
1MATH 271 – Summer 2016
Assignment 1 – solutions

Problem 1.

You are wandering in a fictional forest that is inhabited by trolls. Each troll is either a knight or a knave.
Knights always tell the truth and knaves always speak falsehoods. For each of the following situations,
determine which trolls are knights and which are knaves. Write a proof using complete sentences that
confirms your assertion.

(a) You encounter two trolls (X and Y) who make the following statements.

X: “Both of us are knaves.”

Y: “Exactly one of us is a knave.”

Solution: X is a knave and Y is a knight. We prove this as follows.

Proof (that X is a knave). Suppose instead that X is a knight. Then X’s statement is true, so
both X and Y are knaves. In particular, X is a knave. But we assumed X is a knight. This is a
contradiction, so the assumption that X is a knight is wrong. Therefore X must be a knave.

Proof (that Y is a knight). Suppose instead that Y is a knave. We already know that X is a knave,
so X and Y are both knaves. But X is a knave, so X’s statement is false. That is, they are not
both knaves and they are both knaves. This is a contradiction, so the assumption that Y is a knave
must be wrong. Therefore Y is a knight.

(b) You encounter three trolls (Q, R, and S) who make the following statements.

Q: “Exactly one of us is a knight.”

R: “Exactly one of us is a knave.”

S: “We are all knaves.”

Solution: Q is a knight and R and S are knaves. We prove this as follows.

Proof (that S is a knave). Suppose instead that S is a knight. Then S’s statement is true. That is,
all of Q, R, and S are knaves. In particular, S is a knave. Hence S is a knight and S is a knave, a
contradiction. So the assumption that S is a knight is wrong. Therefore, S must be a knave.

Proof (that R is a knave). Suppose instead that R is a knight. Then R’s statement that there is
exactly one knave is true. Thus Q must be a knight, since S is a knave and there can only by one
knave. Then Q’s statement that there is exactly one knight is true. So there is exactly one knight
and there are two knights, a contradiction. Therefore the assumption that R is a knight is wrong.
Therefore R must be a knave.

Proof (that Q is a knight). Suppose instead that Q is a knave. We know that R and S are knaves,
so all of them are knaves. But S is a knave, so his statement that all of them are knaves must be
false. So all of them are knaves and it is not the case that all of them are knaves, a contradiction.
Thus the assumption that Q is a knave is wrong. Therefore Q must be a knight.

(c) You encounter three trolls (A, B, and C) who make the following statements.

A: “If I am a knave, then exactly two of us are knights.”

B: “Troll A is a knave.”

C: “At least one of us is a knight.”

Solution: A and C are knights and B is a knave. We prove this as follows.
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Proof (that B is a knave). Suppose instead that B is a knight. Then B’s statement is true, so A is
a knave. Then A’s statement must be false, which means that the negation of A’s statement must
be true. The negation of A’s statement is “I am a knave and not exactly two of us are knights.”
But A is a not a knight and B is a knight. Since there cannot be exactly two knights, C cannot
be a knight. So C is a knave, which means that C’s statement that there is exactly one knight is
false. So B is the only knight and there is not exactly one knight. This is a contradiction, so the
assumption that B is a knight must be wrong. Therefore B is a knave.

Proof (that A is a knight). Since B is a knave, B’s statement must be false. So A is not a knave.
Thus A is a knight.

Proof (that C is a knight). Since B is a knight, there is at least one knight. Thus C’s statement
must be true. Therefore C must be a knight.

Problem 2.

For each true statement, give a proof. For each false statement, write the negation and prove that.

(a) ∀x, y ∈ R, if bxyc = bxcbyc then x ∈ Z or y ∈ Z.
This statement is false.
Negation: ∃x, y ∈ R so that bxyc = bxcbyc but x 6∈ Z and y 6∈ Z.

Proof (of the negation). Let x = 1
2 and y = 1

3 . Then xy = 1
2
1
3 = 1

6 and bxyc = b 16c = 0. Furthermore,
bxcbyc = 0 · 0 = 0. Thus bxyc = bxcbyc, but 1

2 6∈ Z and 1
3 6∈ Z.

(b) ∀x ∈ R, ∃y ∈ R so that bxyc = bxcbyc.
Proof. Let x ∈ R be arbitrary. Choose y = 0. Then xy = 0 and bxyc = 0. Furthermore, byc = 0 so
bxcbyc = bxc · 0 = 0 and thus bxyc = bxcbyc.

