
1MATH 271 – Summer 2016
Assignment 3 – solutions

Problem 1. For any sets X and Y , we define the symmetric difference of X and Y as

X4Y = (X ∪ Y )− (X ∩ Y ).

Note that it is also true that X4Y = (X − Y ) ∪ (Y −X). For each of the following statements, determine
whether the statement is true or false. Prove the true statements using the element method. Prove the false
statements false by giving a counterexample.

(a) “For all sets A, A4A = ∅.”
Solution. This statement is true.

Proof. Let A be a set. We will show that A4A = ∅. Assume instead that A4A 6= ∅. Then there exists
an element x ∈ A4A. By definition of 4, this means that x ∈ A − A. However A − A = ∅, so x ∈ ∅.
This is a contradiction, so the assumption that A4A 6= ∅ must be wrong. Therefore A4A = ∅.

(b) “For all sets A, B, and C, if A ⊆ B ∪ C and B ⊆ C ∪A then A4B = C.”

Solution. This statement is false.
Negation: “There exist sets A, B, and C so that A ⊆ B ∪ C and B ⊆ C ∪A but A4B 6= C.”

Proof (of negation). Let A = {1}, B = {1}, and C = {1, 2}. Then B ∪ C = {1, 2} and C ∪ A = {1, 2},
so A ⊆ B ∪ C and B ⊆ C ∪ A since {1} ⊆ {1, 2}. However A4B = ∅, since B = A and we know that
A4A = ∅ from part (a). Thus A4B 6= C since ∅ 6= {1, 2}.

(c) “For all sets A, B, and C, if A4C = B4C then A = B.”

Solution. This statement is true.

Proof. Let A, B, and C be sets. Assume that A4C = B4C. We will show that A = B by showing
that A ⊆ B and B ⊆ A.

• (To show that A ⊆ B.) Let x ∈ A. We will show that x is also in B. There are two cases: either
x ∈ C or x /∈ C.

– Case i) Suppose that x ∈ C. Then x /∈ A4C since x ∈ A and x ∈ C. So x /∈ B4C since
A4C = B4C. This means that x /∈ B ∪ C or x ∈ B ∩ C. But x ∈ C means that x ∈ B ∪ C.
Thus it must be the case that x ∈ B ∩ C, which means that x ∈ B and x ∈ C.

– Case ii) Suppose that x /∈ C. Then x ∈ A4C since x ∈ A and x /∈ C. So x ∈ B4C since
A4C = B4C. This means that x ∈ B ∪C and x /∈ B ∩C. But x /∈ C means that x /∈ B ∩C.
Thus it must be the case that x ∈ B ∩C, which means that x ∈ B since x /∈ C and x ∈ B ∪C.

In either case, x ∈ B. Therefore A ⊆ B.

• (To show that B ⊆ A.) Let x ∈ B. We will show that x is also in A. There are two cases: either
x ∈ C or x /∈ C.

– Case i) Suppose that x ∈ C. Then x /∈ B4C since x ∈ B and x ∈ C. So x /∈ A4C since
B4C = A4C. This means that x /∈ A ∪ C or x ∈ A ∩ C. But x ∈ C means that x ∈ A ∪ C.
Thus it must be the case that x ∈ A ∩ C, which means that x ∈ A and x ∈ C.

– Case ii) Suppose that x /∈ C. Then x ∈ B4C since x ∈ B and x /∈ C. So x ∈ A4C since
B4C = A4C. This means that x ∈ A ∪ C and x /∈ A ∩ C. But x /∈ C means that x /∈ A ∩ C.
Thus it must be the case that x ∈ A∩C, which means that x ∈ A since x /∈ C and x ∈ A∪C.

In either case, x ∈ A. Therefore B ⊆ A.

Thus A ⊆ B and B ⊆ A, which means that A = B.
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Problem 2. Consider the set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. For parts (a) through (e), you must give a brief
explanation on how you get the answer. Simplify your answer to a number.

(a) How many nonempty subsets of S have the property that the product of their elements is even? (For
example, T = {1, 5, 8} is a nonempty subset of S, and the product of the elements of T is 1 · 5 · 8 = 40.)

