MATH 271 — Summer 2016 1
Assignment 4 — solutions

Problem 1.

Let A, B, and C be some sets and suppose that f: A — B and g: B — C are functions. Prove or disprove
each of the following statements.

(a)

If f is one-to-one then g o f is one-to-one.

Solution. This statement is false. Consider the functions f and g defined by the following diagrams:

Then f is clearly one-to-one, but g o f is not one-to-one.

If both f and ¢ are one-to-one then g o f is one-to-one.

Solution. This statement is true.

Proof. Assume that f is one-to-one and g is one-to-one. (We will show that g o f is one-to-one.) Let
a1,a2 € A and assume that (go f)(a1) = (go f)(az). (We will show that a; = ag.) Then

9(f(a1)) = g(f(az))

which means that f(a;) = f(ag) since g is one-to-one. But f is also one-to-one, which means that
a; = as. O

If g o f is one-to-one then f is one-to-one.
Solution. This statement is true.

Proof. Assume that g o f is one-to-one. (We will show that f is one-to-one.) Let a1,as € A ans assume
that f(a1) = f(az2). (We will show that a; = as.) Since f(a1) = f(a2), applying g to both sides gives us

g(f(ar)) = g(f(az)) or
(go f)lar) = (go f)(az).
But g o f is one-to-one, so a; = as. 0

If g o f is one-to-one then g is one-to-one.

Solution. This statement is false. Consider the functions defined by the following diagrams:
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Then g o f is clearly one-to-one, but ¢ is not one-to-one.

(e) If g o f is one-to-one and f is onto then g is one-to-one.
Solution. This statement is true.
Proof. Assume that g o f is one-to-one and that f is onto. (We will show that ¢ is one-to-one.) Let
b1,ba € B and assume that g(b1) = g(bs). (We will show that by = bs.) Since f is onto, there exists an

a1 € A so that f(a1) = by. Similarly, there exists an ag € A so that f(az) = be. Since g(b1) = g(b2), this
gives us

g(f(al)) = g(f(az)),

which means (g o f)(a1) = (g o f)(az). But go f is one-to-one, which means that a; = as. Hence
f(a1) = f(az2) and thus

b1 = f(a1) = f(az) = b,
so by = bs. O
Problem 2.

Consider the set S ={1,2,3,4,5,6,7,8,9,10} and let F denote the set of all functions from S to S. Define
a relation R on F by:

for all f,g € F, f Ry ifand only if 3z € S so that f(z) = g(x).

Let @ € F be the function defined by a(z) = 1 for each z € S. Let h € F be the function defined by
h(z) = |ZE2] for each x € S.

(a) Is R reflexive? Symmetric, Transitive? Prove your answers.

Solution. The relation R is reflexive and symmetric, but not transitive.

Proof (that R is reflexive). Let f € F be arbitrary. Then f(1) = f(1), so there is at least one = € S so
that f(x) = f(z). Hence f R f, so R is reflexive. O

Proof (that R is symmelric). Let f,g € F be arbitrary and assume that f Rg. Then there is at least one
x € S so that f(z) = g(z). Hence g(z) = f(z) for that 2, which means that g R f, so R is symmetric. [

Proof (that R is not transitive). Let f,g € F be the functions defined by

1, ifz=1, 2, ifz=1,
f(””)_{z, if 2 #1 and 9(””>_{1, if 2 #1
Function diagrams for these two functions are the following:
f g
S S S S
- -

= Z

Then f Ra since f(1) =1 = a(1) and a R g since g(2) = 1 = a(2). But f Rg since f(z) # g(z) for all
x € S. Thus R is not transitive. O



(b)

Prove or disprove the statement: “Jf € F so that Vg € F, f Rg”.
Solution. This statement is false. Its negation is: “Vf € F, 3g € { so that f Rg.”

Proof (of the negation). Let f € F be arbitrary. Pick g to be the function defined by
[ 2, if f(z) =1,
9(w) = { 1, if f(z) £1
It is clear that g(z) # f(x) for all x € S. Indeed, let = be an element of S. Then f(z) =1 or f(z) # 1.

If f(x) =1, then g(z) =2 # 1. If f(x) # 1, then g(z) = 1 # f(x). In either case, g(x) # f(x) for all
x € S. This proves the statement. O

How many functions f € F are there so that f Ra? Explain.

0'0 — 919, The reasoning is as follows. Consider the set

A={feF|fRa}.

We want to count |A|. It is easier to count the complement A° = F — A, which is the set of functions
that are not related to a. That is,

Solution. There are 1

A= {f e F|f Ra}.

Note that |A| = |F| — |A°|. The recipe for counting the functions that are not related to « is as follows:

1. Choose a value for f(1). It cannot be 1, otherwise f(1) = «(1). There are 9 other choices.
2. Choose a value for f(2). It cannot be 1, otherwise f(2) = a(2). There are 9 other choices.

10. Choose a value for f(10). It cannot be 1, otherwise f(10) = «(10). There are 9 other choices.
Hence |A¢| = 910, There are 10 total functions from S to 3, so
|A| = |F| —|A°] = 100 — 90,
How many functions f € F are there so that f Rh? Explain.
0 — 919 The reasoning is as follows. Consider the set
H={feF|fRh}

We want to count |H|. It is easier to count the complement H¢ = F — H, which is the set of functions
that are not related to h. That is,

Solution. There are 1

H®={feFI|fRh}.
Note that |H| = |F|—|H¢|. The recipe for counting the functions that are not related to h is as follows:

1. Choose a value for f(1). It cannot be 2 (since h(1) = 2), otherwise f(1) = h(1). There are 9 other

choices.

