MATH 271 – Summer 2016 Study Guide for Final Exam Topics list

- Proof techniques
 - How to prove different types of statements (i.e. \forall , \exists , 'if...then', 'or', 'and')
 - Negations, converses, contrapositives
 - Direct proof, proof by contradiction, proof by counterexample
 - Proof by cases
- Divisibility
 - Definition of divisibility
 - Definition of even and odd
 - How to prove facts about divisibility
 - Definition of prime and composite
 - Quotient-remainder theorem
 - common divisors and gcd
- Rational and irrational numbers
 - Definition of rational and irrational
 - How to prove facts about rational and irrational numbers
- Induction (regular, not strong)
 - How to use proof by induction (base case, induction step, IH, conclusion)
 - sequences and recursive sequences
- Sets
 - Definitions about sets (i.e. \cup , \cap , \subseteq , =, \times , $\mathcal{P}(\cdot)$, -, $|\cdot|$, \emptyset)
 - How to prove facts about sets (element method, counterexample)
- Counting
 - Multiplication rule and recipes for counting
 - Permutations, combinations
 - Inclusion/exclusion principles (i.e. $|A B| = \dots$ and $|A \cup B| = \dots$)
- Functions
 - Definition of function
 - Definition (and how to prove) one-to-one and onto
 - Function composition: "○"
- Relations
 - Definition of relation
 - * as a subset of $A\times A$
 - $\ast\,$ as a directed graph
 - Definitions of (and how to prove) when a relation is reflexive, symmetric, transitive
 - Equivalence relations
 - * definition of and how to prove when a relation is an equivalence relation
 - * equivalence classes and their elements

- Modular arithmetic
 - Definition of $a \equiv b \pmod{m}$
 - How to reduce a number modulo \boldsymbol{m}
 - How to find inverses modulo m
 - Solve congruences modulo m (i.e. find x so that $3x + 4 \equiv 2 \pmod{m}$)
 - Euclidean algorithm to compute gcd
- Graphs
 - Definition of graph (vertex, edge, loop, adjacent, vertex degree, subgraph)
 - Definitions of simple, bipartite, and connected graphs
 - Definitions of walk, path, trail, circuit
 - Euler trails, Euler circuits, Hamiltonian trails, and Hamiltonian circuits
- Miscellaneous topics
 - Floor and ceiling functions $(\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil)$
 - Types of numbers: \mathbb{Z} , \mathbb{Q} , \mathbb{R}