
1MATH 271 – Summer 2016
Assignment 2 – solutions

Problem 1.

Let N be your University of Calgary ID number.

(a) Use the Euclidean Algorithm to compute gcd(N, 271) and use this to find integers x and y so that
gcd(N, 271) = Nx + 271y.
Solution. (Answers will differ for different N .) Let’s say that N = 12345678. Then

12345678 = 45556 · 271 + 2

271 = 135 · 2 + 1

2 = 2 · 1 + 0.

This means that

gcd(12345678, 271) = gcd(271, 2)

= gcd(2, 1)

= gcd(1, 0) = 1.

Then

1 = 271− 135 · 2
= 271− 135 · (12345678− 45556 · 271)

= 271 + (135 · 45556) · 271− 135 · 12345678

= 271 + (6150060) · 271− 135 · 12345678

= (−135) · 12345678 + 6150061 · 271,

so we can set x = −135 and y = 6150061 so that gcd(N, 271) = Nx + 271y.
Or, using the “table method”:

x y
R1 12345678 1 0
R2 271 0 1
R3 = R1 − 45556 ·R2 2 1 −45556
R4 = R2 − 135 ·R3 1 −135 1− 135 · (−45556)

and 1− 135 · (−45556) = 6150061.

(b) Suppose that M is an integer such that gcd(M, 271) = gcd(M, 2016). Find gcd(M, 271). Explain how
you get the answer.

Solution. gcd(M, 271) = 1.

Explanation. We note that 271 is prime, so its positive divisors are only 1 and 271, thus gcd(M, 271)
can only be 1 or 271. Next we note that 2016 = 25 · 32 · 7 and all of the divisors of 2016 are

{d ∈ Z+ | d divides 2016} = {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 32, 36, 42, 48, 56, 63,

72, 84, 96, 112, 126, 144, 168, 224, 252, 288, 336, 504, 672, 1008, 2016}.

The only divisor that 271 and 2016 have in common is 1. Thus, the only way to have gcd(M, 271) =
gcd(M, 2016) is when gcd(M, 271) = gcd(M, 2016) = 1.
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Since gcd(K, 2016) must be a divisor of 2016 that satisfies 271 > gcd(K, 2016) > 250, the only divisor
of 2016 that satisfies 271 > d > 250 is d = 252.

(c) Suppose that K is an integer between 800, 000 and 900, 000 so that gcd(K, 271) > gcd(K, 2016) > 250.
Find all possible values of K. Explain how you get the answers.
Solution. K = 887, 796.

Explanation. From the condition that gcd(K, 271) > gcd(K, 2016) > 250 and from part (b), we conclude
that gcd(K, 271) = 271 and gcd(K, 2016) = 252. Thus K must be a multiple of both 271 and 252, so K
must be a multiple of 271 · 252. The only multiples of 271 · 252 that are between 800, 000 and 900, 000
are

12 · 271 · 252 = 819, 504 and 13 · 271 · 252 = 887, 796.

However, gcd(12 · 271 · 252, 2016) = 1008. So K cannot be 12 · 271 · 252. Hence K must be equal
to 13 · 271 · 252.

Problem 2.

Consider the sequence of Fibonacci numbers f1, f2, f3, . . . which are defined as follows: f1 = 1, f2 = 1, and

fn = fn−1 + fn−2

for all integers n ≥ 3.

(a) Prove that for all integers n ≥ 3, gcd(fn, fn−1) = gcd(fn−1, fn−2). (You may use Lemma 4.8.2. No
induction is needed.)

Proof. Let n ≥ 3 be an arbitrary integer. Let a = fn, b = fn−1, r = fn−2, and q = 1. Then

a = qb + r

since fn = fn−1+fn−2 by definition of the sequence. From Lemma 4.8.2, we see that gcd(a, b) = gcd(b, r).
Thus gcd(fn, fn−1) = gcd(fn−1, fn−2).

(b) Prove by weak induction that gcd(fn, fn−1) = 1 for all integers n ≥ 2. (Use part (a).)

Proof. We prove this by induction.

Base case (n = 2): Note that gcd(f2, f1) = gcd(1, 1) = 1.

Inductive step: Let k ≥ 2 be an integer. Suppose that

gcd(fk, fk−1) = 1. (IH)

(We want to show that gcd(fk+1, fk) = 1.) Now k + 1 ≥ 2, so using part (a) we see that

gcd(fk+1, fk) = gcd(fk, fk−1) from part (a)

= 1 by IH,

which is what we wanted to show.

Therefore, by induction, gcd(fn, fn−1) = 1 for all integers n ≥ 2

(c) Prove by weak induction that

n∑
i=1

(fi)
2 = fn+1fn for all integers n ≥ 1.

Proof. We prove this by induction.
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Base case (n = 1): Note that

1∑
i=1

(fi)
2 = (f1)2 = 1 and f2f1 = 1 · 1 = 1. Hence

1∑
i=1

(fi)
2 = f1+1f1.

Inductive step: Let k ≥ 1 be an integer. Suppose that

k∑
i=1

(fi)
2 = fk+1fk. (IH)

(We want to show that

k+1∑
i=1

(fi)
2 = fk+2fk+1.) Now

k+1∑
i=1

(fi)
2 =

k∑
i=1

(fi)
2 + (fk+1)2

= fk+1fk + (fk+1)2 by IH

= fk+1(fk + fk+1)

= fk+1(fk+2) since fk+2 = fk+1 + fk

= fk+2fk+1

which is what we wanted to show.

