MATH 271 – Winter 2011 Final Exam – Solutions

1. (a) Use the Euclidean algorithm to find gcd(73, 50). Also use the algorithm to find integers x and y such that gcd(73, 50) = 73x + 50y.

Solution. Use the Euclidean algorithm to find that gcd(73, 50) = 1 and that $1 = 73 \cdot (-13) + 50 \cdot 19$.

(b) Use part (a) to find an inverse a for 50 modulo 73 so that $0 \le a \le 72$; that is, find an integer $a \in \{0, 1, \dots, 72\}$ so that $50a \equiv 1 \pmod{73}$.

Solution. From part (a), we see that 19 is an inverse of 50 modulo 73, because

$$50 \cdot 19 = 1 + 13 \cdot 73 \equiv 1 \pmod{73}$$
.

- 2. Let S be the statement:
 - for all sets A, B, C, if $A \subseteq B$ and $B \cap C = \emptyset$ then $A \cap C = \emptyset$.
 - (a) Prove that \mathcal{S} is true. Use contradiction and the element method.

Solution. Proof. Let A, B, and C be sets. Assume that $A \subseteq B$ and $B \cap C = \emptyset$. (We will show that $A \cap C = \emptyset$.) Assume that $A \cap C \neq \emptyset$. Then there exists an element $x \in A \cap C$. This means that $x \in A$ and $x \in C$. Then $x \in B$, since $x \in C$ and $C \subseteq B$. Thus $x \in A$ and $x \in B$, which means that $x \in A \cap B$ and thus $A \cap B \neq \emptyset$. However $A \cap B =$, so this is a contradiction. This means that our assumption that $A \cap C \neq \emptyset$ was wrong. Therefore $A \cap C = \emptyset$.

(b) Write out the *converse* of statement S. Is it true or false? Explain.

Solution. The converse is "For all sets A, B, and C, if $A \cap C = \emptyset$ then $A \subseteq B$ and $B \cap C = \emptyset$." This statement is false. Its negation is: "There exists sets A, B, and C so that $A \cap C = \emptyset$ but either $A \not\subseteq B$ or $B \cap C \neq \emptyset$.

Proof (of the negation). Let $A = \{1\}, B = \emptyset$, and $C = \emptyset$. Then $A \cap C = \{1\} \cap \emptyset = \emptyset$, but $\{1\} \not\subseteq \emptyset$ so $A \not\subseteq B$.

(c) Write out the *contrapositive* of statement S. Is it true or false? Explain.

Solution. The contrapositive is "For all sets A, B, C, if $A \cap C \neq \emptyset$ then $A \not\subseteq B$ or $B \cap C \neq \emptyset$." This statement is true, since the contrapositive is always logically equivalent to the original statement, which is true in this case.

3. Let $X = \{1, 2, \dots, 10\}$. Define the relation R on X by:

for all $a, b \in X$, a R b if and only if ab is even.

(a) Is R reflexive? Symmetric? Transitive? Give reasons.

Solution. The relation R is symmetric, but neither reflexive nor transitive.

Proof (that R is symmetric). Let $a, b \in X$ and suppose that a R b. Then ab is even, and thus ba is even since ab = ba. Hence b R a.

Proof (that R is not reflexive). Let
$$a = 1$$
. Then $aa = 1$, which is not even, so a Ra .

Proof (that R is not transitive). Let a = 1, b = 2, and c = 1. Then a R b since ab = 2, which is even, and b R c since bc = 2, which is even. But ac = 1, which is not even, so $a \not R c$.

(b) Find and simplify the *number* of **two-element** subsets S of X that satisfy the following property: $\forall a \in S, a R 1$. Explain.

Solution. The answer is $\binom{5}{2} = \frac{5!}{3!2!} = \frac{5\cdot 4}{2\cdot 1} = \frac{20}{2} = 10$. The reason is as follows. Suppose S is a set that has the desired property. Then S has two elements, say x and y. Then x and y must both be even, since 1 R x and 1 R y mean that $1 \cdot x = x$ and $1 \cdot y = y$ must be even. Therefore the only two-element sets with desired property are subsets of X where both elements are even. Since there are 5 even numbers in X, there are $\binom{5}{2}$ (i.e. 5 choose 2) ways to make subsets with the desired property.

