

∣∣∣Tr
(
S

(n)
k DkCjρ

⊗n
)∣∣∣2

=
∑
j,k

∣∣∣Tr
(
DkCj

√
ρ⊗n

√
ρ⊗nS

(n)
k

)∣∣∣2
≤
∑
j,k

Tr
[
DkCjρ

⊗nC∗jD
∗
k

]
Tr
[
S

(n)
k ρ⊗nS

(n)
k

]
where we make use of the Cauchy-Schwartz inequality for matrix inner products3 in the last line.
Hence we have proved that

Fe
(
ρ⊗n, D ◦ C

)
≤
∑
j,k

Tr
[
DkCjρ

⊗nC∗jD
∗
k

]
Tr
[
S

(n)
k ρ⊗n

]
.

1Recall that the range of an operator A : V →W is the subspace defined by Range(A) = {Av | v ∈ V } ⊆W .
2He erased this really quickly, so I’m not quite so sure this definition for Wk is corect... In the notes online, he

just defines S
(n)
k as the ‘projector onto the range of DkSn,’ where Sn is the projector onto W .

3The Cauchy-Schwartz inequality for matrix inner products states that |Tr(A∗B)|2 ≤ Tr(A∗A) Tr(B∗B) for all
matrices A and B.
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From the Theory of Typical Subspaces part (3), we know that

Tr
[
S

(n)
k ρ⊗n

]
< δ

for n sufficiently large. Furthermore, note that the result of the compression and decompression
channels applied to ρ⊗n can be written in term of their Kraus operators as

D ◦ C(ρ⊗n) =
∑
j,k

DkCjρ
⊗nC∗jD

∗
k.

Since the channels C and D are trace preserving, we have that Tr[D ◦ C(ρ⊗n)] = 1 and thus

Fe
(
ρ⊗n, D ◦ C

)
≤
∑
j,k

Tr
[
DkCjρ

⊗nC∗jD
∗
k

]
Tr
[
S

(n)
k ρ⊗n

]
≤ δTr[D ◦ C(ρ⊗n)] = δ,

for sufficiently large n, where δ > 0 is any positive constant. It follows that

lim
n→∞

Fe
(
ρ⊗n, D ◦ C

)
= 0,

and thus this compression-decompression scheme is not reliable.

18.2.1 Mixed sources

Instead of a source composed of pure states, suppose instead we have the following source

Source = {px, ρx}.

In this case, the entropy of the source is not just S
(∑

x pxρx
)
.

Suppose we had an ensemble of the form {px, ρx} for x = 1, 2 where ρ1 and ρ2 have orthogonal
support. That is,

ρ1ρ2 = ρ2ρ1 = 0.

For example, we could have

ρ1 = λ1|1〉〈1|+ λ2|2〉〈2| and ρ2 = λ3|3〉〈3|+ λ4|4〉〈4|.

Then the state ρ =
∑
x pxρx can really be written as a direct sum in block matrix form as

ρ =
⊕
x

pxρx =

(
p1ρ1 0

0 p2ρ2

)
.

Then the entropy of ρ is

S(ρ) = −p1λ1 log(p1λ1)− p1λ2 log(p1λ2)− p2λ3 log(p2λ3)− p2λ4 log(p2λ4)

= H(p1, p2) +
∑
x

pxS(ρx).
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19 Lecture 19

(29 March 2016)

19.1 Compression (cont.)

Last time we were talking about Schumacher compression. We finished proving the Schumacher
compression theorem, but now we will talk about different types of compression. Previously, we
had considered sources of the form {px, |ψx〉}. The information that we wanted to compress was a
random sequence of states

|ψx1
〉 ⊗ |ψx2

〉 ⊗ · · · ⊗ |ψxn〉

such that any random such string of states can be reproduced as best as possible with high probabil-
ity. We proved that compression with rate r is possible only if r > S(ρ), where ρ =

∑
x px|ψx〉〈ψx|.

Now suppose we have an arbitrary source of the form {px, ρx} where the states ρx are arbitrary
(not necessarily pure). The information that we want to compress is a random sequence of states

ρx1 ⊗ ρx2 ⊗ · · · ⊗ ρxn

where the states are randomly and independently drawn from the source. Sometimes we can do
even better than r > S(ρ)!

Suppose that the ρx are all orthogonal to each other. That is,

ρxρx′ = ρx′ρx = 0 for all x 6= x′.

Then there exist projection operators {Px} such that Px′ρx = ρxPx′ = ρxδxx′ for all x, x′. Without
loss of generality we may then suppose that these projections sum to the identity∑

x

Px = I.

If Alice wants to communicate a random sequence of states ρx1
⊗· · ·⊗ρxn , she can just perform the

measurement corresponding to the measurement operators {Px} and obtain the string (x1, . . . , xn).
She can then compress the message classically (at a rate r > H(X)) and send the result to Bob.
Bob then decompresses the string and prepares the corresponding string of states (since Bob knows
the source {px, ρx}).

