MATH 271 — Summer 2016
Solutions to practice problems — Week 5
University of Calgary
Mark Girard

Part I (functions)

1. Let T = {1,2,3}, let f: T — T and g: T — T be defined by by f = {(1,2),(2,3),(3,1)} and
g = {(1,2),(2,1),(3,3)}. Draw the arrow diagrams for f and g. Determine each of the following
functions as a collection of ordered pairs.

(a) f7°
(b) g~*
(c) fog
(d) gof

Solution. From the definitions of f and g, we have that

f(l):2a f(2):37 f(S):l and 9(1)22’ 9(2):179(3):3'

Note that both f and g are onto and one-to-one. The arrow diagrams for f and g are

f g
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Since f and g are one-to-one and onto, we can find their inverse functios. They are define by
FFl =3, 7@ =1f"3)=2 and ¢ '(1)=29'(2)=1903)"" =3

Also, we can determine f o g as

(fog)(1) = flg(1) = F(2) =3, (fog)2)=[f(9(2) =f(1)=2, (feg)3)=/f(9B3))=/,3)=1

and go f as

(9o N)) =9(f1) =9(2) =1, (90/)(2) =9(f(2))=9B) =3, (90/)3)=9(f3)) =g(1)=2.

The functions as sets are

7 =113),(2,1),3,2)},

1 ={(1,2),(2.1),6.2)},
fog={(13),(22),3,1)}
and go f={(1,1),(2,3),(3,2)}.
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The arrow diagrams for these functions are
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2. Let A={—1,0,1} and let F': A — A be the function defined by F(n) = [2] for all n € A.
(a) Is F one-to-one? Prove your answer.
(b) Is F onto? Prove your answer.
(c) Does there exist a function from A to A that is one-to-one but not onto? Prove your answer.
(d) Does there exist a function from A to A that is onto but not one-to-one? Prove your answer.
Solution. Note that F(—1) = [Z*] = 0, F(0) = [0] = 0, and F(1) = [1] = 1. The arrow
diagram for F' is

F
A

A

™
) |

Then F is clearly not onto, since F(x) # —1 for all # € A. Similarly, F' is clearly not one-to-one,
since F(0) = F(—1) =0 and 0 # —1.

There cannot be a function from A to A that is one-to-one but not onto. The proof is as follows.
Let G be a function from A to A and assume that G is one-to-one. Then the range of G has three
elements, since A has three elements. The only subset of A with three elements is A itself, so G
must be onto.

There cannot be a function from A to A that is onto but not one-to-one. The proof is as follows.
Let G be a function from A to A and assume that G is onto. Then the range of G is all of A. If G
is not one-to-one, then the range of G must have fewer than three elements, since the domain has
three elements. This is a contradiction, so G must be one-to-one.

3. Define the functions h: Z — Z and g: Z — Z by h(n) = 3n and g(n) = | %] for each n € Z. Prove or
disprove each of the following statements.

(a) h is one-to-one.
Solution. h is one-to-one.
Proof. Let x1 and x2 be arbitrary integers. Suppose that h(z1) = h(x2). (We will show that 2,

must be equal to x2.) Then 3x; = 3z2, and dividing both sides by 3 gives us 1 = x5. Therefore
h is one-to-one. O



(b)

g onto.

Solution. g is onto.

Proof. Let y € Z be arbitrary. (We will show that there exists an x € Z so that g(x) = y.) Pick
x = 2y. Then g(z) = ¢g(2y) = L%yj = |y] = y, since y is an integer. Thus g(z) = y, so g is
onto. O

h o g is onto.

Solution. h o g is not onto.

Proof. Suppose that there exists an = € Z so that (ho g)(x) = 1. Then

(hog)(@) =hig) =h(|3]) =3|5| =1

which means that [%] = 4. But |%] must be an integer by definition of floor, and 3 is not an

integer. This is a contradiction, so h o g is not onto. O

h o g is one-to-one.

Solution. h o g is not one-to-one.

Proof. Note that (h o g)

o 9] = 0 and (hog)(1) = h(g(1)) = 3|3] = 0. So
(hog)(0) = (hog)(1) bu

= 2
0+#1. O
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g o h is onto.

Solution. g o h is not onto.

Proof. Suppose that there exists an € Z so that (g o h)(z) = 2. This means that g(h(2)) = 2,
which is g(3z) = [3£] = 2. This implies that 2 < 22 < 3 by the definition of floor. This implies
that 4 < 3z < 6, or

4 <z <2

-<z .

3=
But x is an integer. There are no integers that are greater or equal to % and less than 2, so = is
not an integer. This is a contradiction, since x is an integer. Hence, for all z € Z, (g o h)(z) # 2.
Therefore (g o h) is not onto. O
g o h is one-to-one.

Solution. g o h is one-to-one.

