MATH 271 – Summer 2016 Quiz 4 – solutions

For each of the following questions, give a brief explanation on how you get the answer. You do not have to simplify your answer to a number.

- 1. (4 points) Consider all four-digit positive integers who digits are chosen from $\{1, 2, 3, 4, 5, 6\}$.
- (a) How many of those numbers have at least one digit that is a 6?

Solution. The answer is $6^4 - 5^4$. The reasoning is as follows.

The total number of four-digit integers with digits chosen from $\{1, 2, 3, 4, 5, 6\}$ is 6^4 . All of the digits of these four integers can be any of the elements of $\{1, 2, 3, 4, 5, 6\}$. The recipe is as follows:

- 1. Choose the first digit. (6 choices)
- 2. Choose the second digit. (6 choices)
- 3. Choose the third digit. (6 choices)
- 4. Choose the fourth digit. (6 choices)

So the total number of four-digit integers with digits chosen from 1 to 6 is $6 \cdot 6 \cdot 6 \cdot 6 = 6^4$.

The total number of four-digit integers that have **no** 6's is 5^4 , since there are only 5 choices for each digit. Since we need to count the number of integers that have at least one 6, of which there are $6^4 - 5^4$.

(b) How many of those numbers have at least one digit that is a 6 and at least one digit that is a 5?

Solution. The answer is $6^4 - 5^4 - 5^4 + 4^4$. The reasoning is as follows.

Let A be the set of four-digit integers with digits chosen from $\{1, 2, 3, 4, 5, 6\}$. Let B be the subset of A containing those integers that have no 6's and C be the subset of A containing integers that have no 5's. Then we are interested in counting the number of elements in $A - (B \cup C)$, since these are the integers with at least one 6 and one 5. Then

$$|A - (B \cup C)| = |A| - |B \cup C|$$

= |A| - (|B| + |C| - |B \cap C|)
= |A| - |B| - |C| + |B \cap C|,

where $|A| = 6^4$ and $|B| = |C| = 5^4$. Finally, the number of integers that have **no** 5's **and no** 6's is $|B \cap C| = 4^4$.

- 2. (4 points) Consider the letters of the word CANADIAN.
- (a) How many ways can the letters be arranged?

Solution. There are $\binom{8}{3}\binom{5}{2}\binom{3}{1}\binom{2}{1}\binom{1}{1}\binom{1}{1}$ ways. The reasoning is as follows. There are 8 total letters, so there are 8 total spots to fill.

- 1. First choose three of the 8 spots to put the A's. There are $\binom{8}{3}$ ways.
- 2. Choose two of the remaining 5 spots to put the N's. There are $\binom{5}{2}$ ways.
- 3. Choose one of the remaining 3 spots to put the C. There are $\binom{3}{1}$ ways.
- 4. Choose one of the remaining 2 spots to put the D. There are $\binom{2}{1}$ ways.
- 5. Choose the one remaining spot to put the *I*. There are $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ways.

(b) How many of those arrangements do **not** have the two N's next to each other?

Solution. There are $\binom{8}{3}\binom{5}{2}\binom{3}{1}\binom{2}{1}\binom{1}{1} - \binom{7}{1}\binom{6}{3}\binom{3}{1}\binom{2}{1}\binom{1}{1} - \binom{7}{1}\binom{6}{3}\binom{3}{1}\binom{2}{1}\binom{1}{1}$ ways. The reasoning is as follows. We first count the number of ways that the letters can be arranged so that the two N's **are** next to each other. We can think of 'NN' as one letter, so there are now 7 spots for 7 'letters'.

- 1. First choose one of the 7 spots to put NN. There are $\binom{7}{1}$ ways.
- 2. Choose three of the remaining 6 spots to put the A's. There are $\binom{6}{3}$ ways.
- 3. Choose one of the remaining 3 spots to put the C. There are $\binom{3}{1}$ ways.
- 4. Choose one of the remaining 2 spots to put the D. There are $\binom{2}{1}$ ways.
- 5. Choose the one remaining spot to put the *I*. There are $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ ways.