(c) There exists a real number x so that x is not an integer, x > 2016, and bx2c = bxc2.

Proof. Let x = 2016.0001. It is clear that x > 2016 and x 6∈ Z. (We need to show that bx2c = bxc2.)
Now bxc2 = 20162 = 4064256 and

bx2c = b(2016.0001)2c = b4064256.40320001c = 4064256,

so bx2c = bxc2.

(d) ∀N ∈ Z+, ∃x ∈ R so that x 6∈ Z, x > N , and bx2c = bxc2.

Proof. Let N ≥ 1 be an integer. Choose x = N + 1
4N . Note that 0 < 1

4N < 1. Adding N to all parts of
the inequality yields N < N + 1

4N < N + 1, and thus

N < x < N + 1.

Therefore bxc = N by definition of floor, and it is clear that x is not an integer. (We want to show that
bx2c = bxc2.) Now we show that x2 < N2 + 1, since

x2 =

(
N +

1

4N

)2

= N2 + 2N
1

4N
+

1

16N2

= N2 +
1

2
+

1

16N2

≤ N2 +
1

2
+

1

16
where

1

16N2
≤ 1

16
since N ≥ 1

= N2 +
9

16

< N2 + 1 since
9

16
< 1.
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Furthermore, it is clear that N2 ≤ x2. Thus

N2 ≤ x2 < N2 + 1.

Therefore bx2c = N2 by the definition of floor. Hence bx2c = bxc2.

Problem 3.

Prove the following statements.

(a) ∀a, b, d ∈ Z, if d | a and d | b then d | (3a + 2b) and d | (2a + b).

Proof. Let a, b, and d be arbitrary integers. Assume that d | a and d | b. Then there exist integers k
and m so that a = kd and b = md. (We want to show that d | (3a + 2b) and d | (2a + b).) Now

3a + 2b = 3(kd) + 2(md)

= (3k + 2m)d

and 3k + 2m is an integer, so d | (3a + 2b). Similarly,

2a + b = 2(kd) + (md)

= (2k + m)d

and 2k + m is an integer, so d | (2a + b).

(b) ∀a, b, d ∈ Z, if d | (3a + 2b) and d | (2a + b) then d | a and d | b.

Proof. Let a, b, and d be arbitrary integers. Assume that d | (3a+ 2b) and d | (2a+ b). Then there exist
integers s and t so that 3a + 2b = sd and 2a + b = td. (We want to show that d | a and d | b.) Now

a = 2(2a + b)− (3a + 2b)

= 2td− sd

= (2t− s)d

and 2t− s is an integer, so d | a. Similarly,

b = 2(3a + 2b)− 3(2a + b)

= 2sd− 3td

= (2s− 3t)d

and 2s− 3t is an integer, so d | b.

(c) ∀a, b ∈ Z+, gcd(a, b) = gcd(3a + 2b, 2a + b).

Proof. Let a, b ∈ Z+ be arbitrary. Let x = gcd(a, b) and let y = gcd(3a + 2b, 2a + b).

By definition of Greatest Common Divisor, x is a common divisor of a and b. Thus x | a and
x | b. From part (a), we know that x | (3a + 3b) and x | (2a + b). Then x is a common divisor of
3a + 2b and 2a + b. By definition of gcd, it must be the case that x ≤ gcd(3a + 2b, 2a + b). Hence
gcd(a, b) ≤ gcd(3a + 2b, 2a + b).

By definition of Greatest Common Divisor, y is a common divisor of 3a + 2b and 2a + b. Thus
y | (3a + 2b) and y | (2a + b). From part (b), we know that y | a and y | b. Then y is a
common divisor of a and b. By definition of gcd, it must be the case that y ≤ gcd(a, b). Hence
gcd(3a + 2b, 2a + b) ≤ gcd(a, b).
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Since gcd(a, b) ≤ gcd(3a + 2b, 2a + b) and gcd(3a + 2b, 2a + b) ≤ gcd(a, b), it follows that gcd(a, b) =
gcd(3a + 2b, 2a + b).

Proof (alternate). We can make use of Lemma 4.8.2 and use a method similar to the Euclidian Algo-
rithm. Note that

(3a + 2b) = 1 · (2a + b) + (a + b)

(2a + b) = 1 · (a + b) + (a)

(a + b) = 1 · (a) + (b).

From Lemma 4.8.2, this implies that

gcd(3a + 2b, 2a + b) = gcd(2a + b, a + b)

= gcd(a + b, a)

= gcd(a, b),

as desired.


