Problem 1. For any sets X and Y, we define the symmetric difference of X and Y as

$$X \triangle Y = (X \cup Y) - (X \cap Y).$$

Note that it is also true that $X \triangle Y = (X - Y) \cup (Y - X)$. For each of the following statements, determine whether the statement is true or false. Prove the true statements using the element method. Prove the false statements false by giving a counterexample.

(a) "For all sets $A, A \triangle A = \emptyset$."

Solution. This statement is true.

Proof. Let A be a set. We will show that $A \triangle A = \emptyset$. Assume instead that $A \triangle A \neq \emptyset$. Then there exists an element $x \in A \triangle A$. By definition of \triangle , this means that $x \in A - A$. However $A - A = \emptyset$, so $x \in \emptyset$. This is a contradiction, so the assumption that $A \triangle A \neq \emptyset$ must be wrong. Therefore $A \triangle A = \emptyset$. \Box

- (b) "For all sets A, B, and C, if $A \subseteq B \cup C$ and $B \subseteq C \cup A$ then $A \triangle B = C$." Solution. This statement is false. **Negation**: "There exist sets A, B, and C so that $A \subseteq B \cup C$ and $B \subseteq C \cup A$ but $A \triangle B \neq C$." Proof (of negation). Let $A = \{1\}$, $B = \{1\}$, and $C = \{1, 2\}$. Then $B \cup C = \{1, 2\}$ and $C \cup A = \{1, 2\}$, so $A \subseteq B \cup C$ and $B \subseteq C \cup A$ since $\{1\} \subseteq \{1, 2\}$. However $A \triangle B = \emptyset$, since B = A and we know that $A \triangle A = \emptyset$ from part (a). Thus $A \triangle B \neq C$ since $\emptyset \neq \{1, 2\}$.
- (c) "For all sets A, B, and C, if A△C = B△C then A = B." Solution. This statement is true.
 Proof. Let A, B, and C be sets. Assume that A△C = B△C. We will show that A = B by showing that A ⊆ B and B ⊆ A.
 - (To show that $A \subseteq B$.) Let $x \in A$. We will show that x is also in B. There are two cases: either $x \in C$ or $x \notin C$.
 - Case i) Suppose that $x \in C$. Then $x \notin A \triangle C$ since $x \in A$ and $x \in C$. So $x \notin B \triangle C$ since $A \triangle C = B \triangle C$. This means that $x \notin B \cup C$ or $x \in B \cap C$. But $x \in C$ means that $x \in B \cup C$. Thus it must be the case that $x \in B \cap C$, which means that $x \in B$ and $x \in C$.
 - Case *ii*) Suppose that $x \notin C$. Then $x \in A \triangle C$ since $x \in A$ and $x \notin C$. So $x \in B \triangle C$ since $A \triangle C = B \triangle C$. This means that $x \in B \cup C$ and $x \notin B \cap C$. But $x \notin C$ means that $x \notin B \cap C$. Thus it must be the case that $x \in B \cap C$, which means that $x \in B$ since $x \notin C$ and $x \in B \cup C$.

In either case, $x \in B$. Therefore $A \subseteq B$.

- (To show that $B \subseteq A$.) Let $x \in B$. We will show that x is also in A. There are two cases: either $x \in C$ or $x \notin C$.
 - Case i) Suppose that $x \in C$. Then $x \notin B \triangle C$ since $x \in B$ and $x \in C$. So $x \notin A \triangle C$ since $B \triangle C = A \triangle C$. This means that $x \notin A \cup C$ or $x \in A \cap C$. But $x \in C$ means that $x \in A \cup C$. Thus it must be the case that $x \in A \cap C$, which means that $x \in A$ and $x \in C$.
 - Case *ii*) Suppose that $x \notin C$. Then $x \in B \triangle C$ since $x \in B$ and $x \notin C$. So $x \in A \triangle C$ since $B \triangle C = A \triangle C$. This means that $x \in A \cup C$ and $x \notin A \cap C$. But $x \notin C$ means that $x \notin A \cap C$. Thus it must be the case that $x \in A \cap C$, which means that $x \in A$ since $x \notin C$ and $x \in A \cup C$.

In either case, $x \in A$. Therefore $B \subseteq A$.

Thus $A \subseteq B$ and $B \subseteq A$, which means that A = B.

(a) How many nonempty subsets of S have the property that the product of their elements is even? (For example, $T = \{1, 5, 8\}$ is a nonempty subset of S, and the product of the elements of T is $1 \cdot 5 \cdot 8 = 40$.) Solution. There are $2^{10} - 2^5 = 992$ subsets of S that have the property that the product of their elements is even.

Explanation. Subsets of S that have the property that the product of their elements is even must contain at least one even number. Let A be the set of subsets of S that contain no even numbers. Then the set we are interested in is $\mathcal{P}(S) - A$, since this is the set of subsets that contain at least one even number. Note that $|\mathcal{P}(S)| = 2^{10}$ and that $A = \mathcal{P}(\{1, 3, 5, 7, 9\})$, hence $|A| = 2^5$. Thus

$$|\mathcal{P}(S) - A| = |\mathcal{P}(S)| - |A|$$

= 2¹⁰ - 2⁵,

as desired.