If the states ρx are mixed (not pure), then S(ρ) > H(X) where ρ is the state

ρ =
∑
x

pxρx.

In the case when ρx are orthogonal, it holds that

S(ρ) = H(X) +
∑
x

pxρx

If the states are really mixed, then we can compress the information even more. It is possible to
show that a reliable compression scheme of rate r for a source {px, ρx} is possible only if

r > S(ρ)−
∑
x

pxS(ρx) ≥ 0.

If all of the ρx are pure, then S(ρx) = 0 for each x, and a bound for the best achievable rate is
r > S(ρ). This is exactly what we had already proved earlier in Schumacher’s compression theorem.
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19.2 Asymptotic Entanglement Theory

Consider the standard Bell state of two qubits held by Alice and Bob:

|Bell〉 =
1√
2

(
|00〉+ |11〉

)
.

This state is in a sense the most useful state for quantum information processing. So if Alice and
Bob share some arbitrary state ρAB, they would like to know if they can obtain |Bell〉 from ρAB via
LOCC. In general, a single copy of an arbitrary state cannot be converted into a Bell state

ρAB 6LOCC−−−→ |Bell〉.

Here, however, we will be concerned with asymptotic entanglement conversion.
Suppose Alice and Bob have a pure state |ψ〉, but they would like to have some other state |φ〉.

It is usually not possible to convert |ψ〉 LOCC−−−→ |φ〉, but it might be possible to convert many copies
of |ψ〉 to many copies of |φ〉

|ψ〉⊗n LOCC−−−→ |φ〉⊗m

for some integers n and m.
The protocol of entanglement distillation is as follows. Suppose Alice and Bob have access

to a pure state |ψ〉AB, and we write ρAB = |ψ〉〈ψ|AB. For a positive integer n, Alice and Bob want
to know how many copies of the Bell state they can produce via LOCC

|ψ〉⊗n LOCC−−−→ |Bell〉⊗m,

where m is the maximum number of Bell states that may be obtained from n copies of |ψ〉.

Figure 19.1: Depiction of (|ψ〉AB)⊗n being converted into (|Bell〉AB)⊗m. (Sorry for the low quality)

The protocol of entanglement formation is the reverse. Suppose Alice and Bob have access
to many copies of a Bell state, but they would like to have copies of some other state |ψ〉. For a
positive integer n, Alice and Bob want to know how many copies of |ψ〉 they can produce via LOCC

|Bell〉⊗n LOCC−−−→ |ψ〉⊗m,

where m is the maximum number copies of |ψ〉 that may be obtained from n copies of the Bell state.
The entanglement of formation is sometimes called the entanglement cost.

19.2.1 Entanglement Distillation

Suppose Alice and Bob have access to the state |ψ〉. Without loss of generality, we may write |ψ〉 in
Schmidt form as

|ψ〉 =
∑
x

√
px|xAxB〉.



19 Lecture 19, v. 4-7 39

Define ρ = TrB|ψ〉〈ψ|AB. If they share n copies of this state, then they have

|ψ〉⊗n =

(∑
x

√
px|xAxB〉

)⊗n
=

∑
x1,x2,...,xn

√
px1px2 · · · pxn |x1x2 · · ·xn︸ ︷︷ ︸

xn

〉A ⊗ |x1x2 · · ·xn︸ ︷︷ ︸
xn

〉B,

where xn is a classical sequence, and we write pxn = px1px2 · · · pxn .
We’ll show that the optimal achievable rate is S(ρ) (where ρ = TrB|ψ〉〈ψ|AB). Let ε > 0. Alice

can then perform the measurement corresponding to the operators

P (n, ε) =
∑

xn is ε-typical

|xn〉〈xn|A and I − P (n, ε),

corresponding to outcomes “0” and “1” respectively. She obtains outcome 0 with probability

〈ψ|⊗n
(
P (n, ε)⊗ IB

)
|ψ〉⊗n =

∑
xn is ε-typical

pxn = Pr(xn is ε-typical)→ 1

which goes to 1 as n → ∞. Alice’s protocol ‘succeeds’ if she obtains outcome 0 and her protocol
‘fails’ if she obtains outcome 1. But she doesn’t have to worry about obtaining outcome 1, since it
will happen with vanishing probability as n gets large.

After obtaining outcome 0, the the resulting state after the measurement may be denoted

|ψn(ε)〉 =
P (n, ε)|ψ〉⊗n√

Pr(xn is ε-typical)
.

Let δ > 0. Then for all n sufficiently large, the Schmidt coefficients of this state are

pxn
Pr(xn is ε-typical)

≤ pxn

1− δ
≤ 2−n(S(ρ)−ε)

1− δ

where xn is ε-typical. Let ~pn be the probability vector of these Schmidt coefficients.
Define m(n) to be the largest integer such that 2−m ≥ 1

1−δ2−n(S(ρ)−ε). Consider the probability
vector

~qm =



2−m

2−m

...
2−m

0
...
0


.

