
MATH 271 – Winter 2014
Final Exam – Solutions

1. (a) Use the Euclidean algorithm to find gcd(102, 47). Also use the algorithm to find integers x and y
such that gcd(102, 47) = 102x + 47y.

Solution. Use the Euclidean algorithm to find that gcd(102, 47) = 1 and 1 = 102 · (6)+47 · (−13).

(b) Use part (a) to find an inverse a for 47 modulo 102 so that 0 ≤ a ≤ 101; that is, find an integer
a ∈ {0, 1, . . . , 101} so that 47a ≡ 1 (mod 100).

Solution. From part (a), we see that −13 is an inverse of 47 modulo 102,

47 · (−13) = 1 + 102 · (6) ≡ 1 (mod 102).

Then 89 is another inverse of 47 modulo 102, because 89 = −13 + 102 and

47 · (89) = 47 · (−13) + 47 · (102) ≡ 47 · (−13) ≡ 1 (mod 102).

2. For this problem, use not facts about | (“divides into”) other than its definition. Recall that Z denotes
the set of all integers. Let P be the statement:

“For all positive integers a and b, if a | b then (10a) | (2b).′′

(a) Is P true? Prove your answer.

Solution. No, the statement is false.

Proof (that the statement is false, by counterexample). Let a = 1 and b = 1. Then a | b because
1 | 1. But 10 - 2, so (10a) - (2b).

(b) Write out the converse of statement P. Is the converse of P true? Explain.

Solution. The converse is “For all integers a and b, if (10a) | (2b) then a | b.” This statement is
true.

Proof. Let a and b be arbitrary positive integers. Assume that (10a) | (2b). Then there exists an
integer k so that 2b = 10ak. Dividing this equation by 2 gives us that b = (5k)a, where 5k is an
integer. Thus a | b.

(c) Write out the contrapositive of P. Is the contrapositive of P true? Explain.

Solution. The contrapositive is “For all integers a and b, if (10a) - (2b) then a - b.” This statement
is false, since the contrapositive is always logically equivalent to the original statement, which is
false.

3. Of the following statements, one is true and one is false. Use the “element method” to prove the true
statement. For the false statement, write out its negation and prove that.

(a) For all sets A, B, and C, if B ⊆ C then A− C ⊆ A−B.

Solution. This statement is true.

Proof. Let A, B, and C be arbitrary sets. Suppose that B ⊆ C. (We want to show that A− C ⊆
A−B.) Let x ∈ A−C. (We want to show that x is also in A−B.) Then x ∈ A and x /∈ C. (We
will show that x /∈ B.) Suppose that x ∈ B. Then x ∈ C, since B ⊆ C. But this is a contradiction,
since we know that x /∈ C. Then the assumption that x ∈ B is wrong, hence x /∈ B. Therefore
x ∈ A and x /∈ B, which means that x ∈ A−B.
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(b) For all sets A, B, and C, if A− C = A−B then B = C.

Solution. This statement is false. Its negation is: “There exist sets A, B, and C so that A−C =
A−B but B 6= C.”

Proof (of the negation). Let A = ∅, B = ∅ and C = {1}. Then A − B = ∅ − ∅ = ∅ and
A− C = ∅ − {1} = ∅, so A−B = A− C. But ∅ 6= {1}, thus B 6= C.

4. Let f and g be functions from Z to Z defined by f(x) = 2x and g(x) =
⌊
x
2

⌋
for any x ∈ Z.

(a) Find f ◦ g(1), f ◦ g(2), and f ◦ g(3).

Solution. We have f ◦ g(1) = f(g(1)) = 2
⌊
1
2

⌋
= 0, f ◦ g(2) = f(g(2)) = 2

⌊
2
2

⌋
= 2, and

f ◦ g(2) = f(g(3)) = 2
⌊
3
2

⌋
= 2.

(b) Is f ◦ g onto Z? Explain.

Solution. No, f ◦ g is not onto.

Proof. Suppose that f ◦ g is onto. Then there exists an integer x ∈ Z so that f ◦ g(x) = 1, since
1 ∈ Z. This means that 2

⌊
x
2

⌋
= 1, and thus

⌊
x
2

⌋
= 1

2 . This is a contradiction, since
⌊
x
2

⌋
must

be an integer by definition of floor, but 1
2 is not an integer. Hence there is no integer x so that

f ◦ g(x) = 1. Therefore f ◦ g is not onto.

(c) Find g ◦ f(1), g ◦ f(2), and g ◦ f(3).

