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MATHEMATICS 271 WINTER 2011
MIDTERM SOLUTIONS

[6] 1. Use the Euclidean algorithm to find gcd (89, 36). Then use your work to write
gcd (89, 36) in the form 89a+ 36b where a and b are integers.
Solution: We have

89 = 2× 36 + 17
36 = 2× 17 + 2
17 = 8× 2 + 1,
2 = 2× 1 + 0

and so gcd (89, 36) = 1, and
gcd (89, 36) = 1 = 17 − 8 × 2 = 17 − 8 × (36− 2× 17) = 17 × 17 − 8 × 36 = 17 ×
(89− 2× 36)− 8× 36 = 17× 89− 42× 36.

Another way is to use the “table method” as follows.

89 36
89 1 0
36 0 1

R1 − 2R2 17 1 −2
R2 − 2R3 2 −2 5
R3 − 8R4 1 17 −42

Thus, gcd (89, 36) = 1 and gcd (89, 36) = 89 × 17 + 36 × (−42), that is, a = 17 and
b = −42.

[6] 2. You are told that X is a set, and that {1, 2} ∈ P (X) but {1, 2, 3} /∈ P (X), where
P (X) is the power set of X.
(a) Give an example of a set A 6= {1, 2} that must be an element of P (X). Be sure to
explain your answer.
Solution: Let A = ∅. Then it is clear that A 6= {1, 2} and ∅ ⊆ X, so A = ∅ ∈ P (X).

The other choices for A are the sets {1} and {2}.

(b) Give an example of a set B 6= {1, 2, 3} that cannot be an element of P (X). Be sure
to explain your answer.
Solution: Let B = {3}. It is clear that B 6= {1, 2, 3}. It remains to explain why B /∈ P (X).
Since {1, 2} ∈ P (X), we know {1, 2} ⊆ X and therefore 1 and 2 are elements of X. Since
{1, 2, 3} /∈ P (X), {1, 2, 3} * X and so at least one of 1, 2, 3 is not an element of X. Since
we know 1 and 2 are elements of X, it follows that 3 is not an element of X. Since 3 /∈ X,
B = {3} * X, that is, B /∈ P (X).

[4] 3. Use the definition of a rational number to prove:

for all real numbers r, if 2r + 1 is rational then r is rational.
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Solution: Let r be a real number and assume that 2r + 1 is rational, that is, 2r + 1 =
m

n

for some m, n ∈ Z where n 6= 0. Now, r =
1

2
(2r + 1− 1) =

1

2

(m
n
− 1
)

=
1

2

(
m− n
n

)
=

m− n
2n

where m − n and 2n are integers (note that 2n 6= 0 because n 6= 0). This implies

that r is rational.

[5] 4. Prove the following statement, either by contradiction or by writing out the contra-
positive and proving that. Use the element method.

For all sets A,B and C, if A ∩B = ∅ then (A× C) ∩ (B × C) = ∅.

Solution: Let A, B and C be sets such that A∩B = ∅. We prove that (A× C)∩(B × C) = ∅
by contradiction. Suppose that (A× C) ∩ (B × C) 6= ∅, that is, there exists an element
(x, y) ∈ (A× C) ∩ (B × C). Since (x, y) ∈ (A× C) ∩ (B × C), we know (x, y) ∈ A × C
and (x, y) ∈ B × C, and so x ∈ A and x ∈ B. Since x ∈ A and x ∈ B, we get x ∈ A ∩ B.
Thus, there exists x ∈ A ∩ B and hence, A ∩ B 6= ∅, which contradicts the assumption
that A ∩B = ∅. Therefore, (A× C) ∩ (B × C) = ∅.

[11] 5. Let S be the statement:

∀a, b ∈ Z, if 5 | a and 5 | b then 5 | (2a− b).

(a) Prove S, using the definition of | (“divides into”).
Solution: Suppose that a, b ∈ Z so that 5 | a and 5 | b. Since 5 | a and 5 | b, there are
integers k and m so that a = 5k and b = 5m. Then, 2a − b = 2 (5k) − 5m = 5 (2k −m)
where (2k −m) ∈ Z, which means 5 | (2a− b).

(b) Write out (as simply as possible) the converse of statement S. Is it true or false?
Explain.
Solution: The converse of S is: “∀a, b ∈ Z, if 5 | (2a− b) then 5 | a and 5 | b.”