Proof. Let 1 and x5 be integers such that (g o h)(z1) = (g o h)(z2). Then

23]

Note that x; is either even or odd, so x; can be written as x1 = 2k + 1 for some integers k; and
r1, where 1 = 0 or r; = 1. Similarly, o = 2ks + 79 for some integers ko and 79, where 7o = 0 or

ro = 1. Then (x) becomes {3(%12—’_”@ = {3(%2‘;”)} which reduces to |3k; + %J = |3ks + %J

This simplifies to
3 3
3ky + “‘J = 3ky + HZJ (#%)

since 3k; and 3ko are integers. We examine the two cases: 11 =0 or r; = 1.



Case 1: Assume r; = 0. Then |2.1| = 0 and (x) reduces to 3k = 3k + [ 2], and thus
3(k1 — ko) = L%J Hence
113
ki—kp = V?J :

31 2

We show that ro = 0. Assume otherwise that ro = 1. Then %Ls%] = 1|3] = %, which is not

an integer. This is a contradiction, so ro # 1. Hence ro = 0, which means that k&1 — k; = 0
and thus ki = k. Therefore z1 = x4 since
1 =2k1 +11 =2k1 +0=2ko +0 = 2ky + 19 = 5.

Case 2: Assume 7 = 1. Then [0 | =1 and () reduces to 3k; + 1 = 3ks + [ 252, and thus

S(kl—kz):L%J—l. Hence
1 37’2
ko= (22 1),
m-r=3 (7] 1)

We show that r; = 1. Assume otherwise that r; = 0. Then % (|[%t] —1) =4 (0-1) = —1,
which is not an integer. This is a contradiction, so r1 # 0. Hence r1 = 1, which means that
k1 — ko = 0 and thus k; = k. Therefore 1 = x4 since

vy =2k1+1r1 =2k1 +1=2ky +1=2ky + 19 = 2.

In either case, we showed that 1y = z5. Hence g o h is one-to-one. O

4. Let A, B, and C be some sets and suppose that f: A — B and ¢g: B — C are functions. Prove or
disprove each of the following statements.

(a)

()

If g o f is onto then f is onto.

Solution. This statement is false. The is “There exist sets A, B, and C' and functions f: A — B
and g: B — C so that g o f is onto but f is not onto.”

Proof. Let A ={1}, B ={1,2}, and C = {1} and define the functions f: A - B and g: B — C
by f(1) =1 and g(1) = g(2) = 1. Then go f is onto since (go f)(1) =1 and 1 is the only element

in C. O
An arrow diagram for the functions in the proof above is given below.
f g
A ~ B - C

If g o f is onto then g is onto.

Solution. This statement is true.

Proof. Suppose g o f is onto. (We will show that g is onto.) Let ¢ € C. (We will show that
there exists a b € B so that g(b) = ¢). Since go f: A — C' is onto, there exists an a € A so that
(9o f)(a) =c. Pick b= f(a). Then b € B and g(b) = g(f(a)) = (9o f)(a) = c. Thus g is onto. O

If go f is onto and ¢ is one-to-one then f is onto.



Solution. This statement is true.

Proof. Suppose g o f is onto and g is one-to-one. (We will show that f is onto.) Let b € B. (We
will show that there exists an a € A so that f(a) = b). Let ¢ = g(b) then ¢ € C. Since go f is onto,
there exists an a € A so that (go f)(a) = ¢. Thus ¢ = g(b) = (go f)(a) = g(f(a)). In particular,

g9(b) = g(f(a)).

But g is one-to-one, which means that b = f(a). Therefore f is onto. O

5. Find two functions f: Z — Z and ¢: Z — Z so that f o g = Iz but f and g are not invertible.

Solution. Let f be defined by f(z) = [§] and g be defined by g(x) = 4z + 1 for each x € Z. Then
f and g are not invertible. Indeed, f is not one-to-one, since f(0) = f(1) = 0 and g is not onto since
g(z) # 0 for all z € Z. However, we will show that f o g = Iz. (That is, we will show that, for all

v€Z, (fog)(z) =)
Proof (that fog=1z). Let x € Z be arbitrary. Then (fog)(z) = [ | = |z + L] =2+ 1] =2,
since z is an integer and 1] = 0. Hence (go f)(z) = z = Iz(z), so fog = Iy. O
6. Let t: Q x Q — R be the function defined by t(z,y) = « + yv/2 for all (z,y) € Q x Q. Is ¢ one-to-one?
Is t onto? Prove your answers.

Solution. The function is one-to-one but not onto.

