MATH 271 — Summer 2016 1
Assignment 1 — solutions

Problem 1.

You are wandering in a fictional forest that is inhabited by trolls. Each troll is either a knight or a knave.
Knights always tell the truth and knaves always speak falsehoods. For each of the following situations,
determine which trolls are knights and which are knaves. Write a proof using complete sentences that
confirms your assertion.

(a) You encounter two trolls (X and Y) who make the following statements.

X:
Y:

“Both of us are knaves.”
“Exactly one of us is a knave.”

Solution: X is a knave and Y is a knight. We prove this as follows.

Proof (that X is a knave). Suppose instead that X is a knight. Then X’s statement is true, so
both X and Y are knaves. In particular, X is a knave. But we assumed X is a knight. This is a
contradiction, so the assumption that X is a knight is wrong. Therefore X must be a knave.

Proof (that Y is a knight). Suppose instead that Y is a knave. We already know that X is a knave,
so X and Y are both knaves. But X is a knave, so X’s statement is false. That is, they are not
both knaves and they are both knaves. This is a contradiction, so the assumption that Y is a knave
must be wrong. Therefore Y is a knight.

(b) You encounter three trolls (Q, R, and S) who make the following statements.

Q:
R:
S:

“Exactly one of us is a knight.”
“Exactly one of us is a knave.”
“We are all knaves.”

Solution: Q is a knight and R and S are knaves. We prove this as follows.

Proof (that S is a knave). Suppose instead that S is a knight. Then S’s statement is true. That is,
all of Q, R, and S are knaves. In particular, S is a knave. Hence S is a knight and S is a knave, a
contradiction. So the assumption that S is a knight is wrong. Therefore, S must be a knave.

Proof (that R is a knave). Suppose instead that R is a knight. Then R’s statement that there is
exactly one knave is true. Thus Q must be a knight, since S is a knave and there can only by one
knave. Then Q’s statement that there is exactly one knight is true. So there is exactly one knight
and there are two knights, a contradiction. Therefore the assumption that R is a knight is wrong.
Therefore R must be a knave.

Proof (that Q is a knight). Suppose instead that Q is a knave. We know that R and S are knaves,
so all of them are knaves. But S is a knave, so his statement that all of them are knaves must be
false. So all of them are knaves and it is not the case that all of them are knaves, a contradiction.
Thus the assumption that Q is a knave is wrong. Therefore Q must be a knight.

(¢) You encounter three trolls (A, B, and C) who make the following statements.

A:
B:
C:

“If T am a knave, then exactly two of us are knights.”
“Troll A is a knave.”

“At least one of us is a knight.”

Solution: A and C are knights and B is a knave. We prove this as follows.
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Proof (that B is a knave). Suppose instead that B is a knight. Then B’s statement is true, so A is
a knave. Then A’s statement must be false, which means that the negation of A’s statement must
be true. The negation of A’s statement is “I am a knave and not exactly two of us are knights.”
But A is a not a knight and B is a knight. Since there cannot be exactly two knights, C cannot
be a knight. So C is a knave, which means that C’s statement that there is exactly one knight is
false. So B is the only knight and there is not exactly one knight. This is a contradiction, so the
assumption that B is a knight must be wrong. Therefore B is a knave.

Proof (that A is a knight). Since B is a knave, B’s statement must be false. So A is not a knave.
Thus A is a knight.

Proof (that C is a knight). Since B is a knight, there is at least one knight. Thus C’s statement
must be true. Therefore C must be a knight.

Problem 2.

For each true statement, give a proof. For each false statement, write the negation and prove that.

(a) Vo,y e R, if |ay| = |z]|y] then x € Z or y € Z.
This statement is false.
Negation: 3z,y € R so that |zy| = [z]|y] but x ¢ Z and y & Z.

Proof (of the negation). Let x = % and y = % Then xy = %% = % and |zy| = L%j = 0. Furthermore,
lz]ly] =0-0=0. Thus |2y] = |z]|y], but 5 ¢ Z and % & Z. O

(b) Yz € R, Jy € R so that |zy| = |z]|y].
Proof. Let € R be arbitrary. Choose y = 0. Then zy = 0 and |azy| = 0. Furthermore, |y| = 0 so
lz]ly] = |z] - 0 =0 and thus |zy] = [z]|y]. O

(c) There exists a real number z so that z is not an integer, > 2016, and |z2| = |z 2.