These are exactly the Schmidt coefficients of the state |Bell〉⊗m.1 Since ~pn ≺ ~qm, from Nielsen’s
theorem it follows that

|ψn(ε)〉 LOCC−−−→ |Bell〉⊗m.
Now,

2−m ≥ 1

1− δ
2−n(S(ρ)−ε) = 2−n(S(ρ)−ε− log(1−δ)

n )

1Indeed, we have

(|Bell〉)⊗m =

(
1
√

2

∑
x∈{0,1}

|xx〉AB
)⊗m

=
1
√

2m

∑
x1,...,xn

|x1 · · ·xn〉A ⊗ |x1 · · ·xn〉B.
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and thus m
n ≥ S(ρ)− ε− log(1−δ)

n . Since ε and δ can be chosen to be arbitrarily small, it follows that
m
n ≥ S(ρ). Therefore the optimal limit must satisfy

opt lim
n→∞

m

n
≥ S(ρ)

19.2.2 Entanglement of formation

(next time)
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20 Lecture 20

(31 March 2016)

20.1 Homework hint

Need to show that, if there exists a CPTP map that is LOCC such that E(ρAB) = σAB, then

E(ρAB) ≥ E(σAB)

For this particular measure (in the assignment), the only thing that you need to show is that, if ρAB
is separable then σAB = E(ρAB) must also be separable.

20.2 Asymptotic entanglement theory (cont)

Last time we discussed the asymptotic rates of entanglement distillation for bipartite pure states.
Now we discuss the reverse protocol.

20.2.1 Entanglement of formation

(Sometimes also called the entanglement cost.)

Let |ψ〉AB be a state on systems A and B (Alice and Bob). Without loss of generality we may assume
that it is in Schmidt form

|ψ〉AB =
∑
x

√
px|x〉A ⊗ |x〉B.

Suppose Alice and Bob have access to many copies of the Bell state,

|Bell〉 =
1√
2

(|00〉+ |11〉).

If they want to obtain n copies of |ψ〉, Alice and Bob want to know the minimal number m of copies
of |Bell〉 that are needed to obtain |ψ〉⊗n by LOCC

|Bell〉⊗m LOCC−−−→ |ψ〉⊗n.

We are interested in the asymptotic limit of the ratio of m and n as n goes to infinity

lim
n→∞

m

n
.

As before, for entanglement distillation, we can write the n-fold tensor product of |ψ〉 as

|ψ〉⊗n =
∑
xn

√
pxn |xn〉|xn〉,

where the sum is taken over all sequences xn of length n. For any ε > 0 we define the state

|ψn(ε)〉 :=
1√

Pr(xn ε-typical)

∑
xn is ε-typical

√
pxn |xn〉|xn〉

where
Pr(xn ε-typical) =

∑
xn is ε-typical

pxn .
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By definition of typicality, almost all of the probabilities pxn for ε-typical sequences xn must be very
close to 2−nS(ρ). In fact, we know that

2−n(S(ρ)+ε) < pxn < 2−n(S(ρ)−ε)

holds for all ε-typical sequences xn (where ρ = TrB|ψ〉〈ψ|AB).
The original state |ψ〉 is a vector in the tensor product space Cd ⊗Cd (where d is the dimension

of the spaces held by Alice and Bob), and |ψ〉⊗n ∈ Cdn ⊗ Cdn . Now the state |ψn(ε)〉 ‘lives’ in a
subspace

|ψn(ε)〉 ∈ Cd
′
n ⊗ Cd

′
n

where d′n = |T (n, ε)| is the number of ε-typical sequences (and d′n is a number that depends on n).
No matter what, the dimension satisfies

d′n = |T (n, ε)| ≤ 2n(S(ρ)+ε) < dn.

Furthermore, since all of the probabilities pxn for typical sequences must all be very close together,
the state |ψn(ε)〉 must be very close to a ‘maximally entangled’ state of dimension d′n. Define m to
be

m = dn(S(ρ) + ε)e.
Consider now the m-fold tensor product of the standard Bell state, which we can think of as

|Bell〉⊗m =
1√
2m

2m∑
j=1

|jj〉,

which is the maximally entangled state of dimension 2m. All of the Schmidt coefficients of |Bell〉⊗m
are just 2−m, whereas the Schmidt coefficients of |ψn(ε)〉 are

pxn

Pr(xn ε-typical)

for every ε-typical sequence xn. However Pr(xn ε-typical)→ 1 as n→∞. For n sufficiently large, it
follows that

2−m ≤ 2−n(S(ρ)+ε) < pxn

holds for all ε-typical sequences xn. Therefore the vector of Schmidt coefficients of |Bell〉⊗m is
majorized by the vector of Schmidt coefficients of |ψn(ε)〉, and thus

|Bell〉⊗m LOCC−−−→ |ψn(ε)〉.

