
ECE 206 – University of Waterloo Fall 2019

Lecture notes for Week 2
Lecturer: Mark Girard September 10, 2019

2.1 Line integrals of scalar and vector fields

Roughly speaking, a field defines how a scalar-valued or a vector-valued quantity varies in space.

2.1.1 Scalar fields

Definition 2.1 (Scalar fields). Let D ⊂ Rn be a region of space. A scalar field on D is a function
f : D → R. The region D is the domain of f .

An arbitrary point in Rn is typically denoted as r, with components denoted by

r = (x1, x2, . . . , xn).

In R2 and R3, the standard names of the components of the variable r are r = (x, y) and r = (x, y, z).
A field typically represents some sort of physical quantity that varies in space. Some examples of physical
quantities that are typically represented by fields include:

• Temperature, atmospheric pressure, and humidity of a point in space

• Density (such as mass density or charge density)

• Potential fields (such as gravitational or electrostatic potential)

Example 2.2. Suppose the temperature at any given point on a square plate, which extends over 0 ≤ x ≤ 1
and 0 ≤ y ≤ 1, is given by

T (x, y) =
100

(x+ 1)2 + (y + 1)2
.

The temperature T is a scalar field whose domain is the two-dimensional square D = {(x, y) |x, y ∈ [0, 1]}.
A scalar field in R2 can be visualized by examining its graph in R3, or by viewing its level curves in R2. The
temperature field defined in this example is depicted in Figure 2.1.
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Figure 2.1: Visualizing the temperature field in Example 2.2 from its level curves and its graph.
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2.1.2 Line integrals of scalar fields

Let f : D → R be a scalar field on some region D ⊂ Rn of space and let γ : [a, b] → D be a C1 path. The
path integral (or line integral) along the path γ is equal to∫ b

a

f(γ(t)) ‖γ′(t)‖ dt.

If γ is only piecewise C1, then we may split the integral over subintervals [a0, a1], [a1, a2], . . . , [aN−1, aN ]
such that γ is C1 and regular on each subinterval and compute the path integral by summing up the integrals
over the subintervals∫ b

a

f(γ(t)) ‖γ′(t)‖ dt =

∫ a1

a0

f(γ(t)) ‖γ′(t)‖ dt+ · · ·+
∫ aN

aN−1

f(γ(t)) ‖γ′(t)‖ dt.

Recalling from last week our formalism for computing the distance travelled by a path, we see that the
integral computing the distance is just a path integral where we take the constant function f(r) = 1 for
all r.

Now suppose that Γ ⊂ D is a C1 simple curve in Rn. Analogous to our analysis from last time, where
we showed that the length of the curve is independent of parameterization, it can also be shown that path
integrals are also independent of parameterization. The path integral along the simple C1 curve Γ is denoted∫

Γ

f ds. (2.1)

If γ : [a, b] → Rn is any regular C1 parameterization of Γ, then the value of this path integral can be
computed as ∫

Γ

f ds =

∫ b

a

f(γ(t)) ‖γ′(t)‖ dt

and this is independent of the parameterizing path.
The value of a path integral of a scalar field along a curve can be thought of as the area under the curve

along the surface of the graph of the scalar field, as shown in Figure 2.2

Figure 2.2: A path integral of a scalar field can be thought of as the area under the curve along
the surface of the graph of the scalar field.

Example 2.3. Suppose a helical wire in space is modeled by the helix that is parameterized by the path
γ : [0, 4π]→ R3 defined as

γ(t) = (R cos t, R sin t, 3t)

where R > 0 is the radius of the helix. If the linear charge density of the wire at a point r = (x, y, z) is given
by ρ(x, y, z) = xyz, what is the total charge of the wire?
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Here we must evaluate the path integral ∫
Γ

ρ ds

using the parameterization defined above. Note that the speed of the path is

γ(t) =

√
R2(sin2 t+ cos2 t) + 3 =

√
R2 + 9,

and the charge density of a point of the wire wire along the path is

ρ(γ(t)) = 3t cos t sin t.

The total charge of the wire is therefore∫
Γ

ρ ds =

∫ 4π

0

3t cos t sin t
√
R2 + 9 dt

= 3
√
R2 + 9

∫ 4π

0

1

2
t sin 2t dt

= −3π
√
R2 + 9.

Remark. If a simple curve Γ ⊂ Rn is only piecewise C1, it may be thought of as the union of a bunch of
C1 curves,

Γ = Γ1 ∪ Γ2 ∪ · · · ∪ ΓN ,

and the path integral along this piecewise C1 curve is defined as∫
Γ

f ds =

∫
Γ1

f ds+

∫
Γ2

f ds+ · · ·
∫

ΓN

f ds.

Example 2.4. Let Γ be the piecewise C1 curve that is the union of the curves below. Evaluate

∫
Γ

x3 ds.

