1. (4 points) Use the method of proof by contradiction to prove the following statement: "For all real numbers x, if x^2 is irrational then x is irrational."

Proof. Let x be an arbitrary real number. Assume that x^2 is irrational. We will show that x is irrational by contradiction. Suppose that x is rational. Then there exist integers a and b such that $x = \frac{a}{b}$ and $b \neq 0$. Now

$$x^{2} = \left(\frac{a}{b}\right)^{2}$$
$$= \frac{a^{2}}{b^{2}}$$

where a^2 and b^2 are integers and $b^2 \neq 0$ since $b \neq 0$. Thus x^2 is rational, but x^2 was assumed to be irrational. This is a contradiction, so the assumption that x is rational must be wrong. Therefore x is irrational.

2. (4 points) Use the Euclidean Algorithm to compute gcd(181, 123). Find integers x and y such that gcd(181, 123) = 181x + 123y.

Solution: Note that

$$181 = 1 \cdot 123 + 58$$

$$123 = 2 \cdot 58 + 7$$

$$58 = 8 \cdot 7 + 2$$

$$7 = 3 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0.$$

(*)

This implies that

$$gcd(181, 123) = gcd(123, 58)$$

= gcd(58, 7)
= gcd(7, 2)
= gcd(2, 1)
= gcd(1, 0) = 1.

Substituting in values from (*), we find

$$1 = 7 - 3 \cdot 2$$

= 7 - 3 \cdot (58 - 8 \cdot 7)
= (-3) \cdot 58 + 25 \cdot 7
= (-3) \cdot 58 + 25 \cdot (123 - 2 \cdot 58)
= 25 \cdot 123 - 53 \cdot 58
= 25 \cdot 123 - 53 \cdot (181 - 123)
= (-53) \cdot 181 + 78 \cdot 123.

We can set x = -53 and y = 78 so that gcd(181, 123) = 181x + 123y. Alternatively, using the "table method":

		x	y
R_1	181	1	0
R_2	123	0	1
$R_3 = R_1 - R_2$	58	1	-1
$R_4 = R_2 - 2R_3$	7	-2	3
$R_5 = R_3 - 8R_4$	2	17	-25
$R_6 = R_4 - 3R_5$	1	-53	78

3. (7 points) Use mathematical induction to prove that $5^n - 4n - 1$ is divisible by 16 for all integers $n \ge 1$. *Proof.* We prove this by induction.

Base case (n = 1): $5^1 - 4 \cdot 1 - 1 = 5 - 4 - 1 = 0$ and 0 is divisible by 16. So 16 divides $5^1 - 4 \cdot 1 - 1$. Inductive step: Let $k \ge 1$ be an integer. Assume that $5^k - 4k - 1$ is divisible by 16 (IH). Then there is an integer m such that

$$5^k - 4k - 1 = 16m \tag{(*)}$$

by IH. (We want to show that $5^{k+1} - 4(k+1) - 1$ is divisible by 16.) Now

$$5^{k+1} - 4(k+1) - 1 = 5 \cdot 5^k - 4(k+1) - 1$$

= $5 \cdot (5^k - 4k - 1 + 4k + 1) - 4(k+1) - 1$
= $5 \cdot 16m - 20k + 5 - 4k - 4 - 1$ because $5^k - 4k - 1 = 16m$ from (*)
= $16 \cdot 5m - 16k$
= $16(5m - k)$.

Therefore $5^{k+1} - 4(k+1) - 1$ is divisible y 16 since 5m - k is an integer.

By induction, $5^n - 4n - 1$ is divisible by 16 for all integers $n \ge 1$