Finally, we note that the state |ψn(ε)〉 can be brought arbitrarily close to the state |ψ〉⊗n if n is
sufficiently large, since their fidelity is

[F (|ψn(ε)〉, |ψ〉⊗n)]2 = 〈ψn(ε)|ψ〉⊗n

=
1√

Pr(xn ε-typical)

∑
xn ε-typical

pxn =
√

Pr(xn ε-typical)

which approaches 1 as n→∞. Hence, if we choose m = dn(S(ρ)+ε)e, then |Bell〉⊗m can be brought
arbitrarily close to |ψ〉⊗n for n sufficiently large. So the optimal limit is at most

lim
n→∞

dn(S(ρ) + ε)e
n

= S(ρ) + ε.

Since ε can be chosen to be arbitrarily small, it follows that the optimal limit is

opt lim
n→∞

m

n
≤ S(ρ). (20.1)

What we really want to show is that
opt lim

n→∞
= S(ρ).

How can we show that S(ρ) really is optimal?



20 Lecture 20, v. 4-7 43

20.2.2 Optimality of the rate S(ρ)

We showed last time that the optimal rate of entanglement distillation satisfies

opt lim
n→∞

m

n
≥ S(ρ).

Compare this to the optimal rate of entanglement formation in (20.1). What does this mean?

• If Alice and Bob start with n copies of |ψ〉, there is a protocol for Alice and Bob to obtain at
least m = nS(ρ) copies of |Bell〉 (if n is large enough). That is, the optimal rate of distillation
rd is at least rd ≥ S(ρ.

• If Alice want n copies of |ψ〉, there is a protocol where Alice and Bob require at most m = nS(ρ)
copies of |Bell〉 (if n is large enough). That is, the optimal rate of formation rf is at most
rf ≤ S(ρ).

Putting this together, we see that the asymptotic rates of distillation rd and formation rf for any
state |ψ〉 must satisfy rf ≤ S(ρ) ≤ rd.

However, we will show that the optimal rates of distillation and formation are equal to each
other, by showing that rf < rd is impossible (i.e. it is impossible to distill more Bell states than
from what you started with).

Consider a protocol where Alice and Bob start with some number of Bell states which they
convert into n copies of |ψ〉 at an optimal rate of formation rf , then convert those copies of |ψ〉 back
into Bell states at an optimal rate of distillation rd as depicted here:

|Bell〉⊗nrf LOCC−−−→ |ψ〉⊗n LOCC−−−→ |Bell〉⊗nrd .

If rd > rf , this would mean that we could actually end up with more Bell states than what we
started with! This is clearly impossible. It follows that rf = rd = S(ρ).

Reversibility The fact that the optimal rate of entanglement distillation is equal to the optimal
rate of entanglement formation implies reversibility in the asymptotic limit. As n goes to infinity,

the entanglement ‘loss’ for converting many copies of the Bell states |Bell〉⊗m LOCC−−−→ |ψ〉⊗n to some
number of copies of a state |ψ〉, and then back to the maximal number of copies of the Bell state
will go to zero (assuming optimal conversion rates are performed at each step).

That is, for large n, we can convert |ψ〉⊗n into |Bell〉⊗(nS(ρ)) and back with vanishing loss of
entanglement as n→∞.

Interpretation of the rates of distillation and formation How do we interpret these num-
bers? Given some number n, what is the number of Bell states that are needed to produce n copies
of |ψ〉? The answer is nS(ρ) (in the limit of large n). Conversely, what is the number of Bell states
that can be produced from n copies of |ψ〉? Again, in the limit of large n, the answer is nS(ρ). So
we say that S(ρ) is the conversion rate in the asymptotic limit.

20.3 Some properties of entropy and information measures

Recall some notions from classical information. The Shannon entropy of a random variable X (whose
probability distribution is {px}) is defined by

H(X) = H(p1, p2, . . . , pn) = −
∑
k

pk log pk.

We can think of the probability distribution as a vector ~p whose entries are pk. If we have two
random variables X and Y , the joint probability of the random variables is a probability distribution
{pxy}.

Some properties of the Shannon entropy include
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• Concavity:

H
(∑

i

ti~pi

)
≥
∑
i

tiH(~pi)

for any collection of probability vectors {~pi} and any ti ≥ 0 satisfying
∑
i ti = 1.

• Symmetry: H(X,Y ) = H(Y,X)

• Subadditivity: H(X,Y ) ≤ H(X) +H(Y ) with equality if and only if X and Y are indepen-
dent.

• Strong subadditivity: H(X,Y, Z) +H(X) ≤ H(X,Y ) +H(Y,Z), with equality if and only
if Z → Y → X forms a Markov chain.

Given random variables X and Y with joint probability distribution {pxy}, the joint entropy
of X and Y is defined as

H(X,Y ) = −
∑
x,y

pxy log pxy

If X and Y are independent random variables, then the joint probability distribution can be written
as {pxy} = {pxqy} for individual probability distributions {px} and {py} of X and Y . It follows that

H(X,Y ) = H ({pxqy}) = −
∑
x,y

pxqy log(pxqy) = −
∑
x

px log px −
∑
y

qy log qy.