We must first parameterize each of the component curves. We may choose

Γ1 : γ1(t) = (t,−1) for − 2 ≤ t ≤ 0

Γ2 : γ2(t) = (t, t3 − 1) for 0 ≤ t ≤ 1

Γ3 : γ3(t) = (1, t) for 0 ≤ t ≤ 2

The line integrals over each of these curves are∫
Γ1

x3 ds =

∫ 0

−2

t3
√

(1)2 + (0)2 dt =

∫ 0

−2

t3 dt = −4∫
Γ2

x3 ds =

∫ 1

0

t3
√

(1)2 + (3t2)2 dt =

∫ 1

0

t3
√

1 + 9t4 dt =
1

54

(
103/2 − 1

)
≈ 0.57∫

Γ3

x3 ds =

∫ 2

0

13
√

(0)2 + (1)2 dt =

∫ 2

0

1 dt = 2.
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The value of the line integral that we were asked to compute is∫
Γ1

x3 ds+

∫
Γ1

x3 ds+

∫
Γ1

x3 ds ≈ −1.43.

Finally, we must introduce the idea of differentiability for scalar fields.

Definition 2.5 (Differentiability for scalar fields). Let f : D → R be a scalar field on a region
D ⊂ Rn.

• We say that f is C1 if all of the partial derivatives

∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

exist and are continuous on all of D.

• We say that f is C2 if all of the partial derivatives

∂2f

∂xi∂xj

exist and are continuous on D for all indices i, j ∈ {1, . . . , n}.

2.1.3 Vector fields

Definition 2.6 (Vector field). A vector field on a region D ⊂ Rn is a function F : D → Rn.

A vector field is a vector-valued function that assigns a vector F (r) ∈ Rn to each point r ∈ D. Similar to
paths, a vector field is typically defined in terms of its component functions, and one writes

F (r) =
(
F1(r), F2(r), . . . , Fn(r)

)
,

where each of the components F1, . . . , Fn is a scalar field.

Figure 2.3: Some physical examples of vector fields.

Vector fields are usually only defined in two- or three-dimensional space and can be used to represent
physical vector-valued quantities at each point in space. Some physical examples of vector fields include:
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• Wind speed and direction for weather maps.

• Ocean currents or flow speed of a fluid in a pipe.

• Force fields (e.g. gravitational, electric, and magnetic fields) that indicate the force felt by a particle
at that position.

A vector field F in R2 can be visualized by drawing the a scaled version of the vector F (x, y) at various
points (x, y) on the plane. Some examples of vector fields are shown in Figure 2.4.
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(c) F (x, y) =
(
ln(1 + y2), ln(1 + x2)

)
Figure 2.4: Some examples of vector fields in R2.

Vector fields in R3 can be visualized in a similar manner.

(a) F (x, y, z) = (1, 2, z) (b) F (x, y, z) = (x, y, 3) (c) F (x, y, z) = xı̂+ ŷ+ zk̂

Figure 2.5: Some examples of vector fields in R3.

Example 2.7. Suppose a point particle with charge q is located at the origin. The electric field resulting
from this point charge is given by

E(x, y, z) =

(
kqx

(x2 + y2 + z2)3/2
,

kqy

(x2 + y2 + z2)3/2
,

kqz

(x2 + y2 + z2)3/2

)
,
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where k ≈ 9.0× 109 N ·m2/C2 is the electrostatic constant (or Coulomb’s constant). We can also write this
field using r = (x, y, z) as

E(r) =
kqr

r3

where r is the magnitude of r

r = ‖r‖ =
√
x2 + y2 + z2.

Note that this vector field is clearly not defined at the origin r = 0, since r = ‖r‖ = 0 at this point and we
cannot divide by zero. The domain of this vector field is therefore everywhere in R3 except the origin:

D = {r ∈ R3 | r 6= 0}

which we can also write as
D = R3 \ {0}

(i.e., all of R3 with the origin removed). This vector field can be visualized as in the following figure. Notice
how the magnitude drops off significantly away from the origin.
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Figure 2.6: Visualization of the electric field emanating from a point charge at the origin.

The vector field in Example 2.7 is an example of a radial vector field, since field F (r) at a point r always
points in the same direction as r and the magnitude of F (r) depends only on r = ‖r‖, the magnitude of r.
Redial vector fields are of the form

F (r) = f(r)r

for some function f , where r = (x1, x2, . . . , xn) and

r = ‖r‖ =
√
x2

1 + · · ·+ x2
n.

We also need a notion of differentiability for vector fields.

Definition 2.8 (Differentiability of vector fields). Let F : D → R be a vector field on a region
D ⊂ Rn with component functions F (r) =

(
F1(r), F2(r), . . . , Fn(r)

)
. For any integer k, the vector field

F is Ck if each of the component functions F1, . . . , Fn are Ck as scalar fields.
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2.1.3.1 Flow lines

Visualizing a vector field by drawing many different vectors at each point can be rather cumbersome. Another
way of visualizing a vector field is by drawing some of its flow lines. The flow lines give an intuition of the
‘flow’ of the vector field. Mathematical software can be used to draw flow lines using a computer.

