MATH 271 – Summer 2016 Midterm – solutions

1. (4 points) Use the Euclidean Algorithm to compute gcd(94, 49). Use this to find integers x and y so that gcd(94, 49) = 94x + 49y.

Solution: Note that

$$\begin{array}{l} 94 = 1 \cdot 49 + 45 \\ 49 = 1 \cdot 45 + 4 \\ 45 = 11 \cdot 4 + 1 \\ \text{and} \quad 4 = 4 \cdot 1 + 0. \end{array}$$

Using the Euclidean Algorithm, this implies that

$$gcd(94, 49) = gcd(49, 45)$$

= $gcd(45, 4)$
= $gcd(4, 1)$
= $gcd(1, 0) = 1.$

Hence gcd(94, 49) = 1. Now

$$1 = 45 - 11 \cdot 4$$

= 45 - 11 \cdot (49 - 45) since 4 = 49 - 45
= -11 \cdot 49 + 12 \cdot 45
= -11 \cdot 49 + 12 \cdot (94 - 49) since 45 = 94 - 49
= -11 \cdot 49 + 12 \cdot 94 - 12 \cdot 49
= 12 \cdot 94 - 23 \cdot 49.

so we can choose x = 12 and y = -23 so that gcd(94, 49) = 94x + 49y. Alternatively, using the 'table method':

		x	y
R_1	94	1	0
R_2	49	0	1
$R_3 = R_1 - R_2$	45	1	-1
$R_4 = R_2 - R_3$	4	-1	2
$R_5 = R_3 - 11R_4$	1	12	-23

2. (10 points) For this problem, use no facts about | ("divides") other than its definition. Let S be the statement: "For all integers a and b, if a | b then (6a) | (2b)."

(a) Prove that \mathcal{S} is false by writing out its negation and proving that.

Solution: The negation is: "There exist integers a and b so that $a \mid b$ but $(6a) \nmid (2b)$."

Proof. Let a = 1 and b = 1. Then $a \mid b$ since $1 \mid 1$, but $(6a) \nmid (2b)$ since $6 \nmid 2$.

(b) Write out the converse of \mathcal{S} . Prove that the converse is true.

Solution: The converse is: "For all integers a and b, if $(6a) \mid (2b)$ then $a \mid b$."

Proof. Let a and b be integers. Assume that $(6a) \mid (2b)$. This means that there exists an integer m so that 2b = 6am. Note that $6am = 2 \cdot 3am$ Dividing both sides by 2, we see that

$$b = 3am = a(3m),$$

where 3m is an integer. Hence *a* divides *b*.

(c) Write out the contrapositive of \mathcal{S} . Is the contrapositive true? Explain.

Solution: The contrapositive is: "For all integers a and b, if $(6a) \nmid (2b)$ then $a \nmid b$." The contrapositive is false, because it is logically equivalent to the original statement which is false.

3. (8 points) Prove by induction that
$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$$
 for all integers $n \ge 1$

Proof. We prove this by induction on n.

Base case (n = 1): Note that $\sum_{i=1}^{1} i(i+1) = 1(1+1) = 1 \cdot 2 = 2$ and $\frac{1(1+1)(1+2)}{3} = \frac{1 \cdot 2 \cdot 3}{3} = 2$. Thus $\sum_{i=1}^{1} i(i+1) = \frac{1(1+1)(1+2)}{3}$ since both sides are equal to 2. Inductive step: Let $k \ge 1$ be an arbitrary integer and suppose that

$$\sum_{i=1}^{k} i(i+1) = \frac{k(k+1)(k+2)}{3}.$$
 (IH)

(We will show that $\sum_{i=1}^{k+1} i(i+1) = \frac{(k+1)(k+1+1)(k+1+2)}{3}$.) Now

$$\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)(k+1+1)$$

= $\frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$ by IH
= $(k+1)(k+2)\left(\frac{k}{3}+1\right)$
= $\frac{(k+1)(k+2)(k+3)}{3}$
= $\frac{(k+1)(k+1+1)(k+1+2)}{3}$,

which is what we wanted to show.

By the principle of mathematical induction, $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$ for all integers $n \ge 1$.

- 4. (10 points) Of the following statements, **one is true and one is false**. Prove the true statement. For the false statement, write its negation and prove that. Use the element method.
 - (a) For all sets A, B, and C, if $A \cap B = \emptyset$ and $C \subseteq B$ then $A \cap C = \emptyset$. Solution: This statement is true.