Proof (thatt is one-to-one). Let (z1,y1) and (z2,y2) be in Q x Q. Assume that t(z1,y1) = t(z2,y2).
This means that z; + ylx/i =22+ Y \/i, which becomes

Ty —x1 = (Y1 — yz)\/§ (1)

(We will show that 1 = x2 and y; = y2.) Suppose instead that that y; # yo. (We will derive a
contradiction.) Then y; — yo # 0, so we can divide by y; — y2, and this implies that

\[271’271’1

791-1/2'

But the ratio of two rational numbers is another rational number. This means that /2 is rational,
which is a contradiction. Therefore y; = yo and thus y; — y2 = 0. Thus x5 — 27 = 0 from (1), so
r1 = T3g. O

We will use the fact that /3 is irrational. We will also use a few facts about rational and irrational
numbers that we have proved in the course.

Proof (that t is not onto). Suppose there exist rational numbers z and y so that ¢(z,y) = v/3. Then
x + yv/2 = /3. This implies that (z + yv/2)? = (v/3)?, or

22+ 2zyv2 + 242 =3

2_ .2 _p2_.2 . .
which reduces to zyv?2 = 3—x2—y . But 2 “5— is rational and zy rational, and the only way the
product of a rational and an irrational number can be rational is if the rational number is zero. Hence

xy = 0 so either z = 0 or y = 0. We will show that “z = 0 or y = 0” leads to a contradiction.

Suppose that y = 0, then 2 = v/3. But /3 is irrational and x is rational, which is a contradiction. So
y cannot be zero. Suppose instead that z = 0, then 3 — y? = 0, which means that y = v/3. But v/3 is
irrational and y is rational, a contradiction.

Hence the assumption that “there exist rational numbers x and y so that ¢(z,y) = V37 is wrong.
Therefore ¢ is not onto. O



7. Let H: (R — {1}) = (R — {1}) be the function defined by H(z) = £l for each z € R — {1}.
(a) Show that H is one-to-one.

Proof. Let 1,22 € R — {1}. Suppose that H(z1) = H(xz). Then ii—ﬂ = ‘;;—ﬂ and thus
(x1 +1)(x2 — 1) = (2 + 1)(z1 — 1). Multiplying out gives us

T1To —T1+x1—1=2194+21 — 271 — 1
which simplifies to 1 = 5. Thus H is one-to-one. O
(b) Show that H is onto.

Proof. Let y € R— {1}. Then y € R and y # 1. Pick « = y—i, which is allowed since y — 1 # 0.
Now

<

y+1
y1tl
y+1

y—1
y+1+y—1

y+1-(@-1)

2y

2

H(z) =

Thus H is onto. O

(¢) Find a formula for H~'(z) such that H~'o H = Ho H™' = Ip_(1y.

Solution. From part (d), we see that a formula for H~! is H~!(z) = .

Part II (relations)

1. Let A = {1,2,3,4}. For each of the following questions, describe your relations as a subset of A x A
(for example R = {(1,2),(2,1)}) and draw its directed graph.

(a) Find a relation R on A that is reflexive, but is neither symmetric nor transitive.
Solution. Consider the relation R = {(1,1),(1,2),(2,2),(2,4), (3,3), (4,4)} with directed graph:

1L>2

3 O 04
(b) Find a relation R on A that is transitive, but is neither reflexive nor symmetric.

Solution. Consider the relation R = {(1,2),(1,4), (2,4)} with directed graph:

1 2

3. 4

(¢) Find a relation R on A that is symmetric, but is neither reflexive nor transitive.



Solution. Consider the relation R = {(1,2),(2,1)} with directed graph:

1< 2

3 * 4
(d) Find a relation R on A that is reflexive and symmetric, but not transitive.

Solution. Consider the relation R = {(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(3,3), (4,4)} with di-
rected graph:

3 64
(e) Find a relation R on A that is reflexive and transitive, but not symmetric.

Solution. Consider the relation R = {(1,1),(1,2),(1,3),(2,2),(2,3),(3,3), (4,4)} with directed
graph:

3 O 64
(f) Find a relation R on A that is symmetric and transitive, but not reflexive.
Solution. Consider the relation R = {(1,1),(1,2),(2,1),(2,2)} with directed graph:

4

3. 4
Alternatively, consider the empty relation R = () with directed graph:
1. * 2

3. 4

This relation is vacuously symmetric and transitive (there are no arrows to check), and clearly not
reflexive.

2. Let B =1{1,2,3,4,5,6,7,8,9}. For each of the following relations, draw the directed graph. For each
of the relations, determine whether it is reflexive, symmetric, or transitive.

(a) Define the relation @ on A by a Qb < a | 0.



Solution. Here is the directed graph.

This relation is reflexive and transitive, but not symmetric.

Proof. We prove that @ is reflexive and transitive, but not symmetric.

e Let a € B. Then aQa since a | a and a # 0. Hence @ is reflexive.
e Note that 1|2 but 2|1, s0 1Q2 but 2@ 1. Hence @ is not symmetric.

e Let a,b,c € S and assume that a @b and b@Q c. This means that there are integers m and k
so that b = ka and ¢ = mb. Thus ¢ = m(ka) = (mk)a, so a | ¢ hence a Q c. There fore @ is
transitive.