Now consider some random variables X, Y , and Z, and their joint probability distribution {pxyz}.
We define the conditional probabilities

px|yz :=
pxyz∑
x′ px′yz

.

These random variables form a Markov chain if it holds that

px|yz = px|y

for all x, y, z, where px|y are the conditional probabilities of x given y supposing no information is
known about Z.

The mutual information of random variables X and Y is defined as

H(X : Y ) = H(X) +H(Y )−H(X,Y ).

It holds that H(X : Y ) ≥ 0 for all random variables X and Y .

20.3.1 Message encoding

Suppose Alice and Bob have a channel between them for transmitting information (from Alice to
Bob). Alive wants to transmit a message W by encoding it, sending it through the channel, and
Bob decodes it to obtain the message Ŵ (after transmission, with possible errors):

W Encoder Channel Decoder Ŵ .

The channel here is a classical channel on some alphabet X . Given some input x ∈ X into the
channel, the probability that the channel outputs some output y ∈ X is some probability py|x (i.e.
the probability that y is output given that x is the input). Alice can make multiple uses of this
channel, but the goal is to use it as little as possible but still accurately send the intended message.

Alice samples a random source that outputs messages from the alphabet i ∈ {1, 2, . . . ,M} (i.e.
there are M different possible messages, each occurring with some probability). The source produces
each message with some probability Pr(W = i). She converts the messages into a sequence of n



20 Lecture 20, v. 4-7 45

letters from the alphabet X . Each message i is encoded into a distinct message or codeword. The
codewords are denoted

{xn(1), xn(2), . . . , xn(M)}

where the set of these codewords is called the codebook. The encoding-decoding message-sending
scheme works as follows:

1. Alice samples the source and obtains a message i that she wishes to send to Bob.

2. She then sends the corresponding codeword xn(i) through the channel, by sending each term
of the sequence separately.

3. Bob then receives a sequence of letters from the alphabet Xn (which may or not be the same
sequence sent by Alice if the channel is ‘noisy’, i.e. introduces errors). Hes must attempt to
correctly decode it to obtain the message i.

4. Bob’s decoder is a function g : Xn → {1, . . . ,M} that takes sequences from the output of the
channel and assigns them to messages.

The choice of codebook {xn(1), . . . , xn(M)} together with the function g is called an (M,n)-code
for this source and channel.

Alice wants to make sure that the probability of Bob interpreting the message incorrectly to be
as small as possible. For a given n, Alice and Bob want to choose an (M,n)-code that reduces the
probability error. Define the probability of error for sending the message i to be

λ
(n)
i =

∑
{yn : g(yn) 6=i}

Pr(yn|xn(i)).

This is the probability that the message that Bob interprets a message different that i given that
Alice wanted to send i. The maximal probability of error is

λ(n)
max = max

i
λ

(n)
i .

The rate of an (M,n)-code is defined as logM
n (i.e. the number of bits of information that can be

sent per n uses of the channel).
Let r > 0. We say that the rate r is achievable if there exists a sequence of (d2nre, n)-codes

such that
λ(n)

max → 0

as n→∞. The capacity C of a channel is defined as the supremum over all achievable rates r.

Theorem 20.1 (Shannon’s capacity theorem for a classical channel). The maximum capacity of a
channel is

C = H(p)???

(This didn’t make any sense... He also erased it way too fast.)

20.3.2 Conditional information

The conditional information of random variables X and Y is defined as

H(X|Y ) = H(X)−H(X : Y ) = H(X,Y )−H(Y ).

It holds that H(X|Y ) ≥ 0 for all random variables X and Y .
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Proof. Consider a probability distribution {pxy}. Then

−
∑
x,y

pxy log pxy +
∑
x,y

pxy log py = −
∑
x,y

pxy log

(
pxy
py

)
= −

∑
x,y

pxy log(px|y)

≥ 0.

The quantum version of the conditional entropy is not positive.
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21 Lecture 21

(5 April 2016)

21.1 Homework hints

• For problem 3(c) of assignment 5: You only need to find a separable σ such that S(ρ‖σ) =
S(ρA). Proving that it is optimal is too hard.

• Problem 4 was already on assignment 4, but here we only need to prove the equality conditions.

21.2 Information measures

The conditional mutual information of random variables X, Y , and Z is defined by

H(X : Z|Y ) = H(X,Y ) +H(Y, Z)−H(Y )−H(X,Y, Z).

It holds that H(X : Z|Y ) ≥ 0 with equality if and only if X → Y → Z forms a Markov chain.

21.2.1 The relative entropy

For probability distributions {p(x)} and {q(x)}, their (classical) relative entropy is defined by

H(p‖q) =
∑
x

p(x) log
p(x)

q(x)
= −H(X)−

∑
x

p(x) log q(x)

where H(x) = −
∑
x p(x) log p(x). This is really the ‘mother’ of many other important quantities

that arise in information theory.

Theorem 21.1 (Properties of the relative entropy). The following properties of the classical relative
entropy hold.