Therefore, by induction,

n∑
i=1

(fi)
2 = fn+1fn for all integers n ≥ 1.

Problem 3.

The sequence s0, s1, s2, . . . , is defined by s0 = 1, and for all integers n > 0,

sn = sbn
2 c + sb 2n

3 c + n.

The sequence t0, t1, t2, . . . , is defined by t0 = 2, t1 = 3, and for all integers n > 0, tn = 3tn−1 − 2tn−2.

(a) Find s1, s2, s3, s4, s5, s6, s7, and s8. Guess the smallest integer a so that sn > 4n for all integers n ≥ a.
Solution: We see that

s1 = sb 12 c + sb 23 c + 1 = s0 + s0 + 1 = 1 + 1 + 1 =3

s2 = sb 22 c + sb 43 c + 2 = s1 + s1 + 2 = 3 + 3 + 2 =8

s3 = sb 32 c + sb 63 c + 3 = s1 + s2 + 3 = 3 + 8 + 3 =14

s4 = 20

s5 = 27

s6 = 40

s7 = 41

s8 = 55,

so we can guess that sn > 4n for all n ≥ 3.

(b) Prove by strong induction that sn > 4n for all integers n ≥ a, where a is the integer you chose in part (a).

Proof. We prove this by induction.

Base cases:
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(n = 3): Note that s3 = 14 and 4 · 3 = 12. Thus s3 > 4 · 3 since 14 > 12.

(n = 4): Note that s4 = 20 and 4 · 4 = 16. Thus s3 > 4 · 4 since 20 > 16.

(n = 5): Note that s5 = 27 and 4 · 5 = 20. Thus s4 > 4 · 5 since 27 > 20.

Inductive step: Let k ≥ 5 be an integer. Suppose that

si > 4i for all integers i 3 ≤ i ≤ k. (IH)

(We want to show that sk+1 > 4(k + 1).) First note that bxc + 1 > x is true for all x ∈ R by
definition of the floor. Thus

bxc > x− 1 for all x ∈ R. (∗)
Furthermore, note that

3 ≤
⌊
k + 1

2

⌋
≤ k and 3 ≤

⌊
2k + 2

3

⌋
≤ k are both true since k ≥ 5, (∗∗)

so we may use the induction hypothesis. Now

sk+1 = sb k+1
2 c + sb 2k+2

3 c + k + 1 by definition of the sequence

> 4

⌊
k + 1

2

⌋
+ 4

⌊
2k + 2

3

⌋
+ k + 1 by IH and (∗∗)

> 4

(
k + 1

2
− 1

)
+ 4

(
2k + 2

3
− 1

)
+ k + 1 by (∗)

= 2(k − 1) +
4

3
(2k − 1) + k + 1

=

(
2 +

4

3
+ 1

)
k − 2− 4

3
+ 1

=
17

3
k − 7

3

=
12

3
k + 4 +

5

3
k − 4− 7

3

= 4k + 4 +
5

3
k − 19

3

= 4(k + 1) +
1

3
(5k − 19)

> 4(k + 1) where
1

3
(5k − 19) > 0 since k ≥ 5,

which is what we wanted to show.

Therefore, by induction, sn > 4n for all integers n ≥ 3.

(c) Find t2, t3, t4, t5, and t6. Guess a formula for tn.
Solution: We see that

t2 = 3t1 − 2t0 = 3 · 3− 2 · 2 = 9− 4 =5 =4 + 1 =22 + 1

t3 = 3t2 − 2t1 = 3 · 5− 2 · 3 = 15− 6 =9 =8 + 1 =23 + 1

t4 = 3t3 − 2t2 = 3 · 9− 2 · 5 = 27− 10 =17 =16 + 1 =24 + 1

t5 = 33 =32 + 1 =25 + 1

t6 = 65 =64 + 1 =26 + 1

so we can guess that tn = 2n + 1 for all n ≥ 0.
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(d) Prove by strong induction that your guess in part (c) is correct for all integers n ≥ 0.

Proof. We prove this by induction.

Base cases: (Note that first base case is n = 0.)

(n = 0): Note that t0 = 2 and 20 + 1 = 1 + 1 = 2. Thus t0 = 20 + 1.

(n = 1): Note that t1 = 3 and 21 + 1 = 2 + 1 = 3. Thus t1 = 21 + 1.

Inductive step: Let k ≥ 1 be an integer. Suppose that

ti = 2i + 1 for all integers i 0 ≤ i ≤ k. (IH)

(We want to show that tk+1 = 2k+1 + 1.) Now

tk+1 = 3tk − 2tk−1 by definition of the sequence

= 3
(
2k + 1

)
− 2

(
2k−1 + 1

)
by IH

= 3 · 2k + 3− 2 · 2k−1 − 2

= 3 · 2k − 2k + 1

= (3− 1) · 2k + 1

= 2 · 2k + 1

= 2k+1 + 1,

which is what we wanted to show.

Therefore, by induction, tn = 2n + 1 for all integers n ≥ 0.