2. Choose a value for f(2). It cannot be 2 (since h(2) = 2), otherwise f(2) = h(2). There are 9 other
choices.

3. Choose a value for f(3). It cannot be 3 (since h(3) = 3), otherwise f(3) = h(3). There are 9 other
choices.

10. Choose a value for f(10). It cannot be 6 (since h(10) = 6), otherwise f(10) = h(10). There are 9
other choices.

Hence |H¢| = 9'°. There are 10'Y total functions from S to S, so

[H| = |7~ [H| = 10" — 9'°.



(e) How many functions f € F are there so that f Ra or f Rh? Explain.

Solution. The answer is 2 - 910 — 810, The reasoning is as follows.

The functions that we want to count are the functions f € F such that

fRa or fRh.

Note that f Ra < f ¢ A < f € A°. Similarly, note that f Rh < f ¢ H < f € H®. This means that
we want to count the functions f so that

f€eA® or feHC

That is, we want to count the functions f in A°U H¢. Consider the following picture:

F

We want to count the union of A¢ and H€¢. That is, we want to count the shaeded region of the following
diagram:

F

The number of elements in this set is |[A° U H¢| = |A°| + |H¢| — |A° N H€|, where A°N H€ is the set that
is the shaded region of the following diagram:

F

Note that f € A°N H° means that f R and f Rh. We can count the nubmer of functions that are not
related to both « and h by the following recipe:

1. Choose a value for f(1). It cannot be 1, otherwise f(1) = (1) = 1, and it cannot be 2 (since
h(1) = 2), otherwise f(1) = h(1). There are 8 other choices.

2. Choose a value for f(2). It cannot be 1, otherwise f(2) = «(2) = 1, and it cannot be 2 (since
h(2) = 2), otherwise f(2) = h(2). There are 8 other choices.
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3. Choose a value for f(3). It cannot be 1, otherwise f(3) = «(3) = 1, and it cannot be 3 (since
h(3) = 3), otherwise f(3) = h(3). There are 8 other choices.

10. Choose a value for f(10). It cannot be 1, otherwise f(10) = «(10) = 1, and it cannot be 6 (since
h(10) = 6), otherwise f(10) = h(10). There are 8 other choices.

Hence |A°N H¢| = 810, Now
|A°U H¢| = |A°| + |H| — |A° N H¢| = 90 4 910 _ 810,
Problem 3.
Consider the set ZT of all positive integers. Let S be the relation on Z* x Z* defined by
for all (a,b) and (c,d) in Z" x Z* (a,b) S (¢,d) if and only if a 4+ 2b = ¢+ 2d
(a) Prove that S is an equivalence relation on Z* x Z+.

Solution. Proof. We prove that S is reflexive, symmetric, and transitive.

o (Reflexive) Let (a,b) € ZT x Z* be an arbitrary pair of positive integers. Then a + 2b = a + 2b, so
(a,b) S (a,b). Hence S is reflexive.
(

o (Symmetric) Let (a,b) € Z* x Z* and (c,d) € Z* x Z* be arbitrary pairs of positive integers.
Assume that (a,b) S (¢,d). Then a + 2b = ¢ + 2d which means that ¢ + 2d = a + 2b. Hence
d) S (a,b) and thus S is symmetric.

b) S (b,c) and (b,d) S (e, f). Then a+2b=c+2d and c+2d = e+ 2f and thus a+2b=d +2f

u o

(¢

o (Transitive) Let (a,b), (c,d), (e, f) € ZT x ZT be arbitrary pairs of positive integers. Assume that
(a,
s

ince is transitive. Hence (a, ) S (e, f) and thus S is transitive.

Thus S is an equivalence relation because it is reflexive, symmetric, and transitive. O

(b) List all elements of [(3,3)] and all elements of [(4,4)].

Solution. Note that 34+ 2-3 =9. Then (a,b) S (3,3) if and only if a + 2b = 9. The elements of [(3, 3)]

are
(3,3)] = {(1,4), (3,3), (5,2), (7, 1)}
Note that 4 +2-4 = 12. Then (a,b) S (4,4) if and only if a + 2b = 12. The elements of [(4,4)] are

[(4,4)] = {(2,5), (4,4), (6,3), (8,2), (10, 1)}.

(c) Is there an equivalence class of S that has exactly 271 elements? Explain.

Solution. Yes. Consider the equivalence class of (1,271). The elements are

[(1,271)] = {(1,271), (3,270), (5,269), ..., (541,1)}
= {(543 — 2k, k) | k = 1,2,...,271},

which has 271 elements.

(d) How many equivalence classes of S are there that contain at most 271 elements?
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Solution. There are 2 x 271 = 542 equivalence classes that contain at most 271 elements. Note that
for each n € Z™, there are two exactly equivalence classes that contain exactly n elements. Indeed, we

see that
(LD ={1, 1D} and  [(2,1)] ={(2,1)}
are the only equivalence classes that contain exactly 1 element. For each n, the equivalence classes
[(1,71)} - {(1,n)a (3,71 - 1)7 (57n - 2)7 cee (2n -1, 1)}
and
[(2a n)] = {(25 n)v (4a n— 1)a (G,TL - 2)7 LR (271, 1)}

are the only classes that contain exactly n elements. For each n = 1,2,3...,271 there are exactly 2
equivalence classes containig n elements. So there are a total of 2 - 271 classes that have at most 271
elements.