Solution (Alternate). There are $\binom{6}{3}\binom{3}{1}\binom{2}{1}\binom{1}{1}\binom{7}{2}$ ways. The reasoning is as follows.

First make all of the combinations of the six letters AAACDI. There are 6 spots for 6 letters.

- 1. First choose 3 of the 6 spots to put the A's. There are $\binom{6}{3}$ ways.
- 2. Choose one of the remaining 3 spots to put the C. There are $\binom{3}{1}$ ways.
- 3. Choose one of the remaining 2 spots to put the D. There are $\binom{2}{1}$ ways.
- 4. There are now 7 'spots' (either in-between letters or at the beginning or end) to put the two N's.

 $\uparrow _ \uparrow _ \uparrow _ \uparrow _ \uparrow _ \uparrow _ \uparrow _ \uparrow$

They must go in two different spots, and there are 7 to choose from. There are $\binom{7}{2}$ ways.

3. (7 points) Let $f: \mathbb{Z} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ be functions defined by $f(x) = \left\lceil \frac{x+1}{3} \right\rceil$ and g(x) = 2x for each $x \in \mathbb{Z}$.

(a) Is g one-to-one? Prove your answer.

Solution. g is one-to-one.

Proof (that g is one-to-one). Let x_1 and x_2 be arbitrary integers. Assume that $g(x_1) = g(x_2)$. Then $2x_1 = 2x_2$, and dividing both sides by 2 give us $x_1 = x_2$. Hence g is one-to-one.

(b) Is f onto? Prove your answer.

Solution. f is onto.

Proof (that f is onto). Let y be an arbitrary integer. (We will show that there exists an $x \in \mathbb{Z}$ so that f(x) = y.) Pick x = 3y - 1. Then x is an integer and

$$f(x) = f(3y-1) = \left\lceil \frac{3y-1+1}{3} \right\rceil = \left\lceil \frac{3y}{3} \right\rceil = \lceil y \rceil = y$$

since y is an integer. Therefore f is onto.

(c) Is $f \circ g$ one-to-one? Prove your answer.

Solution. $f \circ g$ is not one-to-one.

Proof (that $f \circ g$ is not one-to-one). Let $x_1 = 0$ and $x_2 = 1$. Then

$$(f \circ g)(x_1) = f(g(0)) = f(2 \cdot 0) = \left\lceil \frac{2 \cdot 0 + 1}{3} \right\rceil = \left\lceil \frac{1}{3} \right\rceil = 1$$

and

$$(f \circ g)(x_2) = f(g(1)) = f(2 \cdot 1) = \left\lceil \frac{2 \cdot 1 + 1}{3} \right\rceil = \left\lceil \frac{3}{3} \right\rceil = 1,$$

so $(f \circ g)(x_1) = (f \circ g)(x_2)$ but $x_1 \neq x_2$. Therefore $f \circ g$ is not one-to-one.

(d) Is $g \circ f$ onto? Prove your answer.

Solution. $g \circ f$ is not onto.

Proof (that $g \circ f$ is not onto). Pick y = 1. (We will show that, for all $x \in \mathbb{Z}$, $(g \circ f)(x) \neq y$.) Suppose that there exists an $x \in \mathbb{Z}$ so that $(g \circ f)(x) = y$. This means that

$$1 = y = (g \circ f)(x)$$
$$= 2\left\lceil \frac{x+1}{3} \right\rceil.$$

Hence $\frac{1}{2} = \left\lceil \frac{x+1}{3} \right\rceil$. But $\left\lceil \frac{x+1}{3} \right\rceil$ must be an integer, by the definition of ceiling, and $\frac{1}{2}$ is not an integer. This is a contradiction, so the assumption that there exists an $x \in \mathbb{Z}$ so that $(g \circ f)(x) = y$ is wrong. Hence $g \circ f$ is not onto.