Solution. We have g ◦ f(1) = g(f(1)) =
⌊
2·1
2

⌋
= 1, g ◦ f(2) = g(f(2)) =

⌊
2·2
2

⌋
= 2, and

g ◦ f(3) = g(f(3)) =
⌊
2·3
2

⌋
= 3.

(d) Is g ◦ f one-to-one? Explain.

Solution. Yes, g ◦ f is one-to-one.

Proof. Let x1 and x2 be arbitrary integers. Suppose that (g ◦ f)(x1) = (g ◦ f)(x2). (We will show
that x1 = x2.) This means that

⌊
2x1

2

⌋
=
⌊
2x2

2

⌋
, which simplifies to bx1c = bx2c. But bx1c = x1

and bx2c = x2 since x1 and x2 are integers. Therefore x1 = x2. Thus g ◦ f is one-to-one.

5. Let A = {1, 2, 3, . . . , 2014} = {x | 1 ≤ x ≤ 2014}. Let P be the set of non-empty subsets of A. Define
the relation R on P by:

for any X,Y ∈ P, X RY if and only if the largest element of X equals the largest element of Y.

(a) Prove that R is an equivalence relation on P.

Solution. Proof. We prove that R is reflexive, symmetric, and transitive.

• (Reflexive) Let X ∈ P. Then X is a non-empty subset of A. The largest element of X is equal
to itself. Thus X RX. Hence R is reflexive.

• (Symmetric) Let X,Y ∈ P. Then X and Y are non-empty subsets of A. Assume that X RY .
Then the largest element of X is equal to the largest element of Y . Hence the largest element
of Y is equal to the largest element of X. So Y RX. Therefore R is symmetric.

• (Transitive) Let X,Y, Z ∈ P. Then X, Y , and Z are non-empty subsets of A. Assume that
X RY and Y RZ. Then the largest element of X is equal to the largest element of Y , which
is equal to the largest element of Z. Hence X RZ and thus R is transitive.

Thus R is an equivalence relation because it is reflexive, symmetric, and transitive.

(b) List all of the elements of [{3}] (the equivalence class of {3}).
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Solution. The equivalence class of {3} under the equivalence relation R is

[{3}] =
{
{3}, {1, 3}, {2, 3}, {1, 2, 3}

}
.

(c) How many equivalence classes does R have? Explain.

Solution. There are 2014 equivalence classes of R. The reasoning is as follows. For any subset X
of A, the largest element of X must be one of {1, 2, . . . , 2014}. Furthermore, for each of the 2014
elements x of {1, 2, . . . , 2014}, there is a set {x} ⊆ A whose largest element is x.

(d) How many elements does the equivalence class [{271}] have? Explain.

Solution. There are 2270 − 1 elements of [{271}]. The reasoning is as follows. A set X is related
to {271} if and only if the largest element of X is 271, since the largest element of {271} is 271.
To make a subset X ⊆ A that is related to {271}, we make a non-empty subset of {1, 2, 3, . . . , 270}
and include 271 in it. There are 2270 subsets of {1, 2, 3, . . . , 270}, one of which is empty.

6. Let A = {1, 2, 3, . . . , 2014} = {x | 1 ≤ x ≤ 2014}. Define the relation R on A by:

for any x, y ∈ A, xR y if and only if there exists a prime p so that p | x and p | y.

(a) Is R reflexive? symmetric? transitive? Explain.

Solution. The relation R is symmetric, but neither reflexive nor transitive.

Proof (that R is not reflexive). Note that 1 ∈ A, but there are no primes p so that p | 1. So 1 /R 1.
Hence R is not reflexive.

Proof (that R is symmetric). Let x, y ∈ A and suppose that xR y. Then there exists a prime p so
that p | x and p | y. Hence p | y and p | x, and thus y Rx. Hence R is symmetric.

Proof (that R is not transitive). Let x = 3, y = 6, and z = 2. Then xR y since 3 | 3 and 3 | 6,
and 3 is prime. Also y R z since 2 | 6 and 2 | 2, and 2 is prime. But there are no primes that divide
both 2 and 3, so 2 - 3. Hence R is not transitive.

(b) Find three elements a, b, c of A so that 271Ra, 271Rb and 271Rc.

Solution. Three examples of elements a, b, and c are a = 542 = 271 · 2, b = 813 = 271 · 3 and
c = 1084 = 271 · 4.

(c) How many elements x of A are there so that 271Rx? Explain.

Solution. There are 7 elements. The reasoning is as follows. Since 271 is prime, the only prime
that divides 271 is 271. Hence, any element x ∈ A so that 271Rx must be divisible by 271. There
are 7 multiples of 271 that are less than or equal to 2014. They are:

271, 271 · 2 = 542, 271 · 3 = 813, 271 · 4 = 1084, 271 · 5 = 1355, 271 · 6 = 1626, and 271 · 7 = 1897.