Solution. There are 210−25 = 992 subsets of S that have the property that the product of their elements
is even.

Explanation. Subsets of S that have the property that the product of their elements is even must contain
at least one even number. Let A be the set of subsets of S that contain no even numbers. Then the set
we are interested in is P(S)− A, since this is the set of subsets that contain at least one even number.
Note that |P(S)| = 210 and that A = P({1, 3, 5, 7, 9}), hence |A| = 25. Thus

|P(S)−A| = |P(S)| − |A|
= 210 − 25,

as desired.

(b) How many subsets of S have exactly 5 elements?

Solution. There are
(
10
5

)
= 252 subsets of S that contain exactly 5 elements.

Explanation. To make a subset of S that contains 5 elements, we choose 5 elements from the 10 in S.

(c) How many subsets of S have 3 as their smallest element?

Solution. There are 27 = 128 subsets of S that have 3 as their smallest element.

Explanation. A subset of S that has 3 as its smallest element must contain 3, and it cannot contain 1
or 2. To make a subset of S that 3 as its smallest element, we first make any subset of the 7 remaining
elements {4, 5, 6, 7, 8, 9, 10} and we then include 3 in it. There are 27 possibilities.

(d) How many subsets of S have 3 as their smallest element and have exactly 5 elements?

Solution. There are
(
7
4

)
= 35 subsets of S with exactly 5 elements that have 3 as their smallest element.

Explanation. A subset of S that has 3 as its smallest element must contain 3, and it cannot contain 1
or 2. To make a subset of S with exactly 5 elements that 3 as its smallest element, we choose 4 of the 7
remaining elements {4, 5, 6, 7, 8, 9, 10} and we include 3 in it. There are

(
7
4

)
possibilities.

(e) How many subsets of S have 6 as their smallest element and have exactly 5 elements?

Solution. There are
(
4
4

)
= 1 subsets of S with exactly 5 elements that have 6 as their smallest element.

Explanation. A subset of S that has 6 as its smallest element must contain 6, and it cannot contain any
of the numbers from 1 to 5. To make a subset of S with exactly 5 elements that 6 as its smallest element,
we choose 4 of the 4 remaining elements {7, 8, 9, 10} and we include 6 in it. There are

(
4
4

)
possibilities.

(That is, there is only one possibility since the only set that fits the criteria is the set {6, 7, 8, 9, 10}.)

(f) Use the method of combinatorial proof to prove the following identity:(
10

5

)
=

(
9

4

)
+

(
8

4

)
+

(
7

4

)
+

(
6

4

)
+

(
5

4

)
+

(
4

4

)
.

Use complete sentences. (Hint: Find two different ways to count the number of subsets of S that have
exactly 5 elements. Use parts (b), (d), and (e).)
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Proof. We count the number of subsets of S that contain exactly 5 elements in two different ways. For
the first way, we choose 5 elements from the 10, as in part (b). So there are(

10

5

)
(∗)

total subsets of S with exactly 5 elements.

For the second way of counting the number of subsets of S with exactly 5 elements, we split up the
counting into six different types of subsets. For any subset of S with exactly 5 elements, there are 6
possibilities for the smallest element of that subset.

• We first count the number of subsets of S that have exactly 5 elements and have 1 as their smallest
element. There are

(
9
4

)
of these, since such subsets must include 1 and we then choose 4 of the 9

remaining elements.

• Similarly, the number of subsets of S with 5 elements and have 2 as their smallest element is
(
8
4

)
.

• The number of subsets of S with exactly 5 elements and have 3 as their smallest element is
(
7
4

)
.

• The number of subsets of S with exactly 5 elements and have 4 as their smallest element is
(
6
4

)
.

• The number of subsets of S with exactly 5 elements and have 5 as their smallest element is
(
5
4

)
.

• The number of subsets of S with exactly 5 elements and have 6 as their smallest element is
(
4
4

)
.