The converse of S is false. We are to prove its negation which is: “ There exist integers
a and b such that 5 | (2a− b), but 5 - a or 5 - b.” For example, let a = 1 and b = 2. Then
2a− b = 0 = 5× 0 and 0 ∈ Z, so 5 | (2a− b), but 5 - a because 5 - 1.

(c) Write out (as simply as possible) the contrapositive of statement S. Is it true or false?
Explain.
Solution: The contrapositive of S is: “∀a, b ∈ Z, if 5 - (2a− b) then 5 - a or 5 - b.”

The contrapositive of S is true because it is logically equivalent to S which is true by
part (a).

[8] 6. The sequence b1, b2 , b3, ... of integers is defined by: b1 = 3, and

bn = 3bn−1 + 2 for all integers n ≥ 2.
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(a) Using mathematical induction and the definition of odd integers, prove that bn is
odd for all integers n ≥ 1.
Solution:
Basis step: (n = 1)

We have b1 = 3 = 2× 1 + 1 where 1 is an integer, so b1 is odd.

Inductive step: Let k ≥ 1 be an integer and suppose that bk is odd. We want to show that
bk+1 is odd.

Now, since bk is odd, bk = 2a + 1 for some integer a. Next, since k + 1 ≥ 2, bk+1 =
3bk + 2 = 3 (2a+ 1) + 2 = 6a+ 5 = 2 (3a+ 2) + 1 where 3a+ 2 ∈ Z, which means bk+1 is
odd.

Thus, we proved the inductive step.
Therefore, by the Principle of Mathematical Induction, we conclude that bn is odd for

all integers n ≥ 1.

(b) Is bn prime for all integers n ≥ 1? Prove or disprove.
Solution: No, it is not true that bn is prime for all integers n ≥ 1. Now, b2 = 3b1 + 2 =
3 × 3 + 2 = 11, and b3 = 3b2 + 2 = 3 × 11 + 2 = 35. We see that b3 = 35 is not prime
(because 35 = 5× 7 and 1 < 5 < 35).
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MATHEMATICS 271 L01/02 WINTER 2012
MIDTERM SOLUTIONS

[6] 1. Use the Euclidean algorithm to find gcd (99, 31). Then use your work to write
gcd (99, 31) in the form 99a+ 31b where a and b are integers.
Solution: We have

99 = 3× 31 + 6
31 = 5× 6 + 1
6 = 6× 1 + 0,

and so gcd (99, 31) = 1, and
gcd (99, 31) = 1 = 31− 5× 6 = 31− 5× (99− 3× 31) = 16× 31− 5× 99.

Another way is to use the “table method” as follows.

99 31
99 1 0
31 0 1

R1 − 3R2 6 1 −3
R2 − 5R3 1 −5 16

Thus, gcd (99, 31) = 1 and gcd (99, 31) = 99 × (−5) + 31 × 16, that is, a = −5 and
b = 16.

[6] 2. P (Z) is the power set of the set Z of all integers. Disprove the following two
statements:
(a) For all A,B ∈ P (Z), if 5 ∈ A and 3 ∈ B then 2 ∈ A−B.
Solution: We prove the negation of the statement, which is: “There exist A,B ∈ P (Z) so
that 5 ∈ A and 3 ∈ B, but 2 /∈ A − B”. For example, let A = {5} and B = {3}. Then
A,B ∈ P (Z) and A−B = {5}. It follows that 5 ∈ A and 3 ∈ B, but 2 /∈ A−B.

(b) For all A,B ∈ P (Z), if 5 ∈ A and 3 ∈ B then 2 /∈ A−B.
Solution: We prove the negation of the statement, which is: “There exist A,B ∈ P (Z) so
that 5 ∈ A and 3 ∈ B, but 2 ∈ A− B”. For example, let A = {2, 5} and B = {3}. Then
A,B ∈ P (Z) and A−B = {2, 5}. Thus, 5 ∈ A and 3 ∈ B, but 2 ∈ A−B.

[9] 3. Q+ is the set of all positive rational numbers, and Z+ is the set of all positive integers.
Two of the following three statements are true and one is false. Prove the true statements.
Write out and prove the negation of the false statement.
(a) ∀q ∈ Q+ ∃n ∈ Z+ so that qn ∈ Z.