(Note that 271 · 8 = 2168, which is greater than 2014.)

7. Only one of the following statements is true. Prove the true statement. For the other two statements,
write out their negations and prove them. You can use the fact that

√
2 is irrational. For irrational

numbers other than
√

2, you must explain why they are irrational.

(a) For all non-zero real numbers a and b, if a is rational and b is irrational then ab is irrational.

Solution. This statement is true.
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Proof. Let a and b be arbitrary non-zero real numbers. Assume that a is rational and b is irrational.
Since a is rational, there exist integers x and y so that a = x

y and y 6= 0. Furthermore, x 6= 0 since

a 6= 0. (We will show that ab is irrational.) Suppose that ab is rational. Then there exist integers
m and n so that abmn and n 6= 0. Then m

n = ab = x
y b. Since x 6= 0 we can divide by x and multiply

by y to both sides of the equation. This gives us

b =
my

nx
.

where my and nx are integers and nx 6= 0 since x 6= 0 and n 6= 0. Hence b is rational. This is a
contradiction, since b is irrational. Thus the assumption that ab is rational is wrong. Therefore ab
is irrational.

(b) For all real numbers a and b, if both a and b are irrational then a + b is irrational.

Solution. This statement is false. Its negation is “There exist real numbers a and b so that both
a and b are irrational but a + b is not irrational.”

Proof (of the negation). Let a =
√

2 and let b = −
√

2. Then a is irrational. We first show that b is
irrational. Suppose instead that b is rational. Then there exist integers m and n so that −

√
2 = m

n

and n 6= 0. Then
√

2 = −m
n = −m

n where −m is an integer and n 6= 0. Thus
√

2 is rational.
This is a contradiction, so the assumption that b is rational is false. Hence b is irrational. Now
a + b =

√
2−
√

2 = 0, which is rational.

(c) For all real numbers a and b, if both a and b are irrational then ab is irrational.

Solution. This statement is false. Its negation is “There exist real numbers a and b so that both
a and b are irrational but ab is rational.”

Proof (of the negation). Let a =
√

2 and b =
√

2. Then both a and b are irrational, since
√

2 is
irrational. But ab =

√
2
√

2 = 2, which is rational.

8. (a) Draw a simple graph with exactly six vertices and exactly nine edges.

Solution. One example of such a graph is:

This graph is simple, because it has no loops and has no parallel edges.

(b) Draw a simple graph with exactly six vertices and exactly nine edges that is not bipartite but has
an Euler circuit.

Solution. One example of such a graph is:

a b c

d e f

This graph is simple, because it has no loops and has no parallel edges. This graph is not bipartite
since it is not possible to split up the the vertices a, b, and d into two separate sets so that none
of the elements in each set are adjacent.
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Finally, the graph has an Euler circuit because it is connected and each vertex has even degree.
One example of an Euler circuit would be the closed walk that starts and ends at a given by:

a→ b→ d→ a→ e→ c→ b→ f → c→ a.

This walk uses every edge exactly once, and starts and ends at the same point.

(c) Draw a simple graph with exactly six vertices and exactly nine edges that is bipartite but does not
have an Euler circuit.

Solution. One example of such a graph is:

This graph is clearly bipartite since the upper points are only adjacent to the lower points and vice
versa. It does not have an Euler trail, because it has at least one vertex with odd degree. Namely,
all of the vertices have odd degree!

9. Prove by induction on n that
n∑

i=1

i = n(n+1)
2 for all integers n ≥ 1.

Solution. Let P (n) be the statement: ‘
n∑

i=1

i = n(n+1)
2 ”.

Proof. We will prove that P (n) is true for all integers n ≥ 1 by induction on n.

Base case (n = 1): We have
n∑

i=1

i = 1, and 1(1+1)
2 = 1. So P (1) is true.

Induction step: Let k ≥ 1 be an integer. Suppose that

k∑
i=1

i =
k(k + 1)

2
. (IH)

(We want to show that
k+1∑
i=1

i = (k+1)(k+2)
2 .) Now

k+1∑
i=1

i =

k∑
i=1

i + (k + 1)

=
k(k + 1)

2
+ (k + 1) by IH

= (k + 1)

(
k

2
+ 1

)
=

k + 1

2
(k + 2)

=
(k + 1)(k + 2)

2
,

which is what we wanted to show.

By the principle of induction,
n∑

i=1

i = n(n+1)
2 for all integers n ≥ 1.
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