(c) Find the *number* of subsets S of X (of any size) that satisfy the following property: $\forall a \in S, \exists b \in S$ so that a R b. Explain

Solution. The answer is $2^{10} - 2^5 = 1024 - 32 = 992$. The reason is as follows. Note that any set that contains *only* odd elements do not satisfy the property, since the product of odd numbers is always odd. If a subset S has at least one even number $e \in S$, then for any $a \in A$ we can always choose b = e so that ab is even. Therefore the sets S that satisfy the property are the sets that contain at least one even element. Let $A \subseteq \mathcal{P}(X)$ be the set of subsets of X that contain only odd elements. Then the set of objects that we want to count is $\mathcal{P}(X) - A$, since this set consists of all subsets of X that contain at least one even element. Note that $A = \mathcal{P}(\{1, 3, 5, 7, 9\})$, so $|A| = 2^5$, and $|\mathcal{P}(X)| = 2^{10}$. Finally,

$$|\mathcal{P}(X) - A| = |\mathcal{P}(X)| - |A|$$

= 2¹⁰ - 2⁵.

- 4. Let \mathscr{F} denote the set of all functions from $\{1, 2, 3\}$ to $\{1, 2, 3, 4, 5\}$.
 - (a) Find and simplify the number of functions $f \in \mathscr{F}$ so that f(1) = 4. Solution. The answer is $5^2 = 25$. The recipe is as follows:
 - 1. Set f(1) to be 4. (One way.)
 - 2. Choose f(2) to be any value from $\{1, 2, 3, 4, 5\}$. (5 ways)
 - 3. Choose f(3) to be any value from $\{1, 2, 3, 4, 5\}$. (5 ways)

So there are $1 \cdot 5 \cdot 5 = 5^2 = 25$ functions $f \in \mathscr{F}$ so that f(1) = 4.

- (b) Find and simplify the number of *one-to-one* functions $f \in \mathscr{F}$ so that $f(1) \ge 4$.
 - **Solution.** The answer is $2 \cdot 4 \cdot 3 = 24$. The recipe is as follows:
 - 1. Choose f(1) to be either 4 or 5. (2 ways.)
 - 2. Choose f(2). It must be different from f(1). (4 ways)
 - 3. Choose f(3). It must be different from f(1) and f(2) (3 ways)
- (c) Find and simplify the number of functions $f \in \mathscr{F}$ so that $f(1) \neq f(2)$.

Solution. The answer is $5 \cdot 4 \cdot 5 = 100$. The recipe is as follows:

- 1. Choose f(1) to be any value from $\{1, 2, 3, 4, 5\}$ (5 ways.)
- 2. Choose f(2). It must be different from f(1). (4 ways)
- 3. Choose f(3) to be any value from $\{1, 2, 3, 4, 5\}$ (5 ways.)
- 5. (a) Give the definition of $a \equiv b \pmod{n}$ (i.e. "a is congruent to b modulo n"), for arbitrary integers a, b, n, where n > 0.

Solution. Given integers a, b, n, with n > 0, $a \equiv b \pmod{n}$ if and only if $n \mid (a - b)$.

(b) Prove that the relation $\equiv \pmod{n}$ ("congruence modulo n"), on the set \mathbb{Z} of all integers, is **symmetric**. Use your definition from part (a). (Do not assume that the relation is an equivalence relation.)

Solution. *Proof.* Let *a* and *b* be arbitrary integers. Assume that $a \equiv b \pmod{n}$. Thus $n \mid (a-b)$. This means that there is an integer *k* so that a-b=kn. Now b-a=(-k)n, and -k is an integer so $n \mid (b-a)$. Therefore $b \equiv a \pmod{n}$.

(c) Now assume that "congruence modulo 7" is an equivalence relation on Z. Find three elements of the equivalence class [3].

Solution. Some elements are: 3, 10, 17.

(d) Again consider the equivalence class [3] for the equivalence relation "congruence modulo 7" on \mathbb{Z} . Suppose that $S = \{1, 2, ..., N\}$, where N is a positive integer. Find all possible values of N so that $[3] \cap S$ contains exactly 10 elements.

