
1MATH 271 – Summer 2016
Assignment 4 – solutions

Problem 1.

Let A, B, and C be some sets and suppose that f : A→ B and g : B → C are functions. Prove or disprove
each of the following statements.

(a) If f is one-to-one then g ◦ f is one-to-one.

Solution. This statement is false. Consider the functions f and g defined by the following diagrams:
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Then f is clearly one-to-one, but g ◦ f is not one-to-one.

(b) If both f and g are one-to-one then g ◦ f is one-to-one.

Solution. This statement is true.

Proof. Assume that f is one-to-one and g is one-to-one. (We will show that g ◦ f is one-to-one.) Let
a1, a2 ∈ A and assume that (g ◦ f)(a1) = (g ◦ f)(a2). (We will show that a1 = a2.) Then

g
(
f(a1)

)
= g

(
f(a2)

)
which means that f(a1) = f(a2) since g is one-to-one. But f is also one-to-one, which means that
a1 = a2.

(c) If g ◦ f is one-to-one then f is one-to-one.

Solution. This statement is true.

Proof. Assume that g ◦ f is one-to-one. (We will show that f is one-to-one.) Let a1, a2 ∈ A ans assume
that f(a1) = f(a2). (We will show that a1 = a2.) Since f(a1) = f(a2), applying g to both sides gives us
g
(
f(a1)

)
= g

(
f(a2)

)
or

(g ◦ f)(a1) = (g ◦ f)(a2).

But g ◦ f is one-to-one, so a1 = a2.

(d) If g ◦ f is one-to-one then g is one-to-one.

Solution. This statement is false. Consider the functions defined by the following diagrams:
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Then g ◦ f is clearly one-to-one, but g is not one-to-one.

(e) If g ◦ f is one-to-one and f is onto then g is one-to-one.

Solution. This statement is true.

Proof. Assume that g ◦ f is one-to-one and that f is onto. (We will show that g is one-to-one.) Let
b1, b2 ∈ B and assume that g(b1) = g(b2). (We will show that b1 = b2.) Since f is onto, there exists an
a1 ∈ A so that f(a1) = b1. Similarly, there exists an a2 ∈ A so that f(a2) = b2. Since g(b1) = g(b2), this
gives us

g
(
f(a1)

)
= g

(
f(a2)

)
,

which means (g ◦ f)(a1) = (g ◦ f)(a2). But g ◦ f is one-to-one, which means that a1 = a2. Hence
f(a1) = f(a2) and thus

b1 = f(a1) = f(a2) = b2,

so b1 = b2.

Problem 2.

Consider the set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and let F denote the set of all functions from S to S. Define
a relation R on F by:

for all f, g ∈ F , f R g if and only if ∃x ∈ S so that f(x) = g(x).

Let α ∈ F be the function defined by α(x) = 1 for each x ∈ S. Let h ∈ F be the function defined by
h(x) = bx+3

2 c for each x ∈ S.

(a) Is R reflexive? Symmetric, Transitive? Prove your answers.

Solution. The relation R is reflexive and symmetric, but not transitive.

Proof (that R is reflexive). Let f ∈ F be arbitrary. Then f(1) = f(1), so there is at least one x ∈ S so
that f(x) = f(x). Hence f R f , so R is reflexive.

Proof (that R is symmetric). Let f, g ∈ F be arbitrary and assume that f R g. Then there is at least one
x ∈ S so that f(x) = g(x). Hence g(x) = f(x) for that x, which means that g R f , so R is symmetric.

Proof (that R is not transitive). Let f, g ∈ F be the functions defined by

f(x) =

{
1, if x = 1,
2, if x 6= 1

and g(x) =

{
2, if x = 1,
1, if x 6= 1

Function diagrams for these two functions are the following:
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Then f Rα since f(1) = 1 = α(1) and αRg since g(2) = 1 = α(2). But f /R g since f(x) 6= g(x) for all
x ∈ S. Thus R is not transitive.
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(b) Prove or disprove the statement: “∃f ∈ F so that ∀g ∈ F , f R g”.

