THE UNIVERSITY OF CALGARY FACULTY OF SCIENCE MATHEMATICS 271 (L01, L02) FINAL EXAMINATION, WINTER 2013 TIME: 3 HOURS

NAME		ID	Section
		I	1
	1		
	2		

Total (max. 80)

SHOW ALL WORK. NO CALCULATORS PLEASE.

THE MARKS FOR EACH PROBLEM ARE GIVEN TO THE LEFT OF THE PROBLEM NUMBER. TOTAL MARKS [80]. THIS EXAM HAS 9 PAGES INCLUDING THIS ONE.

[8] 1. (a) Use the Euclidean algorithm to find gcd(77,62). Also use the algorithm to find integers x and y such that gcd(77,62) = 77x + 62y.

(b) Use part (a) to find an inverse a for 62 modulo 77 so that $0 \le a \le 76$; that is, find an integer $a \in \{0, 1, \dots, 76\}$ so that $62a \equiv 1 \pmod{77}$.

[12] 2. Let S be					
			b , if $a \mid b$ then (5a)		
(a) Prove that	at S is true. Use	the definition	of " " ("divides i	nto").	
(b) Write ou terexample.	t the converse of	f statement S .	Is it true or fals	e? Give a proof	or coun-

(c) Write out the negation of statement S. Is it true or false? Explain.

[12] 3. Let S be the power set $\mathscr{P}(\{1,2,\ldots,10\})$; that is, S is the set of all subsets of $\{1,2,\ldots,10\}$. Define the relation \mathscr{R} on S by:

for all subsets A,B of $\{1,2,\ldots,10\},$ $A\mathscr{R}B$ if and only if $A\cup B$ has exactly 3 elements.

(a) Is $\mathcal R$ reflexive? Symmetric? Transitive? Give reasons.

(b) Find and simplify the *number* of subsets $A\subseteq\{1,2,3,\ldots,10\}$ so that $A\mathscr{R}\{1,2,7\}$. Explain.

(c) Find and simplify the *number* of subsets $A \subseteq \{1, 2, 3, \dots, 10\}$ so that $A\mathscr{R} \emptyset$. Explain.

[5] 4. (a) Write out the *contrapositive* of the following statement: for all positive real numbers r, if r is irrational then \sqrt{r} is irrational.

(b) Prove the statement in part (a) by using contradiction or the contrapositive. (Use no facts about rationals or irrationals except for the definitions.)

- [5] 5. One of the following statements is true and one is false. Prove the true statement. Write out and prove the negation of the false statement.
 - (a) $\forall A \subseteq \mathbf{Z} \ \exists B \subseteq \mathbf{Z} \ \text{so that} \ (1,2) \in A \times B.$

(b) $\forall A \subseteq \mathbf{Z} \exists B \subseteq \mathbf{Z} \text{ so that } (1,2) \notin A \times B.$

[12] 6. Define the relation R on the set \mathbf{Z}^+ of all positive integers by: for all $a, b \in \mathbf{Z}^+$, aRb
if and only if the largest digit of a is equal to the largest digit of b . For example, 271 R 770
because the largest digit of 271 is 7 which is also the largest digit of 770.
(a) Prove that R is an equivalence relation on \mathbf{Z}^+ .

(b) Find the number of equivalence classes of R. Explain.

(c) Find and simplify the number of positive integers between 100 and 1000 which are in the equivalence class [271]. Explain.

[12] 7. (a) Suppose that $f: \mathbf{Z} \to \mathbf{Z}$ is a one-to-one function. Define a function $g: \mathbf{Z} \to \mathbf{Z}$ by: for all $x \in \mathbf{Z}$, g(x) = -f(x). Prove that g is also one-to-one.

(b) Suppose that $f: \mathbf{Z} \to \mathbf{Z}$ is an onto function. Define a function $g: \mathbf{Z} \to \mathbf{Z}$ by: for all $x \in \mathbf{Z}$, g(x) = f(x) + 4. Prove that g is also onto.

(c) Suppose that f and g are one-to-one functions from \mathbf{Z} to \mathbf{Z} . Define the function $h: \mathbf{Z} \to \mathbf{Z}$ by h(x) = f(x) + g(x) for all $x \in \mathbf{Z}$. Must h be one-to-one? Give a proof or counterexample.

so that so	ome vertex of G has degree 6.
	nswer part (a) again, but so that your graph G does not have an Euler circuit. To explain why you know that G does not have an Euler circuit.)
	aswer part (a) again, but so that your graph G does have an Euler circuit. (Be uplain why you know that G has an Euler circuit.)
(d) Di degree 3.	raw a tree T with exactly seven vertices and so that two of the vertices have

[6] 9. Define the sequence a_1, a_2, a_3, \ldots by: $a_1 = 1$, and $a_n = 7a_{n-1} + 4$ for all integers $n \geq 2$. Prove by induction on n that a_n is odd for all integers $n \geq 1$. (Use no facts about odd integers except the definition.)