• Positivity: H(p‖q) ≥ 0 with equality if and only if p(x) = q(x) for all x.

• Sub-additivity: H(X,Y ) ≤ H(X) +H(Y )

• H(X) ≤ log d

These properties can be proven from the quantum case. For example, if ρ and σ are density operators
that are simultaneously diagonalizable,

ρ =
∑
i

pi|i〉〈i| and
∑
i

qi|i〉〈i|,

then S(ρ‖σ) = H(p‖q).

21.2.2 The von Neumann entropy

For a density operator ρ, the von Neumann entropy of ρ is

S(ρ) = −Tr[ρ log ρ].

Theorem 21.2. Some important properties of the von Neumann entropy:

(1) S(ρ) ≥ 0 with equality if and only if ρ is pure.

(2) S(ρ) ≤ log d with equality if and only if ρ = 1
dI.
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(3) If ρAB is pure, then S(A) = S(B), where S(A) = S(TrB ρAB) and S(B) = S(TrA ρAB).

(4) Concavity: ∑
i

piS(ρi) ≤ S
(∑

i

piρi

)
≤
∑
i

piS(ρi) +H(pi).

(5) Additivity: S(ρ⊗ σ) = S(ρ) + S(σ)

(6) Sub-additivity: |S(A)− S(B)| ≤ S(A,B) ≤ S(A) + S(B)

(7) Strong sub-additivity:

S(A,B,C) + S(B) ≤ S(A,B) + S(B,C)

and
S(A) + S(B) ≤ S(A,B) + S(B,C).

The entropy gives a sense of how ‘uniform’ the eigenvalues of ρ are. If all of the eigenvalues are the
same (i.e. 1

d ), then S(ρ) is maximal.

Proof (sketch) of Theorem 21.2. Note that property (3) is actually a necessary and sufficient condi-
tion.

(4) Consider the so-called ‘flag states’∑
i

pi|i〉〈i| ⊗ ρi =
⊕
i

piρi

(5) Note that log(ρ⊗ σ) = (log ρ)⊗ I + I ⊗ (log σ). Then

Tr[ρ⊗ σ log(ρ⊗ σ)] = Tr[(ρ⊗ σ)(log ρ⊗ I + I ⊗ log σ)]

= Tr[(ρ log ρ)⊗ σ] + Tr[ρ⊗ (σ log σ)]

= Tr[ρ log ρ] Tr[σ] + Tr[ρ] Tr[σ log σ] = Tr[ρ log ρ] + Tr[σ log σ].

(7) The proof of this is hard. 1

There are other areas there the von Neumann entropy occurs naturally, for example in ther-
modynamics. Many problems in thermodynamics are considered in the ‘thermodynamic limit’ (i.e.
waiting a long time) in which the law of large numbers starts to kick in. ‘Quantum thermodynamics’
is a relatively new subfield of Quantum Information that combines the two.

There are some classical quantities that have quantum counterparts, and some don’t. Here are
some of the quantum counterparts.

21.2.3 Quantum mutual information

The joint entropy of two quantum systems A and B (in state ρAB) is S(A,B) = S(ρAB). The
entropies of the subsystems are

S(A) = S(ρA) and S(B) = S(ρB).

The mutual information of systems A and B is defined as

S(A : B) = S(A) + S(B)− S(A,B).

It holds that S(A : B) ≥ 0 with equality if and only if ρAB = ρA ⊗ ρB.

1Originally proved by Lieb in the 1970s, and there is no known ‘simple proof’ of this. It is an open question in
quantum information as to whether there is a simple proof or not
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21.2.4 Quantum conditional information

The conditional information is defined as

S(A|B) = S(A)− S(A : B) = S(A,B)− S(B).

If ρAB = |ψ〉〈ψ| is pure, then S(A,B) = 0. In this case, S(B) = 0 if and only if |ψ〉AB is separable.
Hence |ψ〉 is entangled if and only if S(A|B) < 0.

What would it mean to have ‘negative conditional entropy’ mean2? This is David’s research project.

21.2.5 Quantum relative entropy

The ‘rock star’ of all entropies. Many other important quantities are defined from this.

The quantum relative entropy of ρ and σ is defined as

S(ρ‖σ) = Tr[ρ log ρ]− Tr[ρ log σ] = −S(ρ)− Tr[ρ log σ].

The relative entropy of entanglement is a ‘distance-like measure’. This fact is related to the relative
entropy of entanglement , which is defined as

ER(ρ) = min
σ∈Sep

S(ρ‖σ).

This gives us a somewhat ‘geometric’ picture of entanglement, by giving us a sense of how ‘far’ a
state ρ is from the set of separable states. A picture can be found in Fig. 21.1.

Figure 21.1: Depiction of the relative entropy of entanglement. Given a state ρAB outside of the set
SEP of separable states, we can find the state σ ∈ SEP that is ‘closest’ to ρ with respect to the
‘distance’ defined by the relative entropy.

Theorem 21.3 (Klein). Let ρ and σ be density operators. Then S(ρ‖σ) ≥ 0 with equality if and
only if ρ = σ.

