
MATH 271 – Winter 2011
Final Exam – Solutions

1. (a) Use the Euclidean algorithm to find gcd(73, 50). Also use the algorithm to find integers x and y
such that gcd(73, 50) = 73x + 50y.

Solution. Use the Euclidean algorithm to find that gcd(73, 50) = 1 and that 1 = 73·(−13)+50·19.

(b) Use part (a) to find an inverse a for 50 modulo 73 so that 0 ≤ a ≤ 72; that is, find an integer
a ∈ {0, 1, . . . , 72} so that 50a ≡ 1 (mod 73).

Solution. From part (a), we see that 19 is an inverse of 50 modulo 73, because

50 · 19 = 1 + 13 · 73 ≡ 1 (mod 73).

2. Let S be the statement:

for all sets A, B, C, if A ⊆ B and B ∩ C = ∅ then A ∩ C = ∅.

(a) Prove that S is true. Use contradiction and the element method.

Solution. Proof. Let A, B, and C be sets. Assume that A ⊆ B and B ∩ C = ∅. (We will show
that A ∩ C = ∅.) Assume that A ∩ C 6= ∅. Then there exists an element x ∈ A ∩ C. This means
that x ∈ A and x ∈ C. Then x ∈ B, since x ∈ C and C ⊆ B. Thus x ∈ A and x ∈ B, which means
that x ∈ A∩B and thus A∩B 6= ∅. However A∩B =, so this is a contradiction. This means that
our assumption that A ∩ C 6= ∅ was wrong. Therefore A ∩ C = ∅.

(b) Write out the converse of statement S. Is it true or false? Explain.

Solution. The converse is “For all sets A, B, and C, if A ∩ C = ∅ then A ⊆ B and B ∩ C = ∅.”
This statement is false. Its negation is: “There exists sets A, B, and C so that A ∩ C = ∅ but
either A 6⊆ B or B ∩ C 6= ∅.

Proof (of the negation). Let A = {1}, B = ∅, and C = ∅. Then A∩C = {1} ∩ ∅ = ∅, but {1} 6⊆ ∅
so A 6⊆ B.

(c) Write out the contrapositive of statement S. Is it true or false? Explain.

Solution. The contrapositive is “For all sets A,B,C, if A∩C 6= ∅ then A 6⊆ B or B∩C 6= ∅.” This
statement is true, since the contrapositive is always logically equivalent to the original statement,
which is true in this case.

3. Let X = {1, 2, . . . , 10}. Define the relation R on X by:

for all a, b ∈ X, aR b if and only if ab is even.

(a) Is R reflexive? Symmetric? Transitive? Give reasons.

Solution. The relation R is symmetric, but neither reflexive nor transitive.

Proof (that R is symmetric). Let a, b ∈ X and suppose that aR b. Then ab is even, and thus ba
is even since ab = ba. Hence bR a.

Proof (that R is not reflexive). Let a = 1. Then aa = 1, which is not even, so a /Ra.

Proof (that R is not transitive). Let a = 1, b = 2, and c = 1. Then aR b since ab = 2, which is
even, and bR c since bc = 2, which is even. But ac = 1, which is not even, so a /R c.

(b) Find and simplify the number of two-element subsets S of X that satisfy the following property:
∀a ∈ S, aR 1. Explain.
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Solution. The answer is
(
5
2

)
= 5!

3!2! = 5·4
2·1 = 20

2 = 10. The reason is as follows. Suppose S is a set
that has the desired property. Then S has two elements, say x and y. Then x and y must both
be even, since 1Rx and 1Ry mean that 1 · x = x and 1 · y = y must be even. Therefore the only
two-element sets with desired property are subsets of X where both elements are even. Since there
are 5 even numbers in X, there are

(
5
2

)
(i.e. 5 choose 2) ways to make subsets with the desired

property.

(c) Find the number of subsets S of X (of any size) that satisfy the following property: ∀a ∈ S, ∃b ∈ S
so that aR b. Explain

Solution. The answer is 210 − 25 = 1024− 32 = 992. The reason is as follows. Note that any set
that contains only odd elements do not satisfy the property, since the product of odd numbers is
always odd. If a subset S has at least one even number e ∈ S, then for any a ∈ A we can always
choose b = e so that ab is even. Therefore the sets S that satisfy the property are the sets that
contain at least one even element. Let A ⊆ P(X) be the set of subsets of X that contain only odd
elements. Then the set of objects that we want to count is P(X)−A, since this set consists of all
subsets of X that contain at least one even element. Note that A = P({1, 3, 5, 7, 9}), so |A| = 25,
and |P(X)| = 210. Finally,

|P(X)−A| = |P(X)| − |A|
= 210 − 25.

4. Let F denote the set of all functions from {1, 2, 3} to {1, 2, 3, 4, 5}.

(a) Find and simplify the number of functions f ∈ F so that f(1) = 4.

Solution. The answer is 52 = 25. The recipe is as follows:

1. Set f(1) to be 4. (One way.)

2. Choose f(2) to be any value from {1, 2, 3, 4, 5}. (5 ways)

3. Choose f(3) to be any value from {1, 2, 3, 4, 5}. (5 ways)

So there are 1 · 5 · 5 = 52 = 25 functions f ∈ F so that f(1) = 4.

(b) Find and simplify the number of one-to-one functions f ∈ F so that f(1) ≥ 4.

