1. (4 points) Write the negation (in good English) of each of the following statements. Answers of the form "It is not the case that ..." are not acceptable.

- (a) For all integers y, there exists an integer x so that $y = x^3 + x$. **Negation**: There exists an integer y so that for all integers $x, y \neq x^3 + x$.
- (b) For all integers x and y, if $\lfloor \frac{x}{2} \rfloor = \lfloor \frac{y}{2} \rfloor$ then x = y. **Negation**: There exists integers x and y so that $\lfloor \frac{x}{2} \rfloor = \lfloor \frac{y}{2} \rfloor$ but $x \neq y$.
- (c) There exists an integer n so that for all integers $m, 2 \nmid (n-m)$ or $3 \nmid (n-m)$. Negation: For all integers n, there exists an integer m so that $2 \mid (n-m)$ and $3 \mid (n-m)$.
- (d) For all real numbers x and y, if x is rational and y is irrational then x + y and xy are irrational.
 Negation: There exist real numbers x and y so that x is rational and y is irrational but x + y or xy is rational.

2. (4 points) Prove that the statement "There exists an integer n so that for all integers m, n + m and n + 2m are odd" is false by writing out the negation and proving that. Negation: For all integers n, there exists an integer m so that n + m or n + 2m is even.

Proof (of negation). Let n be an arbitrary integer. Let m = -n. Then n+m = n+(-n) = 0, which is even.

3. (7 points)

Let \mathcal{P} be the statement "For all integers a, b, and c, if $a \mid (b+2c)$ then $a \mid b$ and $a \mid c$."

(a) Prove that \mathcal{P} is false.

Proof (that \mathcal{P} is false). Let a = 3, b = 1, and c = 1. Then b + 2c = 3 and $3 \mid 3$ so $a \mid (b + 2c)$. But $3 \nmid 1$ so $a \nmid b$.

(b) Write out the converse of \mathcal{P} . Prove that the converse of \mathcal{P} is true. **Converse** of \mathcal{P} : "For all integers a, b, and c, if $a \mid b$ and $a \mid c$ then $a \mid (b + 2c)$." The converse is true.

Proof (of converse). Let a, b, and c be arbitrary integers. Suppose that $a \mid b$ and $a \mid c$. By definition of divisibility, there exist integers k and m so that b = ka and c = ma. Now

$$b + 2c = ka + 2(ma)$$
$$= (k + 2m)a,$$

where k + 2m is an integer. Therefore $a \mid (b + 2c)$.

(c) Write out the contrapositive of \mathcal{P} . Is the contrapositive of \mathcal{P} true? Explain. **Contrapositive** of \mathcal{P} : "For all integers a, b, and c, if $a \nmid b$ or $a \nmid c$ then $a \nmid (b + 2c)$." The contrapositive of \mathcal{P} is false since it is logically equivalent to the original statement, which is false.