Note that proving this is on the assignment. The proof in Nielsen and Chuang [1] has an error!
(Well, actually they just sweep something under the rug.)

Theorem 21.4 (Joint convexity). Let {pi} be probabilities and let ρi and σi be density operators
for every i. It holds that

S

(∑
i

piρi

∥∥∥∥∑
i

piσi

)
≤
∑
i

piS(ρi‖σi).

2M Horodecki, J Oppenheim, A Winter. Quantum information can be negative. Nature 436, 673-676 (2005).
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Theorem 21.5 (Monotonicity). Let ρAB and σAB be density operators. It holds that

S(ρAB‖σAB) ≥ S(ρA‖σA).

Monotonicity is related to the picture in Fig. 21.2. That is, erasing some of the information can
only make the two states closer together.

Figure 21.2: Smiley and frowny faces. Covering up the lower half make the two picture indistin-
guishable.

Theorem 21.6 (Monotonicity). Let ρ and σ be density operators and E be a CPTP map. It holds
that

S(E(ρ)‖E(σ) ≤ S(ρ‖σ).

Proof. By Stinespring dilation, we can write the channel E as

E(X) = TrE
[
U(X ⊗ |0〉〈0|E)U∗

]
for all X. Now

S(E(ρ)‖E(σ) = S
(
TrE

[
U(ρ⊗ |0〉〈0|E)U∗

]∥∥TrE
[
U(σ ⊗ |0〉〈0|E)U∗

])
≤ S

(
U(ρ⊗ |0〉〈0|E)U∗

∥∥U(σ ⊗ |0〉〈0|E)U∗
)

= S
(
ρ⊗ |0〉〈0|E

∥∥σ ⊗ |0〉〈0|E)
= S(ρ‖σ),

where we note that S(ρ⊗ τ‖σ ⊗ γ) = S(ρ‖σ) + S(τ‖γ) holds for all ρ, σ, τ, γ (left as an exercise to
the reader).

Theorem 21.7. The mutual information of quantum systems is positive.

I(A : B) ≥ 0

Proof. Note that

0 ≤ S(ρAB‖ρA ⊗ ρB) = Tr[ρAB log(ρAB)]− Tr[ρAB log(ρA ⊗ ρB)]

= −S(ρAB)− Tr[ρAB(log ρA ⊗ I + I ⊗ log ρB)]

= −S(ρAB)− Tr[ρA log ρA]− Tr[ρB log ρB],

where we note that we can split the trace Tr into TrA TrB or TrB TrA in either order. Hence

S(ρAB‖ρA ⊗ ρB) = S(ρA) + S(ρB)− S(ρAB) = I(A : B),

which proves the desired result.

Note that the quantum mutual information is not a measure of entanglement, but rather a
measure of correlations. The mutual information vanishes if and only if ρ is a product state with
the form ρAB = ρA ⊗ ρB.
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21.2.6 Other quantities

We compared the relative entropies of ρAB with ρA and ρB. It is also natural to consider I. If I is
the identity operator on a d-dimensional space, then 1

dI is a normalized density operator. Let ρ be
an arbitrary density operator. Now

0 ≤ S(ρ‖ 1
dI) = Tr[ρ log ρ]− Tr[ρ log 1

dI] = −S(ρ) + log d.

This implies that S(ρ) ≤ log d.
We also consider the following:

0 ≤ S(ρAB‖ 1
dA
I ⊗ ρB)

= −S(ρAB)− Tr[ρ log( 1
dA
I ⊗ ρB)]

= −S(ρAB)− Tr[ρ(log( 1
dA
IA)⊗ IB)]− Tr[ρ(IA ⊗ log ρB)]

= −S(ρAB) + log dA + S(ρB)

= log dA + S(A|B).

Finally, we note that S(A|B) = is concave as a function ρAB. (why?)

21.2.7 Proof of strong sub-additivity

Define a function T on tripartite states on ABC as follows:

T (ρABC) = S(A) + S(B)− S(A,C)− S(B,C) (21.1)

= −S(C|A)− S(C|B). (21.2)

Since S(C|A) and S(C|B) are concave, it follows that T is convex in ρABC. Now consider a state ρABC
in spectral decomposition

ρABC =
∑
i

ri|ψi〉〈ψi|ABC.

Then, by convexity of T ,

T (ρABC) ≤
∑
i

riT (|ψi〉〈ψi|ABC) ≤ 0,

where T (|ψi〉〈ψi|ABC) = 0 (i.e. T vanishes for pure states) because......?
For the other part of strong sub-additivity, we want to prove that

S(A) + S(B) ≤ S(A,B) + S(B,C).

Let ρABC be an arbitrary density operator. Consider a purification |ψ〉ABCD such that

ρ = TrD|ψ〉〈ψ|ABCD.

Then it is clear that
S(B,C,D) + S(B) ≤ S(C,D) + S(B,C).

