
MATH 271 – Summer 2016
Solutions to practice problems – Week 5

University of Calgary
Mark Girard

Part I (functions)

1. Let T = {1, 2, 3}, let f : T → T and g : T → T be defined by by f = {(1, 2), (2, 3), (3, 1)} and
g = {(1, 2), (2, 1), (3, 3)}. Draw the arrow diagrams for f and g. Determine each of the following
functions as a collection of ordered pairs.

(a) f−1

(b) g−1

(c) f ◦ g
(d) g ◦ f

Solution. From the definitions of f and g, we have that

f(1) = 2, f(2) = 3, f(3) = 1 and g(1) = 2, g(2) = 1, g(3) = 3.

Note that both f and g are onto and one-to-one. The arrow diagrams for f and g are
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Since f and g are one-to-one and onto, we can find their inverse functios. They are define by

f−1(1) = 3, f−1(2) = 1, f−1(3) = 2 and g−1(1) = 2, g−1(2) = 1, g(3)−1 = 3.

Also, we can determine f ◦ g as

(f ◦ g)(1) = f(g(1)) = f(2) = 3, (f ◦ g)(2) = f(g(2)) = f(1) = 2, (f ◦ g)(3) = f(g(3)) = f(3) = 1

and g ◦ f as

(g ◦ f)(1) = g(f(1)) = g(2) = 1, (g ◦ f)(2) = g(f(2)) = g(3) = 3, (g ◦ f)(3) = g(f(3)) = g(1) = 2.

The functions as sets are

f−1 = {(1, 3), (2, 1), (3, 2)},
g−1 = {(1, 2), (2, 1), (3, 2)},
f ◦ g = {(1, 3), (2, 2), (3, 1)},

and g ◦ f = {(1, 1), (2, 3), (3, 2)}.
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The arrow diagrams for these functions are
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2. Let A = {−1, 0, 1} and let F : A→ A be the function defined by F (n) =
⌈
n
2

⌉
for all n ∈ A.

(a) Is F one-to-one? Prove your answer.

(b) Is F onto? Prove your answer.

(c) Does there exist a function from A to A that is one-to-one but not onto? Prove your answer.

(d) Does there exist a function from A to A that is onto but not one-to-one? Prove your answer.

Solution. Note that F (−1) = d−12 e = 0, F (0) = d0e = 0, and F (1) = d 12e = 1. The arrow
diagram for F is
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Then F is clearly not onto, since F (x) 6= −1 for all x ∈ A. Similarly, F is clearly not one-to-one,
since F (0) = F (−1) = 0 and 0 6= −1.
There cannot be a function from A to A that is one-to-one but not onto. The proof is as follows.
Let G be a function from A to A and assume that G is one-to-one. Then the range of G has three
elements, since A has three elements. The only subset of A with three elements is A itself, so G
must be onto.
There cannot be a function from A to A that is onto but not one-to-one. The proof is as follows.
Let G be a function from A to A and assume that G is onto. Then the range of G is all of A. If G
is not one-to-one, then the range of G must have fewer than three elements, since the domain has
three elements. This is a contradiction, so G must be one-to-one.

3. Define the functions h : Z→ Z and g : Z→ Z by h(n) = 3n and g(n) =
⌊
n
2

⌋
for each n ∈ Z. Prove or

disprove each of the following statements.

(a) h is one-to-one.

Solution. h is one-to-one.

Proof. Let x1 and x2 be arbitrary integers. Suppose that h(x1) = h(x2). (We will show that x1

must be equal to x2.) Then 3x1 = 3x2, and dividing both sides by 3 gives us x1 = x2. Therefore
h is one-to-one.
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(b) g onto.

Solution. g is onto.

Proof. Let y ∈ Z be arbitrary. (We will show that there exists an x ∈ Z so that g(x) = y.) Pick
x = 2y. Then g(x) = g(2y) = b 2y2 c = byc = y, since y is an integer. Thus g(x) = y, so g is
onto.

(c) h ◦ g is onto.

Solution. h ◦ g is not onto.

Proof. Suppose that there exists an x ∈ Z so that (h ◦ g)(x) = 1. Then

(h ◦ g)(x) = h(g(x)) = h
(⌊x

2

⌋)
= 3

⌊x
2

⌋
= 1,

which means that bx2 c = 1
3 . But bx2 c must be an integer by definition of floor, and 1

3 is not an
integer. This is a contradiction, so h ◦ g is not onto.

