MATH 271 — Summer 2016 1
Assignment 3 — solutions

Problem 1. For any sets X and Y, we define the symmetric difference of X and Y as

XAY = (XUY)—(XNY).

Note that it is also true that XAY = (X —Y) U (Y — X). For each of the following statements, determine
whether the statement is true or false. Prove the true statements using the element method. Prove the false
statements false by giving a counterexample.

(a)

“For all sets A, ANA = (.

Solution. This statement is true.

Proof. Let A be a set. We will show that AAA = (. Assume instead that AAA # (. Then there exists
an element z € AAA. By definition of A, this means that x € A — A. However A — A = 0, so = € 0.
This is a contradiction, so the assumption that AAA # () must be wrong. Therefore AANA = (. O

“For all sets A, B, and C,if AC BUC and BC CU A then AAB=C.

Solution. This statement is false.

Negation: “There exist sets A, B, and C so that AC BUC and BC CU A but AAB £ C.”

Proof (of negation). Let A = {1}, B = {1}, and C = {1,2}. Then BUC = {1,2} and CU A = {1,2},
so AC BUC and B C C U A since {1} C {1,2}. However AAB = (), since B = A and we know that
ANA = from part (a). Thus AAB # C since §) # {1,2}. O

“For all sets A, B, and C, if AAC = BAC then A = B.”
Solution. This statement is true.

Proof. Let A, B, and C be sets. Assume that AAC = BAC. We will show that A = B by showing
that A C B and B C A.

o (To show that A C B.) Let z € A. We will show that z is also in B. There are two cases: either
xeCorz¢C.
— Case 1) Suppose that © € C. Then z ¢ AAC since © € A and x € C. So & ¢ BAC since
ANAC = BAC. This means that 2 ¢ BUC or x € BNC. But € C means that z € BUC.
Thus it must be the case that x € BN C, which means that z € B and z € C.
— Case ii) Suppose that © ¢ C. Then © € AAC since z € A and = ¢ C. So x € BAC since

ANAC = BAC. This means that z € BUC and « ¢ BN C. But = ¢ C means that z ¢ BN C.
Thus it must be the case that z € BN C, which means that z € B since « ¢ C' and x € BUC.

In either case, x € B. Therefore A C B.

o (To show that B C A.) Let z € B. We will show that x is also in A. There are two cases: either
zxeCorzé¢C.

— Case i) Suppose that z € C. Then z ¢ BAC since x € B and z € C. So z ¢ AAC since
BAC = AAC. This means that ¢ AUC or z € ANC. But € C means that z € AUC.

Thus it must be the case that x € AN C, which means that z € A and z € C.
— Case ii) Suppose that x ¢ C. Then v € BAC since x € B and z ¢ C. So z € AAC since
BAC = AAC. This means that t € AUC and z ¢ ANC. But « ¢ C means that t ¢ ANC.
Thus it must be the case that z € AN C, which means that x € A since x ¢ C and x € AUC.

In either case, x € A. Therefore B C A.

Thus A C B and B C A, which means that A = B. O
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Problem 2. Consider the set S = {1,2,3,4,5,6,7,8,9,10}. For parts (a) through (e), you must give a brief
explanation on how you get the answer. Simplify your answer to a number.

(a)

How many nonempty subsets of S have the property that the product of their elements is even? (For
example, T'= {1, 5,8} is a nonempty subset of S, and the product of the elements of T is 1-5-8 = 40.)

Solution. There are 219 —2% = 992 subsets of S that have the property that the product of their elements
is even.

Explanation. Subsets of S that have the property that the product of their elements is even must contain
at least one even number. Let A be the set of subsets of S that contain no even numbers. Then the set
we are interested in is P(S) — A, since this is the set of subsets that contain at least one even number.
Note that [P(S)| = 2! and that A = P({1,3,5,7,9}), hence |A| = 2°. Thus

[P(S) — Al = [P(S)] — |4]
—9l0 _ 95
as desired. 0

How many subsets of S have exactly 5 elements?

10
5

FEzxplanation. To make a subset of S that contains 5 elements, we choose 5 elements from the 10 in S. [

Solution. There are ( ) = 252 subsets of S that contain exactly 5 elements.

How many subsets of S have 3 as their smallest element?

Solution. There are 27 = 128 subsets of S that have 3 as their smallest element.

Ezxplanation. A subset of S that has 3 as its smallest element must contain 3, and it cannot contain 1
or 2. To make a subset of S that 3 as its smallest element, we first make any subset of the 7 remaining
elements {4,5,6,7,8,9,10} and we then include 3 in it. There are 27 possibilities. O

How many subsets of S have 3 as their smallest element and have exactly 5 elements?

7
4

Ezxplanation. A subset of S that has 3 as its smallest element must contain 3, and it cannot contain 1
or 2. To make a subset of S with exactly 5 elements that 3 as its smallest element, we choose 4 of the 7
remaining elements {4,5,6,7,8,9,10} and we include 3 in it. There are (Z) possibilities. O

Solution. There are ( ) = 35 subsets of S with exactly 5 elements that have 3 as their smallest element.

How many subsets of S have 6 as their smallest element and have exactly 5 elements?

Solution. There are (4) = 1 subsets of S with exactly 5 elements that have 6 as their smallest element.

