
MATH 271 – Summer 2016
Practice problems solutions– Week 2

Part I

For each pair of integers a and b, use the Euclidean Algorithm to compute gcd(a, b) and find integers x and
y such that gcd(a, b) = ax + by.

1. a = 156 and b = 115. We have

156 = 1 · 115 + 41

115 = 2 · 41 + 33

41 = 1 · 33 + 8

33 = 4 · 8 + 1

8 = 8 · 1 + 0

This means that

gcd(156, 115) = gcd(115, 41)

= gcd(41, 33)

= gcd(33, 8)

= gcd(8, 1)

= gcd(1, 0) = 1,

so gcd(156, 115) = 1. To find integers x and y so that 1 = 156x + 115y, note that

1 = 33− 4 · 8
= 33− 4 · (41− 33) (since 8 = 41− 1 · 33)

= (−4) · 41 + 5 · 33

= (−4) · 41 + 5 · (115− 2 · 41) (since 33 = 115− 2 · 41)

= 5 · 115− 14 · 41

= 5 · 115− 14 · (156− 1 · 115) (since 41 = 156− 1 · 115)

= (−14) · 156 + 19 · 115.

We can set x = −14 and y = 19 so that gcd(156, 115) = 156x + 115y.

Alternately, using the “table method”:

x y
R1 156 1 0
R2 115 0 1
R3 = R1 −R2 41 1 -1
R4 = R2 − 2R3 33 -2 3
R5 = R3 −R4 8 3 -4
R6 = R4 − 4R5 1 -14 19

2. a = 132 and b = 76. We have

132 = 1 · 76 + 56

76 = 1 · 56 + 20

56 = 2 · 20 + 16

20 = 1 · 16 + 4

16 = 4 · 4 + 0,
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so gcd(132, 76) = 4. Using the “table method”:

x y
R1 132 1 0
R2 76 0 1
R3 = R1 −R2 56 1 -1
R4 = R2 −R3 20 -1 2
R5 = R3 − 2R4 16 3 -5
R6 = R4 −R5 4 -4 7

We can set x = −4 and y = 7 so that gcd(132, 76) = 132x + 76y.

3. a = 2016 and b = 271. We have

2016 = 7 · 271 + 119

271 = 2 · 119 + 33

119 = 3 · 33 + 20

33 = 1 · 20 + 13

20 = 1 · 13 + 7

13 = 1 · 7 + 6

7 = 1 · 6 + 1

6 = 6 · 1 + 0,

so gcd(2016, 271) = 1. Using the “table method”:

x y
R1 2016 1 0
R2 271 0 1
R3 = R1 − 7R2 119 1 -7
R4 = R2 − 2R3 33 -2 15
R5 = R3 − 3R4 20 7 -52
R6 = R4 −R5 13 -9 67
R7 = R5 −R6 7 16 -119
R8 = R6 −R7 6 -25 186
R9 = R7 −R8 1 41 -305

We can set x = 41 and y = −305 so that gcd(20116, 271) = 2016x + 271y.
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Part II

Use mathematical induction to prove the following statements.

1. For all integers n ≥ 1,
n∑

i=1

(i + 1)2i = n2n+1.

Proof. We will prove this by induction on n.

Base case (n = 1):
1∑

i=1

(i + 1)2i = (1 + 1)21 = 2 · 2 = 22 = 1 · 21+1,

so the statement is true when n = 1.

Induction step: Let k ≥ 1 be an integer. Suppose that

k∑
i=1

(i + 1)2i = k2k+1. (IH)

(We want to show that
k+1∑
i=1

(i + 1)2i = (k + 1)2k+2.) Now

k+1∑
i=1

(i + 1)2i =

k∑
i=1

(i + 1)2i + (k + 1 + 1)2k+1

= k2k+1 + (k + 1 + 1)2k+1 by IH

= (2k + 2)2k+1

= (k + 1)2 · 2k+1

= (k + 1)2k+2,

so the statement is true for n = k + 1.

By the principle of induction,
n∑

i=1

(i + 1)2i = n2n+1 holds for all integers n ≥ 1.