(d) h ◦ g is one-to-one.

Solution. h ◦ g is not one-to-one.

Proof. Note that (h ◦ g)(0) = h(g(0)) = 3b 02c = 0 and (h ◦ g)(1) = h(g(1)) = 3b 12c = 0. So
(h ◦ g)(0) = (h ◦ g)(1) but 0 6= 1.

(e) g ◦ h is onto.

Solution. g ◦ h is not onto.

Proof. Suppose that there exists an x ∈ Z so that (g ◦ h)(x) = 2. This means that g(h(2)) = 2,
which is g(3x) = b 3x2 c = 2. This implies that 2 ≤ 3x

2 < 3 by the definition of floor. This implies
that 4 ≤ 3x < 6, or

4

3
≤ x < 2.

But x is an integer. There are no integers that are greater or equal to 4
3 and less than 2, so x is

not an integer. This is a contradiction, since x is an integer. Hence, for all x ∈ Z, (g ◦ h)(x) 6= 2.
Therefore (g ◦ h) is not onto.

(f) g ◦ h is one-to-one.

Solution. g ◦ h is one-to-one.

Proof. Let x1 and x2 be integers such that (g ◦ h)(x1) = (g ◦ h)(x2). Then⌊
3x1

2

⌋
=

⌊
3x2

2

⌋
. (∗)

Note that x1 is either even or odd, so x1 can be written as x1 = 2k1 + r1 for some integers k1 and
r1, where r1 = 0 or r1 = 1. Similarly, x2 = 2k2 + r2 for some integers k2 and r2, where r2 = 0 or

r2 = 1. Then (∗) becomes
⌊
3(2k1+r1)

2

⌋
=
⌊
3(2k2+r2)

2

⌋
, which reduces to

⌊
3k1 + 3r1

2

⌋
=
⌊
3k2 + 3r2

2

⌋
.

This simplifies to

3k1 +

⌊
3r1
2

⌋
= 3k2 +

⌊
3r2
2

⌋
(∗∗)

since 3k1 and 3k2 are integers. We examine the two cases: r1 = 0 or r1 = 1.
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Case 1: Assume r1 = 0. Then b 3r12 c = 0 and (∗∗) reduces to 3k1 = 3k2 + b 3r22 c, and thus

3(k1 − k2) = b 3r22 c. Hence

k1 − k2 =
1

3

⌊
3r2
2

⌋
.

We show that r2 = 0. Assume otherwise that r2 = 1. Then 1
3b

3r2
2 c = 1

3b
3
2c = 1

3 , which is not
an integer. This is a contradiction, so r2 6= 1. Hence r2 = 0, which means that k1 − k2 = 0
and thus k1 = k2. Therefore x1 = x2 since

x1 = 2k1 + r1 = 2k1 + 0 = 2k2 + 0 = 2k2 + r2 = x2.

Case 2: Assume r1 = 1. Then b 3r12 c = 1 and (∗∗) reduces to 3k1 + 1 = 3k2 + b 3r22 c, and thus

3(k1 − k2) = b 3r22 c − 1. Hence

k1 − k2 =
1

3

(⌊
3r2
2

⌋
− 1

)
.

We show that r1 = 1. Assume otherwise that r1 = 0. Then 1
3

(
b 3r12 c − 1

)
= 1

3 (0− 1) = − 1
3 ,

which is not an integer. This is a contradiction, so r1 6= 0. Hence r1 = 1, which means that
k1 − k2 = 0 and thus k1 = k2. Therefore x1 = x2 since

x1 = 2k1 + r1 = 2k1 + 1 = 2k2 + 1 = 2k2 + r2 = x2.

In either case, we showed that x1 = x2. Hence g ◦ h is one-to-one.

4. Let A, B, and C be some sets and suppose that f : A → B and g : B → C are functions. Prove or
disprove each of the following statements.

(a) If g ◦ f is onto then f is onto.

Solution. This statement is false. The is “There exist sets A, B, and C and functions f : A→ B
and g : B → C so that g ◦ f is onto but f is not onto.”

Proof. Let A = {1}, B = {1, 2}, and C = {1} and define the functions f : A → B and g : B → C
by f(1) = 1 and g(1) = g(2) = 1. Then g ◦ f is onto since (g ◦ f)(1) = 1 and 1 is the only element
in C.

