
MATH 271 – Summer 2016
Practice problem solutions – Week 1

Part I

For each of the following statements, determine whether the statement is true or false. Prove the true
statements. For the false statement, write out its negation and prove that. For the conditional statements,
write out the converse and the contrapositive. Determine whether they are true or false and give reasoning.

1. ∀n ∈ Z, n2 + 2n is even.
This statement is False.
Negation: ∃n ∈ Z such that n2 + 2n is odd.

Proof (of the negation). Let n = 1. Then n2 + 2n = 12 + 2 · 1 = 3, which is odd.

2. ∃n ∈ Z such that n3 + n is odd.
This statement is False.
Negation: ∀n ∈ Z, n3 + n is even.

Proof (of the negation). Let n ∈ Z be arbitrary. There are two cases: either n is even or n is odd. For
both cases, we need to show that n3 + n is even.

• Suppose n is even. Then there is an integer k such that n = 2k. Then

n3 + n = n(n2 + 1)

= 2k(n2 + 1)

where k(n2 + 1) is an integer, therefore n3 + n is even.

• Suppose n is odd. Then there is an integer k such that n = 2k + 1. Then

n3 + n = n(n2 + 1)

= n((2k + 1)2 + 1)

= n((4k2 + 2k + 1) + 1)

= 2n(2k2 + k + 1)

where n(2k2 + k + 1) is an integer, therefore n3 + n is even.

In both cases n2 + n is even.

3. ∀x ∈ R, x2 − x ≥ 0.
This statement is False.
Negation: ∃x ∈ R such that x2 − x ≥ 0.

Proof (of the negation). Let x = 1
2 . Then x2 − x =

(
1
2

)2
+ 1

2 = 1
4 −

1
2 = − 1

4 6≥ 0.

4. ∀n ∈ Z, n2 − n ≥ 0.
This statement is true.
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Proof. Let n ∈ Z. Since x is an integer, it must be that x2 − x is also an integer. Then

x2 − x = x2 − x +
1

4
− 1

4

= x2 − 2 · 1

2
x +

(
1

2

)2

− 1

4

=

(
x− 1

2

)2

− 1

4

≥ −1

4
(∗)

where (∗) is true, because the square of any number is greater than 0. Thus x2 − x is an integer that
is larger than or equal to − 1

4 . But any integer that is larger than or equal to − 1
4 must be greater than

or equal to 0.

5. ∀x, y ∈ Z, if x2 + 2x = y2 + 2y then x = y.
This statement is false.
Negation: ∃x, y ∈ Z so that x2 + 2x = y2 + 2y but x 6= y.

Proof (of the negation). Let x = 0 and y = −2. Then x2 + 2x = 0 and

y2 + 2y = (−2)2 + 2(−2) = 4− 4 = 0.

So x2 + x = y2 + y but x 6= y.

Contrapositive: ∀x, y ∈ Z, if x 6= y then x2 + 2x 6= y2 + 2y.
The contrapositive is false, because it is logically equivalent to the original statement, which is false.

Converse: ∀x, y ∈ Z, if x = y then x2 + 2x = y2 + 2y. The converse is true.

Proof (of the converse). Let x and y be integers. Suppose x = y. Then x2 + 2x = y2 + 2y trivially by
substitution.

6. ∀x, y ∈ Z, if 2x2 + x = 2y2 + y then x = y.
This statement is true.

Proof. Let x and y be integers. Suppose that 2x2 + x = 2y2 + y. By rearranging, it follows that

0 = 2(x2 − y2) + x− y

= (x− y)(2(x + y) + 1).

We note that 2(x+y)+1 is an odd integer. Therefore 2(x+y)+1 6= 0. By the Zero Product Property,
it follows that x− y = 0. Thus x = y.

Contrapositive: ∀x, y ∈ Z, if x 6= y then 2x2 + x 6= 2y2 + y.
The contrapositive is true, because it is logically equivalent to the original statement, which is true.

Converse: ∀x, y ∈ Z, if x = y then 2x2 + x = 2y2 + y. The converse is true.

Proof (of the converse). Let x and y be integers. Suppose x = y. Then 2x2 + x = 2y2 + y trivially by
substitution.
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7. ∀a, b, c ∈ Z, if a|(b + c) and a|(b− c) then a|b and a|c.
This statement is false.
Negation: ∃a, b, c ∈ Z so thata|(b + c) and a|(b− c) but a - b and a - c.

Proof (of the negation). Let a = 2, b = 3, and c = 1. Then b + c = 4 = 2 · 2, which is divisible by 2,
and b − c = 2 = 2 · 1, which is divisible by 2. But 2 - 3 and 2 - 1. So a|(b + c) and a|(b − c) but a - b
and a - c.

Contrapositive:∀a, b, c ∈ Z, if a - b and a - c then a - (b + c) or a - (b− c).
The contrapositive is false, because it is logically equivalent to the original statement, which is false.

Converse: ∀a, b, c ∈ Z, if a|b and a|c then a|(b + c) and a|(b− c). The converse is true.

Proof (of the converse). Let a, b, and c be integers. Suppose a|b and a|c. Then there are integers k
and m such that b = ak and c = am. Now

b + c = ak + am

= a(k + m),

so b + c is divisible by a since k + m is an integer, and

b− c = ak − am

= a(k −m)

so b− c is divisible by a since k −m is an integer.