Solution. The first ten positive elements of [3] are 3, 10, 17, 24, 31, 38, 45, 52, 59, and 66. Then eleventh element is 73. For S to contain exactly 10 elements, it must contain all of these elements, so N must be at least 66. However, if N is greater than 72, then S also contains 73 which means that $|[3] \cap S| \ge 11$. Therefore N can be any number from $\{66, 67, 68, 69, 70, 71, 72\}$.

- 6. Q is the set of rational numbers. Two of the following statements are true and one is false. Prove the true statements. Write our the *negation* of the false statement and prove it.
 - (a) $\forall q \in \mathbb{Q}, \exists n \in \mathbb{Z} \text{ so that } q + n = 271.$

Solution. This statement is false. Its negation is: "There exists a $q \in \mathbb{Q}$ so that for all $n \in \mathbb{Z}$, $q + n \neq 271$."

Proof (of the negation). Let $q = \frac{1}{2}$. Let n be an arbitrary integer. (We will show that $q+n \neq 271$.) Suppose that q + n = 271. Then $n = 271 - q - 271 - \frac{1}{2}$. But $271 - \frac{1}{2} = \frac{541}{2}$, which is not an integer. This is a contradiction, since $n \in \mathbb{Z}$. Hence the assumption that q + n = 271 was wrong. Therefore $q + n \neq 271$.

(b) $\forall n \in \mathbb{Z}, \exists q \in \mathbb{Q} \text{ so that } q + n = 271.$

Solution. This statement is true.

Proof. Let n be an arbitrary integer. Choose q = 271 - n. Then q is a rational number and q + n = 271 - n + n = 271.

(c) $\exists n \in \mathbb{Z}$ so that 271 - n is even.

Solution. This statement is true.

Proof. Choose n = 271. Then n is an integer and 271 - n = 0, which is even.

7. (a) Draw a graph with exactly 4 vertices and 6 edges, and give its adjacency matrix.Solution. One example of such a graph and its adjacency matrix is:

$$\begin{bmatrix} 0 & 2 & 1 & 1 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 3 & 4 \end{bmatrix}.$$

(b) Draw a graph with exactly 6 vertices and 4 edges and exactly two connected components.Solution. One example of such a graph is:

(c) Draw a tree with exactly 8 verticies, one of which has degree 6.Solution. One example of such a graph is:

(d) Does there exist a graph with exactly 8 vertices, so that three of the vertices have degree 3 and the remaining five vertices have degree 2? Explain.

Solution. No. If such a graph existed, the sum of the degrees of all of its vertices would be: 3 + 3 + 3 + 2 + 2 + 2 + 2 + 2 = 19, which is odd. However, the total sum of the degrees of the vertices of any graph must be even. Thus such a graph can not exist.

8. Prove by induction on n that $6 \mid (7^n + 11)$ for all integers $n \ge 0$.

Solution. Let P(n) be the statement "6 | $(7^n + 11)$ " for each $n \in \mathbb{Z}$.

Proof. We will prove that P(n) is true for all integers $n \ge 0$ by induction on n.

Base case (n = 0): We have

$$7^0 + 11 \cdot 1 + 11 = 12$$

which is divisible by 6, so P(0) is true.

Induction step: Let $k \ge 1$ be an integer. Suppose that

$$6 \mid (7^k + 11).$$
 (IH)

(We want to show that $6 \mid (7^{k+1} + 11)$ is divisible by 6.) By IH, there exists an integer m so that $6 \mid 7^k + 11 = 6m$. Then

$$7^k = 6m - 11. (*)$$

Now

$$7^{k+1} + 11 = 5 \cdot 7 \cdot 7^{k} + 11$$

= 7 \cdot (6m - 11) + 11 by (*)
= 6 \cdot 7m - 77 + 11
= 6 \cdot 7m - 66
= 6 \cdot (7m - 11),

where 7m - 11 is an integer. Therefore $7^{k+1} + 11$ is divisible by 6.

By the principle of induction, $6 \mid (7^n + 11)$ is divisible by 6 for all integers $n \ge 0$.