(b) How many subsets of S have exactly 5 elements?

Solution. There are $\binom{10}{5} = 252$ subsets of S that contain exactly 5 elements. Explanation. To make a subset of S that contains 5 elements, we choose 5 elements from the 10 in S.

(c) How many subsets of S have 3 as their smallest element?

Solution. There are $2^7 = 128$ subsets of S that have 3 as their smallest element. Explanation. A subset of S that has 3 as its smallest element must contain 3, and it cannot contain 1 or 2. To make a subset of S that 3 as its smallest element, we first make any subset of the 7 remaining elements $\{4, 5, 6, 7, 8, 9, 10\}$ and we then include 3 in it. There are 2^7 possibilities.

(d) How many subsets of S have 3 as their smallest element and have exactly 5 elements?

Solution. There are $\binom{7}{4} = 35$ subsets of S with exactly 5 elements that have 3 as their smallest element. Explanation. A subset of S that has 3 as its smallest element must contain 3, and it cannot contain 1 or 2. To make a subset of S with exactly 5 elements that 3 as its smallest element, we choose 4 of the 7 remaining elements $\{4, 5, 6, 7, 8, 9, 10\}$ and we include 3 in it. There are $\binom{7}{4}$ possibilities.

- (e) How many subsets of S have 6 as their smallest element and have exactly 5 elements? Solution. There are $\binom{4}{4} = 1$ subsets of S with exactly 5 elements that have 6 as their smallest element. Explanation. A subset of S that has 6 as its smallest element must contain 6, and it cannot contain any of the numbers from 1 to 5. To make a subset of S with exactly 5 elements that 6 as its smallest element, we choose 4 of the 4 remaining elements $\{7, 8, 9, 10\}$ and we include 6 in it. There are $\binom{4}{4}$ possibilities.
- (f) Use the method of combinatorial proof to prove the following identity:

$$\binom{10}{5} = \binom{9}{4} + \binom{8}{4} + \binom{7}{4} + \binom{6}{4} + \binom{5}{4} + \binom{4}{4}.$$

(That is, there is only one possibility since the only set that fits the criteria is the set $\{6, 7, 8, 9, 10\}$.)

Use complete sentences. (Hint: Find two different ways to count the number of subsets of S that have exactly 5 elements. Use parts (b), (d), and (e).)

Proof. We count the number of subsets of S that contain exactly 5 elements in two different ways. For the first way, we choose 5 elements from the 10, as in part (b). So there are

$$\begin{pmatrix} 10\\5 \end{pmatrix} \tag{(*)}$$

total subsets of S with exactly 5 elements.

For the second way of counting the number of subsets of S with exactly 5 elements, we split up the counting into six different types of subsets. For any subset of S with exactly 5 elements, there are 6 possibilities for the smallest element of that subset.

- We first count the number of subsets of S that have exactly 5 elements and have 1 as their smallest element. There are $\binom{9}{4}$ of these, since such subsets must include 1 and we then choose 4 of the 9 remaining elements.
- Similarly, the number of subsets of S with 5 elements and have 2 as their smallest element is $\binom{8}{4}$.
- The number of subsets of S with exactly 5 elements and have 3 as their smallest element is $\binom{7}{4}$.
- The number of subsets of S with exactly 5 elements and have 4 as their smallest element is $\binom{6}{4}$.
- The number of subsets of S with exactly 5 elements and have 5 as their smallest element is $\binom{5}{4}$.
- The number of subsets of S with exactly 5 elements and have 6 as their smallest element is $\binom{4}{4}$.

This accounts for all of the possible subsets of S with exactly 5 elements. So there are

$$\binom{9}{4} + \binom{8}{4} + \binom{7}{4} + \binom{6}{4} + \binom{5}{4} + \binom{4}{4} \tag{**}$$

total subsets of S that contain exactly 5 elements. Since the number of subsets must be the same no matter how we count them, the two numbers in (*) and (**) must be the same. This proves the identity.

Problem 3. Let $f \colon \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = 2\lfloor x \rfloor - x$ for each $x \in \mathbb{R}$. Let $g \colon \mathbb{R} \to \mathbb{R}$ be the function defined by $g(x) = \frac{x}{x^2+1}$ for all $x \in \mathbb{R}$.

(a) Prove that f is one-to-one.

Proof. Let $x_1, x_2 \in \mathbb{R}$ and suppose that $f(x_1) = f(x_2)$. That is,

$$2\lfloor x_1 \rfloor - x_1 = 2\lfloor x_2 \rfloor - x_2. \tag{1}$$

(We want to show that $x_1 = x_2$.) From the definition of floor, we see that

$$0 \le x_1 - |x_1| < 1$$
 and $0 \le x_1 - |x_2| < 1$.