8. ∀n ∈ Z, ∃m ∈ Z such that n + m is even.
This statement is true.

Proof. Let n be an arbitrary integer. Let m = n. Then n + m = 2n, which is even.

9. ∃m ∈ Z such that ∀n ∈ Z, n + m is even.
This statement is false.
Negation: ∀m ∈ Z,∃n ∈ Z such that n + m is odd.

Proof. Let m be an arbitrary integer. Let n = m + 1. Then n + m = 2m + 1, which is odd.

10. ∀r ∈ Q, ∃m ∈ Z such that rm ∈ Z.
This statement is true.

Proof. Let r ∈ Q. Let m = 0. Then rm = 0, which is an integer.

11. ∃m ∈ Z such that ∀r ∈ Q, rm ∈ Z.
This statement is true.

Proof. Let m be an arbitrary integer. Let r = 0, which is rational. Then rm = 0, which is an
integer.

12. For all positive integers n, there exists a positive integer m so that 3|(n + m).
This statement is true.

Proof. Let n be an integer. Let m = 2n, which is an integer. Then n + m = 3m, which is divisible
by 3.
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13. There exists a positive integer m so that for all positive integers n, 3|(n + m).
This statement is false.
Negation: For all positive integers m, there exists a positive integer n so that 3 - (n + m).

Proof (of the negation). Let m be a positive integer. Let n = 2m + 1. Then n + m = 3m + 1.
The remainder from dividing 3m + 1 by 3 is 1, since m is an integer. Hence 3 - (3m + 1) and thus
3 - (n + m).

Part II

For each of the following statements, prove or disprove the statement. Note that you can use the fact that√
2 is irrational. For all other irrational numbers, you must prove that they are in fact irrational.

1. ∀x, y ∈ R, bx + yc = bxc+ byc This statement is false.
Negation: ∃x, y ∈ R so that bx + yc 6= bxc+ byc.

Proof (of the negation). Let x = 1
2 and y = 1

2 . Then bx+yc = b 12 + 1
2c = 1 but bxc+byc = b 12c+b

1
2c =

0. Thus bx + yc 6= bxc+ byc since 0 6= 1.

2. ∃ a positive real number a so that ∀ real numbers x, if x− bxc < a then b3xc = 3bxc.
This statement is true.

Proof. Let a = 1
3 . Let x be an arbitrary real number. Suppose that x−bxc < a = 1

3 . Let n = bxc. By
definition of the floor, n ≤ x < n + 1. By supposition,

x− n <
1

3
, (∗)

since n = bxc. Thus x < n + 1
3 , by adding n to both sides of the inequality in (∗). Hence

n ≤ x < n +
1

3

by combining the inequalities. Multiplying every part of the last inequality by 3, we have

3n ≤ 3x < 3n + 1,

where 3n is an integer, since n is an integer. By definition of floor, b3xc = 3n. Therefore b3xc = 3bxc,
which is what we needed to prove.

3. 2−
√

2 is irrational.

Proof. Suppose, for the sake of contradiction, that 2−
√

2 is rational. Then there exist integers a and
b such that 2−

√
2 = a

b and b 6= 0. Then

√
2 = −a

b
+ 2

=
2b− a

b

where 2b− a is an integer and b is a nonzero integer. This is a contradiction to the irrationality of
√

2.
Therefore 2−

√
2 is irrational.

4. 3
√

2 is irrational.
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Proof. Suppose, for the sake of contradiction, that 3
√

2 is rational. Then there exist integers a and b
such that 3

√
2 = a

b and b 6= 0. Then

√
2 =

1

3

a

b

=
a

3b

where a is an integer and 3b is a nonzero integer. This is a contradiction to the irrationality of
√

2.
Therefore 3

√
2 is irrational.

5. ∀x, y ∈ R, if x and y are irrational then x + y is irrational. This statement is false.
Negation: ∃x, y ∈ R so that x and y are irrational but x + y is rational.

Proof. Let x =
√

2 and y = 2−
√

2. Then x is irrational and y is irrational (which we know from the
problem above). But x + y = 2, which is rational.

6. ∀x, y ∈ R, if x and y are irrational then xy is irrational. This statement is false.
Negation: ∃x, y ∈ R so that x and y are irrational but xy is rational.

Proof. Let x =
√

2 and y = 3
√

2. Then x is irrational and y is irrational (which we know from the
previous problem). But xy = 6, which is rational.

7. ∀x ∈ R, ∃y ∈ R so that x + y is rational.

Proof. Let x ∈ R be arbitrary. Let y = −x. Then x + y = x− x = 0, which is rational.

8. ∀x ∈ R, ∃y ∈ R so that x + y is irrational.

Proof. Let x ∈ R be arbitrary. Let y =
√

2− x. Then x + y =
√

2, which is irrational.

9. ∀x ∈ R, ∃y ∈ R so that xy is irrational. This is false.
Negation: ∃x ∈ R so that ∀y ∈ R, xy is rational.

Proof. Let x = 0. Let y be an arbitrary real number. Then xy = 0, which is rational.

10. ∀x ∈ R such that x 6= 0, ∃y ∈ R so that xy is irrational.

Proof. Let x be a nonzero real number. Let y = 1
x

√
2. Then xy =

√
2 is irrational.
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