MATH 271 - Summer 2016

Practice problems – Week 6 University of Calgary Mark Girard

- 1. Let a, b, m be integers such that m > 1. Assume that $a \equiv b \pmod{m}$. Using only the definition of mod and the definition of divisibility, prove that $a^2 \equiv b^2 \pmod{m}$.
- 2. Reduce each of the following modulo n.
 - (a) $7 \cdot 9$ for n = 2, 4, 5, 8, 11.
 - (b) $15 \cdot 23$ for n = 2, 4, 5, 8, 11.
 - (c) $(-12) \cdot 17$ for n = 2, 4, 5, 8, 11.
 - (d) $(-12) \cdot (-7)$ for n = 2, 4, 5, 8, 11.
- 3. Solve each of the following congruences for x.
 - (a) $x + 17 \equiv 31 \pmod{5}$
 - (b) $x + 27 \equiv -10 \pmod{13}$
 - (c) $2x + 5 \equiv 3 \pmod{7}$
 - (d) $2x + 5 \equiv -3 \pmod{11}$
 - (e) $4x + 7 \equiv 1 \pmod{9}$
 - (f) $15x + 12 \equiv -11 \pmod{49}$
 - (g) $-15x + 22 \equiv -9 \pmod{28}$