MATH 271 – Summer 2016

Practice problems – Week 2

Part I

For each pair of integers a and b, use the Euclidean Algorithm to compute gcd(a, b) and find integers x and y such that gcd(a, b) = ax + by.

- 1. a = 156 and b = 115.
- 2. a = 132 and b = 76.
- 3. a = 2016 and b = 271.

Part II

Use mathematical induction to prove the following statements.

- 1. For all integers $n \ge 1$, $\sum_{i=1}^{n} (i+1)2^i = n2^{n+1}$.
- 2. For all integers $n \ge 1$, $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$.
- 3. For all integers $n \ge 1$, the sum of the first n positive odd integers is equal to n^2 .
- 4. For all integers $n \ge 0$, $3^n + 1$ is even.
- 5. For all integers $n \ge 1$, $5^n 4n 1$ is divisible by 16.
- 6. For all integers $n \ge 4$, $n! > 2^n$.
- 7. For all integers $n \ge 2$, $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$.
- 8. For any real number x > 1 and all positive integers $n, (1 + x)^n \ge 1 + nx$.

Part II

Use strong mathematical induction to prove the following statements.

- 1. The sequence a_1, a_2, a_3, \ldots is defined by letting $a_1 = 3$, $a_2 = 5$ and $a_k = 3a_{k-1} 2a_{k-2}$ for all integers $k \geq 3$. Prove that $a_n = 2^n + 1$ for all integers $n \geq 1$.
- 2. Consider the sequence defined by $t_1 = t_2 = t_3 = 1$ and $t_k = t_{k-1} + t_{k-2} + t_{k-3}$ for all $k \ge 4$. Prove that $t_n < 2^n$ for all $n \in \mathbb{Z}^+$.
- 3. Let a_n be the sequence defined by $a_1 = 1$, $a_2 = 8$, $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Prove that $a_n = 3 \cdot 2^{n-1} + 2(-1)^n$ for all $n \in \mathbb{Z}^+$.
- 4. The sequence s_1, s_2, s_3, \ldots is defined by: $s_1 = 1$, and for all integers $k \ge 2$, $s_k = 2 \cdot s_{\lfloor \frac{k}{2} \rfloor}$. Prove by induction that $s_n \leq n$ for all integers $n \geq 1$.