Solution: This statement is true and here is a proof. Let q ∈ Q+. Then q =
a

b
for some

positive integers a and b. Choose n = b. Then n ∈ Z+ and qn =
a

b
× b = a ∈ Z.

(b) ∀q ∈ Q+ ∃n ∈ Z+ so that qn /∈ Z.
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Solution: This statement is false. Its negation is: “∃q ∈ Q+ so that ∀n ∈ Z+, qn ∈ Z”.
For example, let q = 1. Then q ∈ Q+ and for any n ∈ Z+, qn = 1× n = n ∈ Z.

(c) ∀q ∈ Q+ ∃n ∈ Z+ so that q/n /∈ Z.

Solution: This statement is true and here is a proof. Let q ∈ Q+. Then q =
a

b
for some

positive integers a and b. Choose n = 2a. Then n ∈ Z+ and q/n =
a
b

2a
=

1

2b
/∈ Z (because

0 <
1

2b
< 1 since 0 < 1 < 2b ).

Another solution is as follows: Let q ∈ Q+. Then we have two cases:

Case 1: q /∈ Z. We choose n = 1. Then n ∈ Z+ and q/n =
q

1
= q /∈ Z.

Case 2: q ∈ Z. We choose n = 2q. Then n ∈ Z+ and q/n =
q

2q
=

1

2
/∈ Z.

[13] 4. Let S be the statement:

∀a, b ∈ Z, if 3 | a and 4 | b then 12 | ab.

(a) Prove S, using the definition of | (“divides into”).
Solution: Suppose a, b ∈ Z so that 3 | a and 4 | b. Since 3 | a and 4 | b, a = 3m and b = 4n
for some integers m and n. Then ab = (3m) (4n) = 12mn where mn ∈ Z, which implies
12 | ab.

(b) Write out the converse of statement S. Is it true or false? Explain.
Solution: The converse of S is: “∀a, b ∈ Z, if 12 | ab then 3 | a and 4 | b”. The converse of
S is false. For example, consider the case a = 12 and b = 1. It is clear that a, b ∈ Z and
12 | ab but 4 - b.

(c) Write out the contrapositive of statement S. Is it true or false? Explain.
Solution: The contrapositive of S is: “∀a, b ∈ Z, if 12 - ab then 3 - a or 4 - b”. The
contrapositive of S is true since it is logically equivalent to S, which is true as proven in
(a).

(d) Write out the negation of statement S. Is it true or false? Explain.
Solution: The negation of S is: “∃a, b ∈ Z so that 3 | a and 4 | b, but 12 - ab”. The
negation of S is false since it has the opposite truth value of S, which is true as proven in
(a).

[6] 5. Use mathematical induction to prove that

1

2!
+

2

3!
+ · · ·+ n

(n+ 1)!
= 1− 1

(n+ 1)!
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for all integers n ≥ 1.
Solution:
Basis step: (n = 1)

1

2!
=

1

2
= 1− 1

2
= 1− 1

2!
. Thus, the statement is true when n = 1.

Inductive step: Let k ≥ 1 be an integer and suppose that

1

2!
+

2

3!
+ · · ·+ k

(k + 1)!
= 1− 1

(k + 1)!
. [IH]

We want to prove that
1

2!
+

2

3!
+ · · ·+ k + 1

(k + 2)!
= 1− 1

(k + 2)!
.

Now,
1

2!
+

2

3!
+ · · ·+ k + 1

(k + 2)!
=

(
1

2!
+

2

3!
+ · · ·+ k

(k + 1)!

)
+

k + 1

(k + 2)!

= 1− 1

(k + 1)!
+

k + 1

(k + 2)!
by [IH]

= 1−
(

1

(k + 1)!
− k + 1

(k + 2)!

)
= 1−

(
k + 2

(k + 2)!
− k + 1

(k + 2)!

)
= 1−

(
(k + 2)− (k + 1)

(k + 2)!

)
= 1− 1

(k + 2)!
.