Solution. This statement is false. Its negation is: “∀f ∈ F , ∃g ∈ { so that f /R g.”

Proof (of the negation). Let f ∈ F be arbitrary. Pick g to be the function defined by

g(x) =

{
2, if f(x) = 1,
1, if f(x) 6= 1

It is clear that g(x) 6= f(x) for all x ∈ S. Indeed, let x be an element of S. Then f(x) = 1 or f(x) 6= 1.
If f(x) = 1, then g(x) = 2 6= 1. If f(x) 6= 1, then g(x) = 1 6= f(x). In either case, g(x) 6= f(x) for all
x ∈ S. This proves the statement.

(c) How many functions f ∈ F are there so that f Rα? Explain.

Solution. There are 1010 − 910. The reasoning is as follows. Consider the set

A = {f ∈ F |f Rα}.

We want to count |A|. It is easier to count the complement Ac = F − A, which is the set of functions
that are not related to α. That is,

Ac = {f ∈ F |f /Rα}.
Note that |A| = |F| − |Ac|. The recipe for counting the functions that are not related to α is as follows:

1. Choose a value for f(1). It cannot be 1, otherwise f(1) = α(1). There are 9 other choices.

2. Choose a value for f(2). It cannot be 1, otherwise f(2) = α(2). There are 9 other choices.

...

10. Choose a value for f(10). It cannot be 1, otherwise f(10) = α(10). There are 9 other choices.

Hence |Ac| = 910. There are 1010 total functions from S to S, so

|A| = |F| − |Ac| = 1010 − 910.

(d) How many functions f ∈ F are there so that f Rh? Explain.

Solution. There are 1010 − 910. The reasoning is as follows. Consider the set

H = {f ∈ F |f Rh}.

We want to count |H|. It is easier to count the complement Hc = F −H, which is the set of functions
that are not related to h. That is,

Hc = {f ∈ F |f /Rh}.
Note that |H| = |F|− |Hc|. The recipe for counting the functions that are not related to h is as follows:

1. Choose a value for f(1). It cannot be 2 (since h(1) = 2), otherwise f(1) = h(1). There are 9 other
choices.

2. Choose a value for f(2). It cannot be 2 (since h(2) = 2), otherwise f(2) = h(2). There are 9 other
choices.

3. Choose a value for f(3). It cannot be 3 (since h(3) = 3), otherwise f(3) = h(3). There are 9 other
choices.

...

10. Choose a value for f(10). It cannot be 6 (since h(10) = 6), otherwise f(10) = h(10). There are 9
other choices.

Hence |Hc| = 910. There are 1010 total functions from S to S, so

|H| = |F| − |Hc| = 1010 − 910.
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(e) How many functions f ∈ F are there so that f /Rα or f /Rh? Explain.

Solution. The answer is 2 · 910 − 810. The reasoning is as follows.

The functions that we want to count are the functions f ∈ F such that

f /Rα or f /Rh.

Note that f /Rα ⇔ f /∈ A ⇔ f ∈ Ac. Similarly, note that f /Rh ⇔ f /∈ H ⇔ f ∈ Hc. This means that
we want to count the functions f so that

f ∈ Ac or f ∈ Hc.

That is, we want to count the functions f in Ac ∪Hc. Consider the following picture:

Ac Hc

F

We want to count the union of Ac and Hc. That is, we want to count the shaeded region of the following
diagram:

Ac Hc

F

The number of elements in this set is |Ac ∪Hc| = |Ac|+ |Hc| − |Ac ∩Hc|, where Ac ∩Hc is the set that
is the shaded region of the following diagram:

Ac Hc

F

Note that f ∈ Ac ∩Hc means that f /Rα and f /Rh. We can count the nubmer of functions that are not
related to both α and h by the following recipe:

1. Choose a value for f(1). It cannot be 1, otherwise f(1) = α(1) = 1, and it cannot be 2 (since
h(1) = 2), otherwise f(1) = h(1). There are 8 other choices.