Solution. The answer is 2 · 4 · 3 = 24. The recipe is as follows:

1. Choose f(1) to be either 4 or 5. (2 ways.)

2. Choose f(2). It must be different from f(1). (4 ways)

3. Choose f(3). It must be different from f(1) and f(2) (3 ways)

(c) Find and simplify the number of functions f ∈ F so that f(1) 6= f(2).

Solution. The answer is 5 · 4 · 5 = 100. The recipe is as follows:

1. Choose f(1) to be any value from {1, 2, 3, 4, 5} (5 ways.)

2. Choose f(2). It must be different from f(1). (4 ways)

3. Choose f(3) to be any value from {1, 2, 3, 4, 5} (5 ways.)

5. (a) Give the definition of a ≡ b (mod n) (i.e. “a is congruent to b modulo n”), for arbitrary integers
a, b, n, where n > 0.

Solution. Given integers a, b, n, with n > 0, a ≡ b (mod n) if and only if n | (a− b).

(b) Prove that the relation ≡ (mod n) (“congruence modulo n”), on the set Z of all integers, is
symmetric. Use your definition from part (a). (Do not assume that the relation is an equivalence
relation.)
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Solution. Proof. Let a and b be arbitrary integers. Assume that a ≡ b (mod n). Thus n | (a− b).
This means that there is an integer k so that a− b = kn. Now b−a = (−k)n, and −k is an integer
so n | (b− a). Therefore b ≡ a (mod n).

(c) Now assume that “congruence modulo 7” is an equivalence relation on Z. Find three elements of
the equivalence class [3].

Solution. Some elements are: 3, 10, 17.

(d) Again consider the equivalence class [3] for the equivalence relation “congruence modulo 7” on Z.
Suppose that S = {1, 2, . . . , N}, where N is a positive integer. Find all possible values of N so
that [3] ∩ S contains exactly 10 elements.

Solution. The first ten positive elements of [3] are 3, 10, 17, 24, 31, 38, 45, 52, 59, and 66. Then
eleventh element is 73. For S to contain exactly 10 elements, it must contain all of these elements,
so N must be at least 66. However, if N is greater than 72, then S also contains 73 which means
that |[3] ∩ S| ≥ 11. Therefore N can be any number from {66, 67, 68, 69, 70, 71, 72}.

6. Q is the set of rational numbers. Two of the following statements are true and one is false. Prove the
true statements. Write our the negation of the false statement and prove it.

(a) ∀q ∈ Q, ∃n ∈ Z so that q + n = 271.

Solution. This statement is false. Its negation is: “There exists a q ∈ Q so that for all n ∈ Z,
q + n 6= 271.”

Proof (of the negation). Let q = 1
2 . Let n be an arbitrary integer. (We will show that q+n 6= 271.)

Suppose that q + n = 271. Then n = 271 − q − 271 − 1
2 . But 271 − 1

2 = 541
2 , which is not an

integer. This is a contradiction, since n ∈ Z. Hence the assumption that q + n = 271 was wrong.
Therefore q + n 6= 271.

(b) ∀n ∈ Z, ∃q ∈ Q so that q + n = 271.

Solution. This statement is true.

Proof. Let n be an arbitrary integer. Choose q = 271 − n. Then q is a rational number and
q + n = 271− n + n = 271.

(c) ∃n ∈ Z so that 271− n is even.

Solution. This statement is true.

Proof. Choose n = 271. Then n is an integer and 271− n = 0, which is even.

7. (a) Draw a graph with exactly 4 vertices and 6 edges, and give its adjacency matrix.

Solution. One example of such a graph and its adjacency matrix is:

1 2

3 4


0 2 1 1
2 0 1 1
1 1 0 0
1 1 0 0

 .
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(b) Draw a graph with exactly 6 vertices and 4 edges and exactly two connected components.

Solution. One example of such a graph is:

(c) Draw a tree with exactly 8 verticies, one of which has degree 6.

Solution. One example of such a graph is:

(d) Does there exist a graph with exactly 8 vertices, so that three of the vertices have degree 3 and
the remaining five vertices have degree 2? Explain.

Solution. No. If such a graph existed, the sum of the degrees of all of its vertices would be: 3 + 3 +
3 + 2 + 2 + 2 + 2 + 2 = 19, which is odd. However, the total sum of the degrees of the vertices of any
graph must be even. Thus such a graph can not exist.

8. Prove by induction on n that 6 | (7n + 11) for all integers n ≥ 0.

Solution. Let P (n) be the statement “6 | (7n + 11)” for each n ∈ Z.

Proof. We will prove that P (n) is true for all integers n ≥ 0 by induction on n.

Base case (n = 0): We have
70 + 11 · 1 + 11 = 12

which is divisible by 6, so P (0) is true.

Induction step: Let k ≥ 1 be an integer. Suppose that

6 | (7k + 11). (IH)

(We want to show that 6 | (7k+1 + 11) is divisible by 6.) By IH, there exists an integer m so that
6 | 7k + 11 = 6m. Then

7k = 6m− 11. (∗)

Now

7k+1 + 11 = 5 · 7 · 7k + 11

= 7 · (6m− 11) + 11 by (∗)
= 6 · 7m− 77 + 11

= 6 · 7m− 66

= 6 · (7m− 11),

where 7m− 11 is an integer. Therefore 7k+1 + 11 is divisible by 6.

By the principle of induction, 6 | (7n + 11) is divisible by 6 for all integers n ≥ 0.
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