Thus,
1

2!
+

2

3!
+ · · ·+ n

(n+ 1)!
= 1− 1

(n+ 1)!
for all integers n ≥ 1.
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MATHEMATICS 271 L01/02 WINTER 2013
MIDTERM SOLUTIONS

[6] 1. Use the Euclidean algorithm to find gcd (78, 59). Then use your work to write
gcd (78, 59) in the form 78a+ 59b where a and b are integers.
Solution: We have

78 = 1× 59 + 19
59 = 3× 19 + 2
19 = 9× 2 + 1
2 = 2× 1 + 0,

so gcd (78, 59) = 1, and
gcd (78, 59) = 1 = 19− 9× 2 = 19− 9× (59− 3× 19)

= 28× 19− 9× 59 = 28× (78− 19)− 9× 59 = 28× 78− 37× 59.
Another way is to use the “table method” as follows.

78 59
78 1 0
59 0 1

R1 −R2 19 1 −1
R2 − 3R3 2 −3 4
R3 − 9R4 1 28 −37

Thus, gcd (78, 59) = 1 and gcd (78, 59) = 78 × 28 + 59 × (−37), that is, a = 28 and
b = −37.

[4] 2. You are given that A and B are sets, and that (2, 3) ∈ A×B, but (2, 4) /∈ A×B.
(a) Find an ordered pair that definitely is in B × A. Explain.
Solution: The pair (3, 2) is definitely an element of B ×A. Since (2, 3) ∈ A×B, we know
2 ∈ A and 3 ∈ B, and hence (3, 2) ∈ B × A.

(b) Find another ordered pair ( 6= (2, 4)) that definitely is not in A×B. Explain.
Solution: The pair (1, 4) is definitely not an element of A × B. Since (2, 3) ∈ A × B, we
know 2 ∈ A. Since (2, 4) /∈ A×B, we know 2 /∈ A or 4 /∈ B, but 2 ∈ A as seen above, and
so we know that 4 /∈ B. Since 4 /∈ B, the pair (1, 4) is not an element of A×B.

Note that (a, b) /∈ A× B if and only if a /∈ A or b /∈ B. Thus, if we know b /∈ B then
we can conclude that (a, b) /∈ A× B (it does not matter if a ∈ A or a /∈ A). In this case,
we know 4 /∈ B, so we can conclude (1, 4) /∈ A × B, it does not matter whether 1 is an
element of A or not, and in fact we do not know whether 1 is an element of A.

Also, note that the empty set is not an element of every set. It is true that the empty
set is a subset of every set.
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[11] 3. Two of the following three statements are true, and one is false. Prove the true
statements. Write out and prove the negation of the false statement. Use no properties
of even and odd integers other than their definitions.
(a) ∀n ∈ Z ∃ a prime number p so that pn is even.
Solution: This statement is true and here is a proof. Let n ∈ Z. Choose p = 2. Then p is
a prime, and pn = 2n where n ∈ Z and so pn is even.

(b) ∀n ∈ Z ∃ a prime number p so that pn is odd.
Solution: This statement is false. Its negation is: “∃n ∈ Z so that ∀ prime numbers p, pn
is even”. For example, let n = 2. Then n ∈ Z and for any prime number p, pn = 2p is
clearly even.

(c) ∀n ∈ Z ∃ a prime number p so that p+ n is odd.
Solution: This statement is true and here is a proof. Let n ∈ Z.
Case 1: n is odd, that is, n = 2k+ 1 for some k ∈ Z. We choose p = 2. Then p is a prime,
and p+ n = 2 + 2k + 1 = 2 (k + 1) + 1 where k + 1 ∈ Z, and so p+ n is odd.
Case 2: n is even, that is, n = 2m for some m ∈ Z. We choose p = 3. Then p is a prime,
and p+ n = 3 + 2m = 2 (m+ 1) + 1 where m+ 1 ∈ Z, and so p+ n is odd.

[13] 4. Let S be the statement:

for all sets A,B and C, if A ∩B = ∅ then (A− C) ∩ (B − C) = ∅.

(a) Write out the contrapositive of S.
Solution: The contrapositive of S is

for all sets A,B and C, if (A− C) ∩ (B − C) 6= ∅ then A ∩B 6= ∅.