Set $r_1 = x_1 - \lfloor x_1 \rfloor$ and $r_2 = x_2 - \lfloor x_2 \rfloor$ so that $x_1 = \lfloor x_1 \rfloor + r_1$ and $x_2 = \lfloor x_2 \rfloor + r_2$, where r_1 and r_2 are real numbers so that $0 \le r_1 < 1$ and $0 \le r_2 < 1$. From this we know that

$$-1 < r_1 - r_2 < 1. (2)$$

Now (1) becomes $2\lfloor x_1 \rfloor - (\lfloor x_1 \rfloor + r_1) = 2\lfloor x_2 \rfloor - (\lfloor x_2 \rfloor + r_2)$, which simplifies to

$$r_1 - r_2 = \lfloor x_1 \rfloor - \lfloor x_2 \rfloor. \tag{3}$$

From (2) and (3), we see that $r_1 - r_2$ is an integer (since $\lfloor x_1 \rfloor - \lfloor x_2 \rfloor$ is an integer) and $r_1 - r_2$ is strictly greater than -1 and strictly less than 1. Therefore $r_1 - r_2 = 0$, since the only integer between -1 and 1 is zero. Thus $r_1 = r_2$. Hence $\lfloor x_1 \rfloor - \lfloor x_2 \rfloor = 0$ and thus $\lfloor x_1 \rfloor = \lfloor x_2 \rfloor$. Therefore $r_1 = \lfloor x_1 \rfloor + r_1 = \lfloor x_2 \rfloor + r_2 = x_2$. This means that f is one-to-one.

Proof. Let $y \in \mathbb{R}$ be arbitrary. Choose $x = 2\lceil y \rceil - y$. We will show that f(x) = y. We first show that, for all numbers $z \in \mathbb{R}$, $\lfloor -z \rfloor = -\lceil z \rceil$.

Let z be an arbitrary real number. By definition of floor, $\lfloor -z \rfloor$ is the unique integer such that

$$\lfloor -z \rfloor \le -z < \lfloor -z \rfloor + 1. \tag{4}$$

Multiplying (4) by -1, we see that this becomes $-\lfloor -z \rfloor \ge z > -\lfloor -z \rfloor - 1$. Flipping this around, we see that

$$-\lfloor -z \rfloor - 1 < z \le -\lfloor -z \rfloor.$$
⁽⁵⁾

Where $-\lfloor -z \rfloor$ is an integer. But, from the definition of ceiling, $\lfloor z \rfloor$ is the unique integer such that

$$\lceil z \rceil - 1 < z \le \lceil z \rceil. \tag{6}$$

Examining (5) and (6) we see that $-\lfloor -z \rfloor = \lceil z \rceil$, since they must be the same integer (from the definition of ceiling). Hence $\lfloor -z \rfloor = -\lceil z \rceil$.

Now $\lfloor 2\lceil y \rceil - y \rfloor = 2\lceil y \rceil + \lfloor -y \rfloor$, since $2\lceil y \rceil$ is an integer. Thus

$$f(x) = 2\lfloor x \rfloor - x$$

$$= 2\lfloor 2\lceil y \rceil - y \rfloor - (2\lceil y \rceil - y)$$

$$= 2(2\lceil y \rceil + \lfloor -y \rfloor) - 2\lceil y \rceil + y$$

$$= 2(2\lceil y \rceil - \lceil y \rceil) - 2\lceil y \rceil + y$$

$$= 2\lceil y \rceil - 2\lceil y \rceil + y$$

$$= y.$$

since $\lfloor -y \rfloor = -\lceil y \rceil$

Thus f is onto.

(c) Is g one-to-one? Prove your answer.

Solution. g is not one-to-one.

Proof (that g is not one-to-one). Let $x_1 = \frac{1}{4}$ and $x_2 = 4$. It is clear that $x_1 \neq x_2$. However

$$g(x_1) = \frac{\frac{1}{4}}{\left(\frac{1}{4}\right)^2 + 1} = \frac{4}{16+1} = \frac{4}{17}$$

and

$$g(x_2) = \frac{4}{4^2 + 1}$$
$$= \frac{4}{16 + 1}$$
$$= \frac{4}{17}.$$

Thus $g(x_1) = g(x_2)$ but $x_1 \neq x_2$ which means that g is not one-to-one.

(d) Is g onto? Prove your answer.

Solution. g is not onto.

Proof (that g is not onto). Let y = 1. We will show that, for all $x \in \mathbb{R}$, $g(x) \neq y$. Suppose that there is an $x \in \mathbb{R}$ so that g(x) = 1. Then $\frac{x}{x^2+1} = 1$ which means that $x^2 - x + 1 = 0$. Using the quadratic equation, we see that

$$x = \frac{1 \pm \sqrt{1-4}}{2} = \frac{1 \pm \sqrt{-3}}{2}.$$

But this is not a real number, since $\sqrt{-3} \notin \mathbb{R}$. This is a contradiction. Hence there is no $x \in \mathbb{R}$ so that g(x) = 1. Thus g is not onto.

Note: For any $x \in \mathbb{R}$ with $x \neq 0$, it is true that $g(x) = g(\frac{1}{x})$.