An arrow diagram for the functions in the proof above is given below.

1
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2

B

1

C
f g

(b) If g ◦ f is onto then g is onto.

Solution. This statement is true.

Proof. Suppose g ◦ f is onto. (We will show that g is onto.) Let c ∈ C. (We will show that
there exists a b ∈ B so that g(b) = c). Since g ◦ f : A → C is onto, there exists an a ∈ A so that
(g ◦ f)(a) = c. Pick b = f(a). Then b ∈ B and g(b) = g(f(a)) = (g ◦ f)(a) = c. Thus g is onto.

(c) If g ◦ f is onto and g is one-to-one then f is onto.
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Solution. This statement is true.

Proof. Suppose g ◦ f is onto and g is one-to-one. (We will show that f is onto.) Let b ∈ B. (We
will show that there exists an a ∈ A so that f(a) = b). Let c = g(b) then c ∈ C. Since g ◦f is onto,
there exists an a ∈ A so that (g ◦ f)(a) = c. Thus c = g(b) = (g ◦ f)(a) = g(f(a)). In particular,

g(b) = g(f(a)).

But g is one-to-one, which means that b = f(a). Therefore f is onto.

5. Find two functions f : Z→ Z and g : Z→ Z so that f ◦ g = IZ but f and g are not invertible.

Solution. Let f be defined by f(x) = bx4 c and g be defined by g(x) = 4x + 1 for each x ∈ Z. Then
f and g are not invertible. Indeed, f is not one-to-one, since f(0) = f(1) = 0 and g is not onto since
g(x) 6= 0 for all x ∈ Z. However, we will show that f ◦ g = IZ. (That is, we will show that, for all
x ∈ Z, (f ◦ g)(x) = x.)

Proof (that f ◦ g = IZ). Let x ∈ Z be arbitrary. Then (f ◦ g)(x) = b 4x+1
4 c = bx + 1

4c = x + b 14c = x,
since x is an integer and b 14c = 0. Hence (g ◦ f)(x) = x = IZ(x), so f ◦ g = IZ.

6. Let t : Q×Q→ R be the function defined by t(x, y) = x+ y
√

2 for all (x, y) ∈ Q×Q. Is t one-to-one?
Is t onto? Prove your answers.

Solution. The function is one-to-one but not onto.

Proof (that t is one-to-one). Let (x1, y1) and (x2, y2) be in Q×Q. Assume that t(x1, y1) = t(x2, y2).
This means that x1 + y1

√
2 = x2 + y2

√
2, which becomes

x2 − x1 = (y1 − y2)
√

2. (1)

(We will show that x1 = x2 and y1 = y2.) Suppose instead that that y1 6= y2. (We will derive a
contradiction.) Then y1 − y2 6= 0, so we can divide by y1 − y2, and this implies that

√
2 =

x2 − x1

y1 − y2
.

But the ratio of two rational numbers is another rational number. This means that
√

2 is rational,
which is a contradiction. Therefore y1 = y2 and thus y1 − y2 = 0. Thus x2 − x1 = 0 from (1), so
x1 = x2.

We will use the fact that
√

3 is irrational. We will also use a few facts about rational and irrational
numbers that we have proved in the course.

Proof (that t is not onto). Suppose there exist rational numbers x and y so that t(x, y) =
√

3. Then
x + y

√
2 =
√

3. This implies that (x + y
√

2)2 = (
√

3)2, or

x2 + 2xy
√

2 + 2y2 = 3

which reduces to xy
√

2 = 3−x2−y2

2 . But 3−x2−y2

2 is rational and xy rational, and the only way the
product of a rational and an irrational number can be rational is if the rational number is zero. Hence
xy = 0 so either x = 0 or y = 0. We will show that “x = 0 or y = 0” leads to a contradiction.

Suppose that y = 0, then x =
√

3. But
√

3 is irrational and x is rational, which is a contradiction. So
y cannot be zero. Suppose instead that x = 0, then 3− y2 = 0, which means that y =

√
3. But

√
3 is

irrational and y is rational, a contradiction.

Hence the assumption that “there exist rational numbers x and y so that t(x, y) =
√

3” is wrong.
Therefore t is not onto.
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7. Let H : (R− {1})→ (R− {1}) be the function defined by H(x) = x+1
x−1 for each x ∈ R− {1}.