4
Explanation. A subset of S that has 6 as its smallest element must contain 6, and it cannot contain any

of the numbers from 1 to 5. To make a subset of .S with exactly 5 elements that 6 as its smallest element,
we choose 4 of the 4 remaining elements {7,8,9,10} and we include 6 in it. There are (i) possibilities.
(That is, there is only one possibility since the only set that fits the criteria is the set {6,7,8,9,10}.) O

Use the method of combinatorial proof to prove the following identity:

(5) =)+ ()= (@) -)

Use complete sentences. (Hint: Find two different ways to count the number of subsets of S that have
exactly b elements. Use parts (b), (d), and (e).)
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Proof. We count the number of subsets of S that contain exactly 5 elements in two different ways. For
the first way, we choose 5 elements from the 10, as in part (b). So there are

(150) (%)

For the second way of counting the number of subsets of S with exactly 5 elements, we split up the
counting into six different types of subsets. For any subset of S with exactly 5 elements, there are 6
possibilities for the smallest element of that subset.

total subsets of S with exactly 5 elements.

e We first count the number of subsets of S that have exactly 5 elements and have 1 as their smallest
9

element. There are ( 4) of these, since such subsets must include 1 and we then choose 4 of the 9
remaining elements.
e Similarly, the number of subsets of S with 5 elements and have 2 as their smallest element is (i).
e The number of subsets of S with exactly 5 elements and have 3 as their smallest element is
e The number of subsets of S with exactly 5 elements and have 4 as their smallest element is

e The number of subsets of S with exactly 5 elements and have 5 as their smallest element is

A~ N /S A/~
B RO RO
— — ~— ~—

e The number of subsets of S with exactly 5 elements and have 6 as their smallest element is

This accounts for all of the possible subsets of S with exactly 5 elements. So there are

(3)+ 6+ (0)0)+ )+ () -

total subsets of S that contain exactly 5 elements. Since the number of subsets must be the same
no matter how we count them, the two numbers in (x) and (s*) must be the same. This proves the
identity. O

Problem 3. Let f: R — R be the function defined by f(z) = 2|z] — « for each z € R. Let g: R — R be

the function defined by g(z) = 5% for all z € R.

(a) Prove that f is one-to-one.
Proof. Let x1,z2 € R and suppose that f(z1) = f(z2). That is,

2|_1‘1J — X1 = 2|_.132J — I9. (1)
(We want to show that x1 = z3.) From the definition of floor, we see that
0<z—|z1] <1 and 0<m — |x2] < 1.

Set r1 = @1 — |x1] and ro = 29 — |x2| so that &1 = |21] + 1 and a2 = |22] + r2, where r1 and ry are
real numbers so that 0 < r; <1 and 0 < ro < 1. From this we know that

—1<r—ry<l1. (2)

Now (1) becomes 2|z1| — (|x1] + 1) = 2|x2] — (|x2] + r2), which simplifies to

ry—ry =[] — [22]. 3)
From (2) and (3), we see that r; — ro is an integer (since |z1] — |z2| is an integer) and r; — ro
is strictly greater than —1 and strictly less than 1. Therefore r1 — ro = 0, since the only integer
between —1 and 1 is zero. Thus r; = ry. Hence |21] — [22] = 0 and thus |z;| = |22]. Therefore

x1 = |@1| + 71 = |22] + r2 = z2. This means that f is one-to-one. O



(b) Prove that f is onto.
Proof. Let y € R be arbitrary. Choose x = 2[y| — y. We will show that f(z) =y.
We first show that, for all numbers z € R, |—z| = —[z].

Let z be an arbitrary real number. By definition of floor, |—z| is the unique integer such that
|-z < —z<|—-2z]+1. (4)

Multiplying (4) by —1, we see that this becomes —|—z| > z > —|—z] — 1. Flipping this around,
we see that
—|—zl-1<z<—|—2]. (5)

Where —|—z] is an integer. But, from the definition of ceiling, [z] is the unique integer such that
[z2] - 1<z < [z]. (6)

Examining (5) and (6) we see that —|—z| = [z], since they must be the same integer (from the
definition of ceiling). Hence |—z] = —[z].

Now |2[y]| —y] =2[y] + [—y], since 2[y] is an integer. Thus

flx)=2|z| =

12[y] —y) — 2[y] —v)

Clyl+ [~y]) =2yl +y

=22yl = TyD) =2yl +vy since |—y) = —[y]
=2[yl —2[yl +y

=y,

=2
=2

Thus f is onto. O

(c¢) Is g one-to-one? Prove your answer.

Solution. ¢ is not one-to-one.

1

Proof (that g is not one-to-one). Let xq = 7 and wo = 4. It is clear that # x9. However

and

9(@1) = T

42 +1
4

16 +1
4

T?.

Thus g(x1) = g(z2) but 21 # x2 which means that g is not one-to-one. O



(d) Is g onto? Prove your answer.

Solution. g is not onto.

Proof (that g is not onto). Let y = 1. We will show that, for all x € R, g(z) # y. Suppose that there
is an « € R so that g(z) = 1. Then %H = 1 which means that 22 — z 4+ 1 = 0. Using the quadratic
equation, we see that

1+v1—-4 1++/-3
T = = .
2 2
But this is not a real number, since /—3 ¢ R. This is a contradiciton. Hence there is no z € R so that
g(xz) = 1. Thus g is not onto. O

Note: For any x € R with  # 0, it is true that g(z) = g(%)