Proof. Let A, B, and C be sets. Suppose that $A \cap B = \emptyset$ and $C \subseteq B$. (We want to show that $A \cap C = \emptyset$.) Suppose instead that $A \cap C \neq \emptyset$. Then there exists an element $x \in A \cap C$. This means that $x \in A$ and $x \in C$. Thus $x \in B$, since $x \in C$ and $C \subseteq B$. Hence $x \in A \cap B$, since $x \in A$ and $x \in B$. But $A \cap B = \emptyset$, so $x \in \emptyset$, which is a contradiction. Thus the assumption that $A \cap C \neq \emptyset$ must be wrong. Therefore $A \cap C = \emptyset$.

(b) For all sets A, B, and C, A − (B ∪ C) = (A − B) ∪ C.
Solution: This statement is false. Its negation is: "There exist sets A, B, and C so that A − (B ∪ C) ≠ (A − B) ∪ C." *Proof.* Let $A = \emptyset$, $B = \emptyset$, and $C = \{4\}$. Then $A - (B \cup C) = \emptyset - (B \cup C) = \emptyset$, but $(A - B) \cup C = (\emptyset - \emptyset) \cup \{4\} = \emptyset \cup \{4\} = \{4\}$. Hence $A - (B \cup C) \neq (A - B) \cup C$.

- 5. (8 points) In this problem, use no properties of rational and irrational numbers other than the definition of rational.
 - (a) Use proof by contradiction to prove the following statement. "For all real numbers x, if x is irrational then $\frac{1}{x}$ is irrational."

Proof. Let $x \in \mathbb{R}$. Suppose that x is irrational. Assume (for the sake of getting a contradiction) that $\frac{1}{x}$ is rational. Then there exist integers a and b such that $\frac{1}{x} = \frac{a}{b}$ and $b \neq 0$. Note that b = ax, and thus $a \neq 0$ since $b \neq 0$. Now

$$x = \frac{b}{a}$$

where a and b are integers and $a \neq 0$. This means that x is rational and x is irrational, a contradiction. So the assumption that $\frac{1}{x}$ is rational must be wrong. Therefore $\frac{1}{x}$ is irrational.

(b) Prove the following statement. You may use the result from part (a)."For all irrational numbers x, there exists an irrational number y so that xy is rational."

Proof. Let x be an irrational real number. Choose $y = \frac{1}{x}$. From part (a), we know that y is also irrational. Now $xy = x\frac{1}{x} = 1$, which is rational.

6. (10 points) Consider the following sets of integers:

 $A = \{ x \in \mathbb{Z} \mid 10 \le x \le 100 \text{ and } x \text{ is even} \}$ and $B = \{ x \in \mathbb{Z} \mid 10 \le x \le 100 \text{ and the sum of the digits of } x \text{ is even} \}.$

(Example: The sum of the digits of 12 is 1 + 2 = 3.) No explanation is needed for your answers for (a), (b), or (c).

- (a) Give three elements of A B.
 Solution: Some elements of A B include: 10, 12, 14.
- (b) Give three elements of B A.
 Solution: Some elements of B A include: 11, 13, 15.
- (c) Give three elements of $\mathcal{P}(A \cap B)$. Solution: Some elements of $\mathcal{P}(A \cap B)$ include: \emptyset , {20}, {20, 40}.
- (d) Give one element of $(A \times B) (B \times A)$. Explain your answer. **Solution:** One element of $(A \times B) - (B \times A)$ would be (10, 11). Note that $(10, 11) \in A \times B$, since $10 \in A$ and $11 \in B$. Also note that $(10, 11) \notin B \times A$, since $10 \notin B$. Thus $(10, 11) \in (A \times B) - (B \times A)$.
- (e) How many elements does A B have? Explain your answer.

Solution: There are 26 elements in A - B. The reasoning is as follows. Note that $|A - B| = |A| - |A \cap B|$. Also note that |A| = 46. Now $A \cap B$ consists of all $x \in \mathbb{Z}$ with $10 \le x \le 100$ such that x is even and the sum of the digits of x is even. This is exactly the set of two-digit numbers that have both digits even. There are 20 elements in $A \cap B$. Here is a recipe:

- 1. Choose the one's digit. It must be even, so it can be one of $\{0, 2, 4, 6, 8\}$. There are 5 choices.
- 2. Choose the ten's digit. It must be even, but it can't be zero, so it can be one of {2,4,6,8}. There are 4 choices.

Hence $|A \cap B| = 5 \cdot 4 = 20$. Therefore

$$|A - B| = |A| - |A \cap B|$$

= 46 - 20
= 26.