MATH 271 – Summer 2016 Practice problems – Week 5 University of Calgary Mark Girard

Part I (functions)

- 1. Let $T = \{1, 2, 3\}$, let $f: T \to T$ and $g: T \to T$ be defined by by $f = \{(1, 2), (2, 3), (3, 1)\}$ and $g = \{(1, 2), (2, 1), (3, 3)\}$. Draw the arrow diagrams for f and g. Determine each of the following functions as a collection of ordered pairs.
 - (a) f^{-1}
 - (b) g^{-1}
 - (c) $f \circ g$
 - (d) $g \circ f$

2. Let $A = \{-1, 0, 1\}$ and let $F : A \to A$ be the function defined by $F(n) = \lceil \frac{n}{2} \rceil$ for all $n \in A$.

- (a) Is F one-to-one? Prove your answer.
- (b) Is F onto? Prove your answer.
- (c) Does there exist a function from A to A that is one-to-one but not onto? Prove your answer.
- (d) Does there exist a function from A to A that is onto but not one-to-one? Prove your answer.
- 3. Define the functions $h: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ by h(n) = 3n and $g(n) = \lfloor \frac{n}{2} \rfloor$ for each $n \in \mathbb{Z}$. Prove or disprove each of the following statements.
 - (a) h is one-to-one.
 - (b) g is onto.
 - (c) $h \circ g$ is onto.
 - (d) $h \circ g$ is one-to-one.
 - (e) $g \circ h$ is onto.
 - (f) $g \circ h$ is one-to-one.
- 4. Let A, B, and C be some sets and suppose that $f: A \to B$ and $g: B \to C$ are functions. Prove or disprove each of the following statements.
 - (a) If $g \circ f$ is onto then f is onto.
 - (b) If $g \circ f$ is onto then g is onto.
 - (c) If $g \circ f$ is onto and g is one-to-one then f is onto.
- 5. Find two functions $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ so that $f \circ g = I_{\mathbb{Z}}$ but f and g are not invertible.
- 6. Let $t: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ be the function defined by $t(x, y) = x + y\sqrt{2}$ for all $(x, y) \in \mathbb{Q} \times \mathbb{Q}$. Is t one-to-one? Is t onto? Prove your answers.

7. Let $H: (\mathbb{R} - \{1\}) \to (\mathbb{R} - \{1\})$ be the function defined by $H(x) = \frac{x+1}{x-1}$ for each $x \in \mathbb{R} - \{1\}$.

- (a) Show that H is one-to-one.
- (b) Show that H is onto.
- (c) Find a formula for $H^{-1}(x)$ such that $H^{-1} \circ H = H \circ H^{-1} = I_{\mathbb{R} \{1\}}$.

Part II (relations)

- 1. Let $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. For each of the following relations, draw the directed graph. For each of the relations, determine whether it is reflexive, symmetric, or transitive.
 - (a) Define the relation Q on A by $a Q b \Leftrightarrow a \mid b$.
 - (b) Define the relation R on A by $a R b \Leftrightarrow 3 \mid (a b)$.
 - (c) Define the relation S on A by $a S b \Leftrightarrow 5 \mid (a^2 b^2)$.
 - (d) Define the relation T on A by $a T b \Leftrightarrow 1 \leq |a b| \leq 3$.
 - (e) Define the relation V on A by $a V b \Leftrightarrow \lfloor \frac{a}{3} \rfloor \leq \lfloor \frac{b}{3} \rfloor$.
- 2. Let $A = \{1, 2, 3, 4\}$. For each of the following questions, describe your relations as a subset of $A \times A$ (for example $R = \{(1, 2), (2, 1)\}$) and draw its directed graph.
 - (a) Find a relation R on A that is reflexive, but is neither symmetric nor transitive.
 - (b) Find a relation R on A that is transitive, but is neither reflexive nor symmetric.
 - (c) Find a relation R on A that is symmetric, but is neither reflexive nor transitive.
 - (d) Find a relation R on A that is reflexive and symmetric, but not transitive.
 - (e) Find a relation R on A that is reflexive and transitive, but not symmetric.
 - (f) Find a relation R on A that is symmetric and transitive, but not reflexive.
- 3. Let R be the relation on $\mathbb{Z}^+ \times \mathbb{Z}^+$ defined by

 $\forall (a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ and $\forall (c,d) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, (a,b) R(c,d) if and only if a+b < c+d.

- (a) Is R reflexive? Symmetric? Transitive? Prove your answers.
- (b) Is it true that, for all $(a, b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, there exists $(c, d) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ so that (a, b) R(c, d)? Prove your answer.
- (c) Is it true that, for all $(c,d) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, there exists $(a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ so that (a,b) R(c,d)? Prove your answer.
- (d) Is it true that there exists $(c, d) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ so that for all $(a, b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, (a, b) R(c, d)? Prove your answer.
- (e) How many elements (a, b) in $\mathbb{Z}^+ \times \mathbb{Z}^+$ are there so that (a, b) R (3, 3)?