But since |ψ〉 is pure, it holds that S(B,C,D) = S(A) and S(C,D) = S(A,B), which yields the
desired result.



22 Lecture 22, v. 4-7 52

22 Lecture 22

(7 April 2016)

22.1 More entropic properties

Theorem 22.1. (1) S(A|B,C) ≤ S(A|B)

(2) S(A : B) ≤ S(A : B,C)

Theorem 22.2 (Data processing inequality). Let EA→A′ and EB→B′ be channels, and define σA′B′ =
EA→A′ ⊗ EB→B′(ρAB). It holds that

S(A′ : B′)σ ≤ S(A : B)ρ.

Proof. Note that S(A′ : B′)σ =

Follows from strong subadditivity.

22.2 Wrap-up

All of quantum information theory can be viewed as a theory of interconversion between various
resources.

The goals of quantum infromation theory are the following.

• Ifentify classes of resources in quantum mechanics

• Identify elemental dynamical ...

22.3 Accessible information and Holevo bound

Suppose Alice prepares a state ρx with x ∈ {1, 2, . . . , n} corresponding to probabilities p1, p2, . . . , pn
of some random variable X. Alice sends ρx to Bob through an identity channel.

(image)
How can Bob determine x? He can perform a measurement with Kraus operators {Ky} =

{K1, . . . ,Km} with possible outcomes y ∈ {1, . . . ,m} (random variable Y ). The probability that
y is obtained given that Alice sent x is py|x. Hence the joint distribution of X and Y is then
px,y = py|xpx, and

Tr[Eyρx] = py|x.

where Ey = KyK
∗
y .

The acessible information of the random variable X and Alice’s encoding {ρx} is defined by

A = max
{Ky}

H(X : Y ),

where the maximization is taken over all possible measurements that Bob could perform. This
concept doesn’t exist classically, because it would always be equal to H(X) (because we can set
Y = X).

Theorem 22.3. It holds that max{Ky}H(X : Y ) ≤ H(X), with equality if and only if the optimal
measurement that Bob can perform gives absolute certainty about what X is.

Example 22.4. Alice prepares a pure state |ψ〉 with probability p and another pure state |ϕ〉 with
probability 1− p. However, two non-orthogonal states cannot be reliably distinguished....
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Example 22.5 (No-cloning theorem). Suppose there existed a ‘cloning’ machine
(Graphic)
Any quantum operation must be represented by a unitary operator.

|ψ〉 ⊗ |T 〉 →U U(|ψ〉 ⊗ ||T 〉〉) = |ψ〉 ⊗ |ψ〉

〈ψ|φ〉 = (〈ψ|φ〉)2 ⇒ 〈ψ|φ〉 = 1 or |ψ〉 ⊥ |φ〉

Example 22.6 (No-cloning theorem again). Alice prepares a pure state |ψ〉 with probability p and
another pure state |ϕ〉 with probability 1− p. If Bob’s accessible information is equal to H(p) then
Bob can clone the state!

Otherwise: If a cloning machine exists....

22.3.1 Holevo bound

The accessible information A is very difficult to compute, since it involves optimizing over all possible
POVMs. The following theorem gives an upper bound to the accessible information.

Theorem 22.7. Given a random variable X and en encoding {}, it holds that

A = max
{Ky}

H(X : Y ) ≤ S(ρ)−
n∑
x=1

pxS(ρx)

with ρ =
∑
x pxρx.

The quantity on the right.hand side is called the Holevo bound . It is ‘achievable asymptotically’.
Most of the time it is a strict inequality, but in the asymptotic limit of many copies it can become
an equality (in most cases). The Holevo bound is proven using strong subadditivity. Also note that
this bound is better than the bound discussed earlier

A = max
{Ky}

H(X : Y ) ≤ S(ρ)−
n∑
x=1

pxS(ρx) ≤ H(X).

Proof. Define a quantum state

ρXBY =
∑
x

px|x〉〈x|X ⊗ ρB,x ⊗ |0〉〈0|Y.

and define
σX′B′Z′ =

∑
x,y

px|x〉〈x|X ⊗ (KyρB,xK
∗
y )⊗ |y〉〈y|Y.

This represents thee result after Bob measures using the Kraus operators {Ky} and takes note of
the result y that was obtained. Now

S(X : B)ρ = S(X : B,Y)ρ

≥ S(X′ : B′,Y′)σ (by data processing inequality)

≥ S(X′ : Y′)σ (from strong subadditivity).

However,

S(X : B)ρ = S(X) + S(ρ)− S(X,B) = H(X) + S(ρ)−
∑
x

pxS(ρx)−H(X).
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This gives the upper bound. Furthermore,

σX′Y′ = TrB′ σX′B′Y′

=
∑
x,y

px Tr
[
K∗yKyρx

]
︸ ︷︷ ︸

py|x

⊗|y〉〈y|

=
∑
x,y

pxpy|x|x〉〈x| ⊗ |y〉〈y|,

and S(X′ : Y′)σ = H(X ′) +H(Y ′)−H(X ′, Y ′).
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