2. For all integers n ≥ 1,
n∑

i=1

1
i(i+1) = n

n+1 .

Proof. We will prove this by induction on n.

Base case (n = 1): We see that

1∑
i=1

1

i(i + 1)
=

1

1(1 + 1)
=

1

2
=

1

1 + 1
,

so the statement is true when n = 1.

Induction step: Let k ≥ 1 be an integer. Suppose that

k∑
i=1

1

i(i + 1)
=

k

k + 1
. (IH)
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(We want to show that
k+1∑
i=1

1
i(i+1) = k+1

k+2 .) Now

k+1∑
i=1

1

i(i + 1)
=

k∑
i=1

1

i(i + 1)
+

1

(k + 1)(k + 2)

=
k

k + 1
+

1

(k + 1)(k + 2)
by IH

=
1

(k + 2)(k + 1)
(k(k + 2) + 1)

=
k2 + 2k + 1

(k + 2)(k + 1)

=
(k + 1)2

(k + 2)(k + 1)

=
k + 1

k + 2
,

so the statement is true for n = k + 1.

By the principle of induction,
n∑

i=1

1
i(i+1) = n

n+1 holds for all integers n ≥ 1.

3. For all integers n ≥ 1, the sum of the first n positive odd integers is equal to n2.
Solution. We first need to write the desired sum using summation notation. The sum of the odd
integers can be written as

1 + 3 + 5 + 7 + · · · (nth odd) =
(
2− 1

)
+
(
4− 1

)
+
(
6− 1

)
+ · · ·+ (2n− 1)

=
(
2 · 1− 1

)
+
(
2 · 2− 1

)
+
(
3 · 2− 1

)
+ · · ·+ (2n− 1)

=

n∑
i=1

(2i− 1).

What we need to prove is: For all integers n ≥ 1,
n∑

i=1

(2i− 1) = n2.

Proof. We will prove this by induction on n.

Base case (n = 1):
1∑

i=1

(2i− 1) = 2 · 1− 1 = 1 = 12.

Induction step: Let k ≥ 1 be an integer. Suppose that

k∑
i=1

(2i− 1) = k2. (IH)

(We want to show that
k+1∑
i=1

(2i− 1) = (k + 1)2.) Now

k+1∑
i=1

(2i− 1) =

k∑
i=1

(2i− 1) + (2(k + 1)− 1)

= k2 + 2k + 1 by IH

= (k + 1)2.
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By the principle of induction,
n∑

i=1

(2i− 1) = n2 holds for all integers n ≥ 1.

4. For all integers n ≥ 0, 3n + 1 is even.

Proof. We will prove this by induction on n.

Base case (n = 0): We have
30 + 1 = 1 + 1 = 2

which is even.

Induction step: Let k ≥ 0 be an integer. Suppose that

3k + 1 is even. (IH)

(We want to show that 3k+1 + 1 is even.) By IH, there exists an integer m so that 3k + 1 = 2m.
Thus 3k = 2m− 1. Now

3k+1 + 1 = 3 · 3k + 1

= 3 · (2m− 1) + 1 by IH

= 6m− 3 + 1

= 2(3m− 1),

where 3m− 1 is an integer. Therefore 3k+1 + 1 is even.

By the principle of induction, n ≥ 0, 3n + 1 is even for all integers n ≥ 0.

5. For all integers n ≥ 1, 5n − 4n− 1 is divisible by 16.

Proof. We will prove this by induction on n.

Base case (n = 1): We have
51 − 4 · 1− 1 = 5− 4− 1 = 0

which is divisible by 16.

Induction step: Let k ≥ 1 be an integer. Suppose that

5k − 4k − 1 is divisible by 16. (IH)

(We want to show that 5k+1 − 4(k + 1) − 1 is divisible by 16.) By IH, there exists an integer m
so that 5k − 4k − 1 = 16m. Thus 5k = 16m + 4k + 1. Now

5k+1 − 4(k + 1)− 1 = 5 · 5k − 4(k + 1)− 1

= 5(16m + 4k + 1)− 4k − 4− 1 by IH

= 16 · 5m + 20k + 5− 4k − 5

= 16 · 5m + 16k

= 16(5m + k),

where 5m + k is an integer. Therefore 5k+1 − 4(k + 1)− 1 is divisible by 16.