This accounts for all of the possible subsets of S with exactly 5 elements. So there are(
9

4

)
+

(
8

4

)
+

(
7

4

)
+

(
6

4

)
+

(
5

4

)
+

(
4

4

)
(∗∗)

total subsets of S that contain exactly 5 elements. Since the number of subsets must be the same
no matter how we count them, the two numbers in (∗) and (∗∗) must be the same. This proves the
identity.

Problem 3. Let f : R → R be the function defined by f(x) = 2bxc − x for each x ∈ R. Let g : R → R be
the function defined by g(x) = x

x2+1 for all x ∈ R.

(a) Prove that f is one-to-one.

Proof. Let x1, x2 ∈ R and suppose that f(x1) = f(x2). That is,

2bx1c − x1 = 2bx2c − x2. (1)

(We want to show that x1 = x2.) From the definition of floor, we see that

0 ≤ x1 − bx1c < 1 and 0 ≤ x1 − bx2c < 1.

Set r1 = x1 − bx1c and r2 = x2 − bx2c so that x1 = bx1c+ r1 and x2 = bx2c+ r2, where r1 and r2 are
real numbers so that 0 ≤ r1 < 1 and 0 ≤ r2 < 1. From this we know that

−1 < r1 − r2 < 1. (2)

Now (1) becomes 2bx1c − (bx1c+ r1) = 2bx2c − (bx2c+ r2), which simplifies to

r1 − r2 = bx1c − bx2c. (3)

From (2) and (3), we see that r1 − r2 is an integer (since bx1c − bx2c is an integer) and r1 − r2
is strictly greater than −1 and strictly less than 1. Therefore r1 − r2 = 0, since the only integer
between −1 and 1 is zero. Thus r1 = r2. Hence bx1c − bx2c = 0 and thus bx1c = bx2c. Therefore
x1 = bx1c+ r1 = bx2c+ r2 = x2. This means that f is one-to-one.
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(b) Prove that f is onto.

Proof. Let y ∈ R be arbitrary. Choose x = 2dye − y. We will show that f(x) = y.

We first show that, for all numbers z ∈ R, b−zc = −dze.

Let z be an arbitrary real number. By definition of floor, b−zc is the unique integer such that

b−zc ≤ −z < b−zc+ 1. (4)

Multiplying (4) by −1, we see that this becomes −b−zc ≥ z > −b−zc − 1. Flipping this around,
we see that

−b−zc − 1 < z ≤ −b−zc. (5)

Where −b−zc is an integer. But, from the definition of ceiling, dze is the unique integer such that

dze − 1 < z ≤ dze. (6)

Examining (5) and (6) we see that −b−zc = dze, since they must be the same integer (from the
definition of ceiling). Hence b−zc = −dze.

Now
⌊
2dy

⌉
− yc = 2dye+ b−yc, since 2dye is an integer. Thus

f(x) = 2bxc − x

= 2
⌊
2dy

⌉
− yc − (2dye − y)

= 2(2dye+ b−yc)− 2dye+ y

= 2(2dye − dye)− 2dye+ y since b−yc = −dye
= 2dye − 2dye+ y

= y.

Thus f is onto.

(c) Is g one-to-one? Prove your answer.

Solution. g is not one-to-one.

Proof (that g is not one-to-one). Let x1 = 1
4 and x2 = 4. It is clear that x1 6= x2. However

g(x1) =
1
4(

1
4

)2
+ 1

=
4

16 + 1

=
4

17

and

g(x2) =
4

42 + 1

=
4

16 + 1

=
4

17
.

Thus g(x1) = g(x2) but x1 6= x2 which means that g is not one-to-one.
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(d) Is g onto? Prove your answer.

Solution. g is not onto.

Proof (that g is not onto). Let y = 1. We will show that, for all x ∈ R, g(x) 6= y. Suppose that there
is an x ∈ R so that g(x) = 1. Then x

x2+1 = 1 which means that x2 − x + 1 = 0. Using the quadratic
equation, we see that

x =
1±
√

1− 4

2
=

1±
√
−3

2
.

But this is not a real number, since
√
−3 6∈ R. This is a contradiciton. Hence there is no x ∈ R so that

g(x) = 1. Thus g is not onto.

Note: For any x ∈ R with x 6= 0, it is true that g(x) = g( 1
x ).