2. Choose a value for f(2). It cannot be 1, otherwise f(2) = α(2) = 1, and it cannot be 2 (since
h(2) = 2), otherwise f(2) = h(2). There are 8 other choices.
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3. Choose a value for f(3). It cannot be 1, otherwise f(3) = α(3) = 1, and it cannot be 3 (since
h(3) = 3), otherwise f(3) = h(3). There are 8 other choices.

...

10. Choose a value for f(10). It cannot be 1, otherwise f(10) = α(10) = 1, and it cannot be 6 (since
h(10) = 6), otherwise f(10) = h(10). There are 8 other choices.

Hence |Ac ∩Hc| = 810. Now

|Ac ∪Hc| = |Ac|+ |Hc| − |Ac ∩Hc| = 910 + 910 − 810.

Problem 3.

Consider the set Z+ of all positive integers. Let S be the relation on Z+× Z+ defined by

for all (a, b) and (c, d) in Z+× Z+ (a, b)S (c, d) if and only if a+ 2b = c+ 2d

(a) Prove that S is an equivalence relation on Z+× Z+.

Solution. Proof. We prove that S is reflexive, symmetric, and transitive.

• (Reflexive) Let (a, b) ∈ Z+× Z+ be an arbitrary pair of positive integers. Then a+ 2b = a+ 2b, so
(a, b)S (a, b). Hence S is reflexive.

• (Symmetric) Let (a, b) ∈ Z+× Z+ and (c, d) ∈ Z+× Z+ be arbitrary pairs of positive integers.
Assume that (a, b)S (c, d). Then a + 2b = c + 2d which means that c + 2d = a + 2b. Hence
(c, d)S (a, b) and thus S is symmetric.

• (Transitive) Let (a, b), (c, d), (e, f) ∈ Z+× Z+ be arbitrary pairs of positive integers. Assume that
(a, b)S (b, c) and (b, d)S (e, f). Then a+ 2b = c+ 2d and c+ 2d = e+ 2f and thus a+ 2b = d+ 2f
since “=” is transitive. Hence (a, b)S (e, f) and thus S is transitive.

Thus S is an equivalence relation because it is reflexive, symmetric, and transitive.

(b) List all elements of [(3, 3)] and all elements of [(4, 4)].

Solution. Note that 3 + 2 · 3 = 9. Then (a, b)S (3, 3) if and only if a+ 2b = 9. The elements of [(3, 3)]
are

[(3, 3)] = {(1, 4), (3, 3), (5, 2), (7, 1)}.

Note that 4 + 2 · 4 = 12. Then (a, b)S (4, 4) if and only if a+ 2b = 12. The elements of [(4, 4)] are

[(4, 4)] = {(2, 5), (4, 4), (6, 3), (8, 2), (10, 1)}.

(c) Is there an equivalence class of S that has exactly 271 elements? Explain.

Solution. Yes. Consider the equivalence class of (1, 271). The elements are

[(1, 271)] = {(1, 271), (3, 270), (5, 269), . . . , (541, 1)}
= {(543− 2k, k) | k = 1, 2, . . . , 271},

which has 271 elements.

(d) How many equivalence classes of S are there that contain at most 271 elements?
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Solution. There are 2 × 271 = 542 equivalence classes that contain at most 271 elements. Note that
for each n ∈ Z+, there are two exactly equivalence classes that contain exactly n elements. Indeed, we
see that

[(1, 1)] = {(1, 1)} and [(2, 1)] = {(2, 1)}

are the only equivalence classes that contain exactly 1 element. For each n, the equivalence classes

[(1, n)] = {(1, n), (3, n− 1), (5, n− 2), . . . , (2n− 1, 1)}

and
[(2, n)] = {(2, n), (4, n− 1), (6, n− 2), . . . , (2n, 1)}

are the only classes that contain exactly n elements. For each n = 1, 2, 3 . . . , 271 there are exactly 2
equivalence classes containig n elements. So there are a total of 2 · 271 classes that have at most 271
elements.