(a) Show that H is one-to-one.

Proof. Let x1, x2 ∈ R − {1}. Suppose that H(x1) = H(x2). Then x1+1
x1−1 = x2+1

x2−1 and thus
(x1 + 1)(x2 − 1) = (x2 + 1)(x1 − 1). Multiplying out gives us

x1x2 − x1 + x1 − 1 = x1x2 + x1 − x1 − 1

which simplifies to x1 = x2. Thus H is one-to-one.

(b) Show that H is onto.

Proof. Let y ∈ R− {1}. Then y ∈ R and y 6= 1. Pick x = y+1
y−1 , which is allowed since y − 1 6= 0.

Now

H(x) =

y+1
y−1 + 1
y+1
y−1 − 1

=
y + 1 + y − 1

y + 1− (y − 1)

=
2y

2
= y.

Thus H is onto.

(c) Find a formula for H−1(x) such that H−1 ◦H = H ◦H−1 = IR−{1}.

Solution. From part (d), we see that a formula for H−1 is H−1(x) = x+1
x−1 .

Part II (relations)

1. Let A = {1, 2, 3, 4}. For each of the following questions, describe your relations as a subset of A × A
(for example R = {(1, 2), (2, 1)}) and draw its directed graph.

(a) Find a relation R on A that is reflexive, but is neither symmetric nor transitive.

Solution. Consider the relation R = {(1, 1), (1, 2), (2, 2), (2, 4), (3, 3), (4, 4)} with directed graph:

1 2

3 4

(b) Find a relation R on A that is transitive, but is neither reflexive nor symmetric.

Solution. Consider the relation R = {(1, 2), (1, 4), (2, 4)} with directed graph:

1 2

3 4

(c) Find a relation R on A that is symmetric, but is neither reflexive nor transitive.
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Solution. Consider the relation R = {(1, 2), (2, 1)} with directed graph:

1 2

3 4

(d) Find a relation R on A that is reflexive and symmetric, but not transitive.

Solution. Consider the relation R = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3), (4, 4)} with di-
rected graph:

1 2

3 4

(e) Find a relation R on A that is reflexive and transitive, but not symmetric.

Solution. Consider the relation R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 4)} with directed
graph:

1 2

3 4

(f) Find a relation R on A that is symmetric and transitive, but not reflexive.

Solution. Consider the relation R = {(1, 1), (1, 2), (2, 1), (2, 2)} with directed graph:

1 2

3 4

Alternatively, consider the empty relation R = ∅ with directed graph:

1 2

3 4

This relation is vacuously symmetric and transitive (there are no arrows to check), and clearly not
reflexive.

2. Let B = {1, 2, 3, 4, 5, 6, 7, 8, 9}. For each of the following relations, draw the directed graph. For each
of the relations, determine whether it is reflexive, symmetric, or transitive.

(a) Define the relation Q on A by aQ b ⇔ a | b.
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Solution. Here is the directed graph.

1 2 3 4 5 6 7 8 9

This relation is reflexive and transitive, but not symmetric.

Proof. We prove that Q is reflexive and transitive, but not symmetric.

• Let a ∈ B. Then aQa since a | a and a 6= 0. Hence Q is reflexive.

• Note that 1 | 2 but 2 | 1, so 1Q 2 but 2 /Q 1. Hence Q is not symmetric.

• Let a, b, c ∈ S and assume that aQ b and bQ c. This means that there are integers m and k
so that b = ka and c = mb. Thus c = m(ka) = (mk)a, so a | c hence aQ c. There fore Q is
transitive.

(b) Define the relation R on A by aR b ⇔ 3 | (a− b).

Solution. Here is the directed graph.

1 2 3 4 5 6 7 8 9

This relation is reflexive, symmetric, and transitive.

Proof. We prove that R is reflexive, symmetric, and transitive.

• Let a ∈ B. Then aRa since a− a = 0 and 3 | 0. Hence R is reflexive.

• Let a, b ∈ B and assume that aR b. Then 3 | (a− b) which means that there is an integer k so
that 3k = a− b. Hence (−k)3 = b− a, so 3 | (b− a) and thus bR a. Hence R is symmetric.