(b) Prove S, using contradiction or the contrapositive.
Solution (by contradiction): Suppose that there are sets A, B and C so that A ∩ B = ∅
and (A− C) ∩ (B − C) 6= ∅. Since (A− C) ∩ (B − C) 6= ∅, there exist an element x ∈
(A− C) ∩ (B − C). It follows that x ∈ (A− C) and x ∈ (B − C), which implies that
x ∈ A and x ∈ B. Since x ∈ A and x ∈ B, we know x ∈ A ∩ B. Thus, there exists an
element x ∈ A ∩ B, which contradicts the assumption that A ∩ B = ∅. Hence, for all sets
A,B and C, if A ∩B = ∅ then (A− C) ∩ (B − C) = ∅.
Solution (using the contrapositive): We prove the contrapositive of S (stated in part (a)).
Suppose that A, B and C are sets so that (A− C) ∩ (B − C) 6= ∅. Since (A− C) ∩
(B − C) 6= ∅, there exist an element x ∈ (A− C) ∩ (B − C). It follows that x ∈ (A− C)
and x ∈ (B − C), which implies that x ∈ A and x ∈ B. Since x ∈ A and x ∈ B, we
know x ∈ A ∩ B. Thus, there exists an element x ∈ A ∩ B, and so A ∩ B 6= ∅. Thus, the
contrapositive of S is true and since S is logically equivalent to the contrapositive of S, S
is true.
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(c) Write out the converse of statement S. Is it true or false? Explain.
Solution: The converse of S is:

for all sets A,B and C, if (A− C) ∩ (B − C) = ∅ then A ∩B = ∅.
The converse of S is false. For example, in the case A = B = C = {1}, we have

(A− C) ∩ (B − C) = ∅ ∩ ∅ = ∅, but A ∩B = {1} 6= ∅.
(d) Write out the negation of statement S. Is it true or false? Explain.
Solution: The negation of S is:

there exist sets A,B and C so that A ∩B = ∅ but (A− C) ∩ (B − C) 6= ∅.
The negation of S is false since it has the opposite truth value of S, which is true as

proven in (b).

[6] 5. Use mathematical induction to prove that 2n ≥ 5n− 7 for all integers n ≥ 3.
Solution:
Basis step: (n = 3)

2n = 23 = 8 ≥ 8 = 15 − 7 = 5 × 3 − 7 = 5n − 7. Thus, the statement is true when
n = 3.
Inductive step: Let k ≥ 3 be an integer and suppose that

2k ≥ 5k − 7. [IH]

We want to prove that 2k+1 ≥ 5 (k + 1)− 7.
Now,
2k+1 = 2× 2k

≥ 2 (5k − 7) by [IH]
= 10k − 14
= 5 (k + 1)− 7 + (5k − 12)
≥ 5 (k + 1)− 7. Note that k ≥ 3, so 5k − 12 ≥ 5× 3− 12 = 3 ≥ 0

Thus, 2n ≥ 5n− 7 for all integers n ≥ 3.
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MATHEMATICS 271 L01/02 WINTER 2014
MIDTERM SOLUTIONS

1. Use the Euclidean algorithm to find gcd (124, 54). Then use your work to write[6]
gcd (124, 54) in the form 124a+ 54b where a and b are integers.
Solution: We have

124 = 2× 54 + 16
54 = 3× 16 + 6
16 = 2× 6 + 4
6 = 1× 4 + 2
4 = 2× 2 + 0

so gcd (124, 54) = 2, and
gcd (124, 54) = 2

= 6− 4
= 6− (16− 2× 6)
= 3× 6− 16
= 3× (54− 3× 16)− 16
= 3× 54− 10× 16
= 3× 54− 10× (124− 2× 54)
= −10× 124 + 23× 54

Another way is to use the “table method” as follows.

124 54
124 1 0
54 0 1

R1 − 2R2 16 1 −2
R2 − 3R3 6 −3 7
R3 − 2R4 4 7 −16
R4 −R5 2 −10 23

Thus, gcd (124, 54) = 2 and gcd (124, 54) = 124 × (−10) + 54 × 23, that is, a = −10
and b = 23.

2. Disprove the statement: “For all integers a, b and c, if a | bc then a | b or a | c.” by[4]
writing out its negation and then prove that.
Solution: The negation of the statement above is: “There are integers a, b and c so that
a | bc, but a - b and a - c.” For example, consider the case that a = 4, and b = c = 2. Then
a 6= 0 and a = 4 = 1× 2× 2 = 1× bc where 1 ∈ Z which implies that a | bc, but a - b and
a - c because 4 - 2.