Proof. Let x = 2016.0001. It is clear that = > 2016 and = ¢ Z. (We need to show that |z%] = |z]2.)
Now |z]? = 20162 = 4064256 and

|22] = [(2016.0001)%] = [4064256.40320001 | = 4064256,
so |z?| = |x]% O
(d) VN € ZT, 3z € Rso that x ¢ Z, > N, and |2?]| = [z]?.

Proof. Let N > 1 be an integer. Choose x = N + ﬁ. Note that 0 < ﬁ < 1. Adding N to all parts of
the inequality yields N < N + ﬁ < N +1, and thus

N<z<N+1
Therefore |z| = N by definition of floor, and it is clear that = is not an integer. (We want to show that

|z2| = |z]2.) Now we show that 22 < N2 + 1, since
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Furthermore, it is clear that N2 < 22. Thus
N? <a2? < N?+1.
Therefore |22| = N? by the definition of floor. Hence |2?] = |z]2. O

Problem 3.
Prove the following statements.

(a) Va,b,d € Z,if d|a and d | b then d | (3a + 2b) and d | (2a + b).

Proof. Let a, b, and d be arbitrary integers. Assume that d | a and d | b. Then there exist integers k
and m so that a = kd and b = md. (We want to show that d | (3a 4+ 2b) and d | (2a + b).) Now

3a + 2b = 3(kd) + 2(md)
= (3k +2m)d
and 3k + 2m is an integer, so d | (3a + 2b). Similarly,
2a + b = 2(kd) + (md)
= (2k+m)d
and 2k +m is an integer, so d | (2a + b). O
(b) Ya,b,d € Z, if d | (3a + 2b) and d | (2a + b) then d | @ and d | b.

Proof. Let a, b, and d be arbitrary integers. Assume that d | (3a +2b) and d | (2a+ b). Then there exist
integers s and t so that 3a + 2b = sd and 2a + b = td. (We want to show that d | @ and d | b.) Now

a =2(2a +b) — (3a + 2b)
= 2td — sd
= (2t —s)d

and 2¢ — s is an integer, so d | a. Similarly,

b=2(3a+2b) —3(2a+b)
= 2sd — 3td
= (25 —3t)d

and 2s — 3t is an integer, so d | b. O
(c) Ya,b e Z*, ged(a,b) = ged(3a + 2b,2a + b).

Proof. Let a,b € ZT be arbitrary. Let x = ged(a, b) and let y = ged(3a + 20, 2a + b).

By definition of Greatest Common Divisor, x is a common divisor of a and b. Thus z | a and
2 | b. From part (a), we know that = | (3a 4+ 3b) and = | (2a + b). Then z is a common divisor of
3a + 2b and 2a + b. By definition of ged, it must be the case that z < ged(3a 4 2b,2a + b). Hence
ged(a,b) < ged(3a + 2b,2a + b).

By definition of Greatest Common Divisor, y is a common divisor of 3a + 2b and 2a + b. Thus
y | (3a+2b) and y | (2a + b). From part (b), we know that y | @ and y | b. Then y is a
common divisor of a and b. By definition of ged, it must be the case that y < gcd(a,b). Hence
ged(3a + 2b,2a + b) < ged(a, b).
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Since ged(a,b) < ged(3a + 2b,2a + b) and ged(3a + 2b,2a + b) < ged(a,b), it follows that ged(a,b) =
ged(3a + 2b,2a + b). O

Proof (alternate). We can make use of Lemma 4.8.2 and use a method similar to the Euclidian Algo-
rithm. Note that

(3a+2b) =1-(2a+b) + (

(2a+b) =1-(a+b)+ (a)
(a+b)=1-(a)+ (b).

+0b)

From Lemma 4.8.2, this implies that

ged(3a + 2b,2a + b) = ged(2a + b, a + b)
=ged(a+b,a)
= ng(CL, b)»

as desired. O