• Let a, b, c ∈ S and assume that aR b and bR c. Thus 3 | (a − b) and 3 | (b − c) This means
that there are integers m and k so that a− b = 3k and c− b = 3m. Thus

a− c = a− b + b− c

= 3k − 3m

= 3(k −m)

so 3 | (a− c) since k −m is an integer. Hence aR c so R is transitive.

(c) Define the relation S on A by aS b ⇔ 5 | (a2 − b2).
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Solution. Here is the directed graph.

1 2 3 4 5 6 7 8 9

This relation is reflexive, symmetric, and transitive.

(d) Define the relation T on A by a T b ⇔ 1 ≤ |a− b|≤ 3. (Proof is similar to part (b).)

Solution. Here is the directed graph.

1 2 3 4 5 6 7 8 9

This relation is symmetric, but not reflexive and not transitive.

Proof. We prove that R is symmetric and not reflexive and not transitive.

• Note that 1 ∈ B and |1− 1| = 0 < 1. Hence 1 /T 1 so T is not reflexive.

• Let a, b ∈ B and assume that a T b. Then 1 ≤ |a− b| ≤ 3. Since |a− b| = |b− a|, this means
that 1 ≤ |b− a| ≤ 3 and thus b T a. Hence T is symmetric.

• Note that 1T 3 and 3T 5 since 1 ≤ |1 − 3| ≤ 3 and 1 ≤ |3 − 5| ≤ 3. However |1 − 5| = 4 and
thus 1 /T 5. Hence T is not transitive.

3. Let R be the relation on Z+× Z+ defined by

∀(a, b) ∈ Z+× Z+ and ∀(c, d) ∈ Z+× Z+, (a, b)R (c, d) if and only if a + b < c + d.

(a) Is R reflexive? Symmetric? Transitive? Prove your answers.

Solution. The relation R is transitive, but neither reflexive nor symmetric.

Proof (that R is transitive). Let (a, b), (c, d), and (e, f) ∈ Z+×Z+. Assume that (a, b)R (c, d) and
(c, d)R (e, f). Then a + b < c + d and c + d < e + f and thus 1 + b < e + f . Hence (a, b)R (e, f).
Therefore R is transitive.

Proof (that R is not reflexive). Note that (1, 1) ∈ Z+×Z+, but (1, 1) /R (1, 1) since 1+1 6< 1+1.

Proof (that R is not symmetric). Note that (1, 1)R (2, 2) since 1+1 < 2+2. However (2, 2) /R (1, 1)
since 2 + 2 6< 1 + 1. Thus R is not symmetric.

(b) Is it true that, for all (a, b) ∈ Z+× Z+, there exists (c, d) ∈ Z+× Z+ so that (a, b)R (c, d)? Prove
your answer.

Solution. This statement is true.

Proof. Let (a, b) ∈ Z+×Z+. Then (a, b)R (a, b+1) since a+b < a+b+1 and (a, b+1) ∈ Z+×Z+.

(c) Is it true that, for all (c, d) ∈ Z+× Z+, there exists (a, b) ∈ Z+× Z+ so that (a, b)R (c, d)? Prove
your answer.
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Solution. This statement is false. It’s negation is “There exists (c, d) ∈ Z+× Z+ so that for all
(a, b) ∈ Z+× Z+, (a, b) /R (c, d)”

Proof (of the negation). Pick (c, d) = (1, 1). Let (a, b) ∈ Z+×Z+. Then a ≤ 1 and b ≤ 1 and thus
a 6< 1 and b 6< 1. Hence a + b 6< 1 + 1 = c + d and thus (a, b) /R (c, d).

(d) Is it true that there exists (c, d) ∈ Z+× Z+ so that for all (a, b) ∈ Z+× Z+, (a, b)R (c, d)? Prove
your answer.

Solution. This statement is false. It’s negation is “For all (c, d) ∈ Z+× Z+, there exists (a, b) ∈
Z+× Z+ so that (a, b) /R (c, d)”

Proof (of the negation). Let (c, d) ∈ Z+× Z+. Then c + d 6< c + d and thus (c, d) /R (c, d), so we
can pick (a, b) = (c, d).

(e) How many elements (a, b) in Z+× Z+ are there so that (a, b)R (3, 3)?

Solution. There are 10 possible pairs since there are 10 pairs (a, b) ∈ Z+× Z+ so that a + b < 6.
They are:

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1)}
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