By the principle of induction, 5n − 4n− 1 is divisible by 16 for all integers n ≥ 1.

6. For all integers n ≥ 4, n! > 2n.
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Proof. We will prove this by induction on n.

Base case (n = 4): We have 4! = 1 · 2 · 3 · 4 = 24 and 24 = 16. Then 4! > 24 since 24 > 16.

Induction step: Let k ≥ 4 be an integer. Suppose that

k! > 2k. (IH)

(We want to show that (k + 1)! > 2k+1.) Now

(k + 1)! = k!(k + 1)

> 2k(k + 1) by IH

> 2k · (2) because k + 1 > 2

= 2k+1.

By the principle of induction, n! > 2n for all integers n ≥ 4.

7. For all integers n ≥ 2,
√
n < 1√

1
+ 1√

2
+ · · ·+ 1√

n
.

Proof. We will prove this by induction on n.

Base case (n = 2): Note that 1 <
√

2. Now

√
2 =

2√
2

=
1√
2

(1 + 1)

<
1√
2

(√
2 + 1

)
= 1 +

1√
2

=
1√
1

+
1√
2
,

so 1√
2
< 1√

1
+ 1√

2
.

Induction step: Let k ≥ 4 be an integer. Suppose that

√
k <

1√
1

+
1√
2

+ · · ·+ 1√
k
. (IH)

(We want to show that
√
k + 1 < 1√

1
+ 1√

2
+ · · ·+ 1√

k
+ 1√

k+1
.)

Note that k2 < k(k + 1). Hence k <
√
k(k + 1) and thus k + 1 <

√
k(k + 1) + 1. Therefore

√
k + 1 <

√
k(k + 1) + 1√

k + 1
. (∗)

Now

√
k + 1 <

√
k(k + 1) + 1√

k + 1
by (∗)

=

√
k(k + 1)√
k + 1

+
1√
k + 1

=
√
k +

1√
k + 1

<
1√
1

+
1√
2

+ · · ·+ 1√
k

+
1√
k + 1

, by IH

which is what we wanted to show.
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By the principle of induction,
√
n < 1√

1
+ 1√

2
+ · · ·+ 1√

n
for all integers n ≥ 2.

8. For any real number x > −1 and all positive integers n, (1 + x)n ≥ 1 + nx.

Proof. Let x > −1 be an arbitrary real number. We will prove that (1 + x)n ≥ 1 + nx for all integers
n ≥ 1 by induction on n.

Base case (n = 1):
(1 + x)1 = 1 + x = 1 + 1 · x ≥ 1 + 1 · x.

Induction step: Let k ≥ 1 be an integer. Suppose that

(1 + x)k ≥ 1 + kx. (IH)

(We want to show that (1 + x)k+1 ≥ 1 + (k + 1)x.) Now

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x) by IH and because (1 + x) > 0

= 1 + x + kx + kx2

= 1 + (k + 1)x + kx2

≥ 1 + (k + 1)x, because kx2 ≥ 0,

which is what we wanted to show.

By the principle of induction, (1 + x)n ≥ 1 + nx for all integers n ≥ 1.

Part II

Use strong mathematical induction to prove the following statements.

1. The sequence a1, a2, a3, . . . is defined by letting a1 = 3, a2 = 5 and ak = 3ak−1− 2ak−2 for all integers
k ≥ 3. Prove that an = 2n + 1 for all integers n ≥ 1.

Proof. We will prove the statement by strong induction on n.

Base cases

(n = 1): 21 + 1 = 2 + 1 = 3 and a1 = 3.

(n = 2): 22 + 1 = 4 + 1 = 5 and a2 = 5.

Induction step: Let k ≥ 2 be an integer. Suppose that

ai = 2i + 1 for each integer i, 1 ≤ i ≤ k. (IH)

(We want to show that ak+1 = 2k+1 + 1.) Now

ak+1 = 3ak − 2ak−1

= 3(2k + 1)− 2(2k−1 + 1) by IH

= 3 · 2 · 2k−1 + 3− 2 · 2k−1 − 2

= (6− 4)2k−1 + 1

= 22 · 2k−1 + 1

= 2k+1 + 1.
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By the principle of induction, an = 2n + 1 for all integers n ≥ 1.