O

(b) Define the relation R on A by a Rb < 3| (a — b).
Solution. Here is the directed graph.

“\\\)\
4@
—

This relation is reflexive, symmetric, and transitive.

Proof. We prove that R is reflexive, symmetric, and transitive.

e Let a € B. Then a Ra since a —a = 0 and 3 | 0. Hence R is reflexive.

e Let a,b € B and assume that a Rb. Then 3 | (¢ — b) which means that there is an integer k so
that 3k = a — b. Hence (—k)3 =b —a, so 3| (b — a) and thus b Ra. Hence R is symmetric.

e Let a,b,c € S and assume that a Rb and b Rc. Thus 3 | (¢ — b) and 3 | (b — ¢) This means
that there are integers m and k so that a — b = 3k and ¢ — b = 3m. Thus

a—c=a—-b+b—c
=3k —3m
=3(k—m)

s0 3 | (a — ¢) since k —m is an integer. Hence a R ¢ so R is transitive.

(c) Define the relation S on A by a Sb < 5| (a® — b?).



(d)

Solution. Here is the directed graph.

This relation is reflexive, symmetric, and transitive.

Define the relation T'on A by aTb < 1 < |a — b|< 3. (Proof is similar to part (b).)
Solution. Here is the directed graph.

S S
This relation is symmetric, but not reflexive and not transitive.

Proof. We prove that R is symmetric and not reflexive and not transitive.

e Note that 1 € B and |1 —1| =0 < 1. Hence 171 so T is not reflexive.

e Let a,b € B and assume that aT'b. Then 1 < |a —b| < 3. Since |a — b| = |b — al, this means
that 1 < |b—a| < 3 and thus bT a. Hence T is symmetric.

e Note that 17'3 and 375 since 1 < |1 —3| <3 and 1 < |3 — 5| < 3. However |1 — 5| =4 and
thus 17°5. Hence T is not transitive.

O

3. Let R be the relation on Z1 x Z* defined by

(a)

V(a,b) € Zt x ZT and V(c,d) € Zt x Z7, (a,b) R(c,d) if and only if a +b < ¢+ d.

Is R reflexive? Symmetric? Transitive? Prove your answers.

Solution. The relation R is transitive, but neither reflexive nor symmetric.

Proof (that R is transitive). Let (a,b), (¢,d), and (e, f) € ZTxZ*. Assume that (a,b) R (c,d) and
(¢c,d)R(e,f). Thena+b<c+dand c+d<e+ f and thus 1 +b < e+ f. Hence (a,b) R (e, f).
Therefore R is transitive. O

Proof (that R is not reflexive). Note that (1,1) € Z*xZ* but (1,1) R(1,1) since 1+1 £ 1+1. O

Proof (that R is not symmetric). Note that (1,1) R (2,2) since 14+1 < 2+2. However (2,2) R (1,1)
since 24+ 2 £ 1+ 1. Thus R is not symmetric. O

Is it true that, for all (a,b) € ZT x ZT, there exists (c,d) € ZT x Z* so that (a,b) R(c,d)? Prove
your answer.

Solution. This statement is true.
Proof. Let (a,b) € ZT<Z*. Then (a,b) R (a,b+1) since a+b < a+b+1 and (a,b+1) € ZTxZ*+. O

Is it true that, for all (¢, d) € Z* x ZT, there exists (a,b) € ZT x Z* so that (a,b) R(c,d)? Prove
your answer.



Solution. This statement is false. It’s negation is “There exists (¢,d) € Z" x Z* so that for all
(a,b) € Z* x Z7T, (a,b) R (c,d)”

Proof (of the negation). Pick (¢,d) = (1,1). Let (a,b) € Z*x Z". Then a < 1 and b < 1 and thus
ag¢land b« 1. Hence a+b ¢ 1+ 1 =c+d and thus (a,b) R (c,d). O

Is it true that there exists (c,d) € Z* x ZT so that for all (a,b) € Z* x ZT, (a,b) R (c,d)? Prove
your answer.

Solution. This statement is false. It’s negation is “For all (¢,d) € Z* x Z™, there exists (a,b) €
7+ x 7 so that (a,b) R (c,d)”

Proof (of the negation). Let (c,d) € Z+ x Z*. Then ¢+ d ¢ ¢+ d and thus (c,d) R (c,d), so we
can pick (a,b) = (¢, d). O
How many elements (a,b) in Z* x Z* are there so that (a,b) R (3,3)?

Solution. There are 10 possible pairs since there are 10 pairs (a,b) € Z* x ZT so that a + b < 6.
They are:

{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3), (3,1), (3,2), (4, 1)}

10