3. Prove the following statements. You can use the fact that
√

2 is irrational. For irrational[12]
numbers other than

√
2, you need to explain why they are irrational.
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(a) For all non-zero real numbers a and b, if a is rational and b is irrational then ab is
irrational.

Solution: Let a and b be non-zero real numbers so that a is rational and b is irrational.
We prove ab is irrational by contradiction. Suppose that ab is rational. Since a and ab

are rational, there are integers m, n, p, q where n 6= 0 6= q so that a =
m

n
and ab =

p

q
.

Since a 6= 0, we know m 6= 0 and so b =
ab

a
=

p/q

m/n
=
pn

mq
where pn, mq ∈ Z and

mq 6= 0 (because m 6= 0 and q 6= 0). This implies that b is rational which contradicts the
assumption that b is irrational. Thus, ab is irrational.

(b) There are irrational numbers x and y so that x+ y is rational.

Solution: Let x =
√

2 and y = −
√

2. Then x is irrational because
√

2 is irrational. Also,
y = −

√
2 = (−1)

√
2 which is the product of the non-zero rational number −1 and the

irrational number
√

2, so by part (a), y is irrational. However, x+y =
√

2−
√

2 = 0 which
is rational.

(c) There are irrational numbers x and y so that x+ y is irrational.

Solution: Let x = y = 1
2

√
2. Then x and y are the product of the non-zero rational

number 1
2

and the irrational number
√

2, so by part (a), x and y are irrational. Now,

x+ y = 1
2

√
2 + 1

2

√
2 =

(
1
2

+ 1
2

)√
2 =
√

2 which is irrational.

4. Of the two following statements, one is true and one is false. Prove the true statement,[10]
and for the false statement, write out its negation and prove that. Use the element method.
(a) For all sets A, B and C, if A−B = C then A = B ∪ C.
Solution: This statement is false. The negation of this statement is:

There are sets A, B and C so that A−B = C but A 6= B ∪ C.

For example, consider the case A = C = ∅ and B = {1}. We have A − B = ∅ − B =
∅ = C. However, since 1 ∈ B, we know 1 ∈ B ∪ C, but 1 /∈ A (because A = ∅) which
implies that A 6= B ∪ C.

(b) For all sets A, B and C, (A−B)− C ⊆ A− (B − C).
Solution: This statement is true and here is a proof. Let A, B and C be sets. We prove
that (A−B)−C ⊆ A− (B − C). Let x ∈ (A−B)−C. Since x ∈ (A−B)−C, we know
x ∈ A− B, and so x ∈ A and x /∈ B. Since x /∈ B, we know x /∈ B − C. Since x ∈ A and
x /∈ B − C, we conclude that x ∈ A− (B − C). Thus, (A−B)− C ⊆ A− (B − C).
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5. Prove by induction on n that
n−1∑
i=1

i (i+ 1) =
n (n− 1) (n+ 1)

3
for all integers n ≥ 2.[8]

Solution:
Basis (n = 2)

2−1∑
i=1

i (i+ 1) =
1∑
i=1

i (i+ 1) = 1× 2 = 2 =
6

3
=

2× 1× 3

3
=

2× (2− 1)× (2 + 1)

3
.

Thus,
n−1∑
i=1

i (i+ 1) =
n (n− 1) (n+ 1)

3
when n = 2.

Inductive Step: Let k ≥ 2 be an integer and suppose that

k−1∑
i=1

i (i+ 1) =
k (k − 1) (k + 1)

3
[IH]

We want to prove that
k∑
i=1

i (i+ 1) =
(k + 1) k(k + 2)

3
.

Now,
k∑
i=1

i (i+ 1) =

(
k−1∑
i=1

i (i+ 1)

)
+ k (k + 1)

=
k (k − 1) (k + 1)

3
+ k (k + 1) by [IH]

=
k (k − 1) (k + 1) + 3k (k + 1)

3

=
k(k + 1) (k − 1 + 3)

3

=
k(k + 1) (k + 2)

3

=
(k + 1) k(k + 2)

3
.

Thus, by the Principle of Mathematical Induction,
n−1∑
i=1

i (i+ 1) =
n (n− 1) (n+ 1)

3
for

all integers n ≥ 2.