2. Consider the sequence defined by t1 = t2 = t3 = 1 and tk = tk−1 + tk−2 + tk−3 for all k ≥ 4. Prove
that tn < 2n for all n ∈ Z+.

Proof. We will prove the statement by strong induction on n.

Base cases

(n = 1): Note that a1 = 1, and 21 = 2, and 1 < 2. Hence a1 < 21.

(n = 2): Note that a2 = 1, and 22 = 4, and 1 < 4. Hence a2 < 22.

(n = 3): Note that a3 = 1, and 23 = 8, and 1 < 8. Hence a3 < 23.

Induction step: Let k ≥ 3 be an integer. Suppose that

ai < 2i for each integer i, 1 ≤ i ≤ k. (IH)

(We want to show that ak+1 < 2k+1.) Now

ak+1 = ak + ak−1 + ak−2

< 2k + 2k−1 + 2k−2 by IH

= 2k+1

(
1

2
+

1

22
+

1

23

)
= 2k+1

(
1

2
+

1

4
+

1

8

)
= 2k+1

(
4 + 2 + 1

8

)
= 2k+1 · 7

8

< 2k+1 because 7
8 < 1.

By the principle of induction, an < 2n for all integers n ≥ 1.

3. Let an be the sequence defined by a1 = 1, a2 = 8, an = an−1 + 2an−2 for n ≥ 3. Prove that
an = 3 · 2n−1 + 2(−1)n for all n ∈ Z+.

Proof. We will prove the statement by strong induction on n.

Base cases

(n = 1): Note that 3 · 21−1 + 2(−1)1 = 3 · 1− 2 = 1 and a1 = 1. Thus a1 = 3 · 21−1 + 2(−1)1.

(n = 2): Note that 3 · 22−1 + 2(−1)2 = 3 · 2 + 2 = 8 and a2 = 8. Thus a2 = 3 · 22−1 + 2(−1)2.

Induction step: Let k ≥ 2 be an integer. Suppose that

ai = 3 · 2i−1 + 2(−1)i for each integer i, 1 ≤ i ≤ k. (IH)

(We want to show that ak+1 = 3 · 2k + 2(−1)k+1.) Now

ak+1 = ak + 2ak−1

=
(
3 · 2k−1 + 2(−1)k

)
+ 2

(
3 · 2(k−1)−1 + 2(−1)k−1

)
by IH

= 3 · 2k−1 + 2(−1)k + 3 · 2 · 2k−2 + 4(−1)k−1

= 6 · 2k−1 − 2(−1)k+1 + 4(−1)k+1

= 3 · 2k + 2(−1)k+1.
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By the principle of induction, an = 3 · 2n−1 + 2(−1)n for all integers n ≥ 1.

4. The sequence s1, s2, s3, . . . is defined by: s1 = 1, and for all integers k ≥ 2, sk = 2 · sb k2 c. Prove by

induction that sn ≤ n for all integers n ≥ 1.

Proof. We will prove the statement by strong induction on n.

Base case (Note that only one base case is needed!):

(n = 1): We see that s1 = 1 and 1 ≤ 1. Thus s1 ≤ 1.

Induction step: Let k ≥ 1 be an integer. Suppose that

si ≤ i for each integer i, 1 ≤ i ≤ k. (IH)

(We want to show that sk+1 ≤ k + 1.) Now 1 ≤
⌊
k+1
2

⌋
≤ k, since k ≥ 1. Thus sb k+1

2 c
≤
⌊
k+1
2

⌋
(by IH) and

sk+1 = 2 · sb k+1
2 c

≤ 2

⌊
k + 1

2

⌋
by IH

≤ 2 · k + 1

2
by definition of floor

= k + 1,

so sk+1 ≤ k + 1.

By the principle of induction, sn ≤ n for all integers n ≥ 1.
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