Definition 2.9 (Flow lines). Let F : D → Rn be a vector field in Rn. A flow line (or a streamline)
of F is a path γ : [a, b]→ Rn such that γ′(t) = F (γ(t)) for all t.
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(c) F (x, y) =
(
−1− x2, 1 + x− y2

)
Figure 2.7: Some vector fields in R2 with some of their flow lines drawn.

Finding the equation for a path of a flow line amounts to solving a system of differential equations. For
example, in R2, a path and a vector field are given by their coordinate functions

γ(t) = x(t) ı̂+ y(t) ̂ and F (x, y) = F1(x, y) ı̂+ F2(x, y) ̂.

Equating the components of the velocity γ′(t) of the path and the vector field F (γ(t)) yields the system{
x′(t) = F1(x(t), y(t))

y′(t) = F2(x(t), y(t)).

Finding a pair of functions x(t) and y(t) that simultaneously satisfy these equations gives us a flow line.

Example 2.10. Here are some examples of fields in R2 for which we can solve the differential equations to
find equations for their flow lines.

1. For the vector field F (x, y) = (−y, x), the differential equations for the flow lines are

dx

dt
= −y and

dy

dt
= x.

One way to find solutions is to multiply the first equation by y and the second equation by x to get

x
dx

dt
= −xy and y

dy

dt
= xy.

Now we can equate

y
dy

dt
= −xdx

dt
to find x

dx

dt
+ y

dy

dt
= 0 =⇒ 1

2

d

dt

(
x2 + y2

)
= 0.
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That is, the variables x(t) and y(t) satisfy the equations of a circle:

x2 + y2 = c

for some constant c. Different values of c yield different curves. This vector field with some of its flow
lines drawn can be seen in Figure 2.7(a).

2. For the vector field F (x, y) = (1, x), the differential equations defining the flow lines are

dx

dt
= 1 and

dy

dt
= x.

We may take x = t and solve the differential equation

dy

dt
= t

which has solutions

y(t) =
1

2
t2 + c

for a constant c. The resulting paths trace out parabolas.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2.8: Flow lines for the field F (x, y) = (1, x) are graphs of parabolas y = 1
2x

2 + c.

3. For the vector field F (x, y) = (1, y), the differential equations defining the flow lines are

dx

dt
= 1 and

dy

dt
= y.

We may similarly take x(t) = t. To solve the second differential equation,

dy

dt
= y =⇒

∫
1

y
dy =

∫
dt =⇒ ln|y| = t+ c0

for a constant c0. Rearranging yields
y = ±etec0

so the solutions are y(t) = cet for a constant c. The resulting flow lines are graphs of exponential
functions.
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Figure 2.9: Flow lines for the field F (x, y) = (1, y) are graphs of exponential functions y = cex.

Figure 2.10: A simple C1 curve can have two different orientations.

2.1.4 Oriented curves

An orientation of a C1 curve is a way of continuously assigning a unit vector to each point of the curve that
is tangent to the curve at that point. (Recall that a vector v is a unit vector if ‖u‖ = 1.) Intuitively, we see
that any simple curve can have exactly two different possible orientations.

Any simple C1 curve (or simple piecewise C1 curve) can be given an orientation by a regular parameter-
ization. If γ : [a, b]→ Rn is a regular parameterization of a C1 curve Γ, we can define a unit vector at each
point γ(t) ∈ Γ on the curve by taking the vector

T (γ(t)) =
γ′(t)

‖γ′(t)‖
.

This is indeed tangent, since it is a scaled version of the tangent vector γ′(t), and it is a unit vector since

‖T (γ(t))‖ =
‖γ′(t)‖
‖γ′(t)‖

= 1.

Two parameterizations give the same orientation if they go in the same direction.

Definition 2.11 (Oriented curve). An oriented curve in Rn is a simple curve Γ together with an
orientation.
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A parameterization an oriented C1 curve Γ is a regular path parameterizing the curve such that the
velocity of the path is always pointing in the same direction of the orientation.

Given an oriented curve Γ ⊂ Rn, one may consider its corresponding reverse curve −Γ (or sometimes
also denoted Γ−), which is just the same curve but with the reverse orientation. If γ : [a, b] → Rn is a
parameterization of Γ, a parameterization of −Γ can be found γ− : [−b,−a]→ Rn by defining

γ−(t) = γ(−t),

which is simply the time reversal of γ. The velocity of the reversed path at any time t is

γ′−(t) = −γ(−t),

which is tangent to the curve but points in the opposite direction to the tangent found from the original
path γ.

2.1.5 Line integrals of vector fields

2.1.5.1 Work done by a force

We first recall some facts about force and work from elementary physics. If a force (with magnitude ‖F ‖)
pulls an object along a surface, and the force moves the object a distance of ∆x in the same direction of the
the force, the amount of work done by the force is equal to

work done = ‖F ‖∆x.

If the force is not necessarily pulling in the same direction that the object moves (the angle between the
direction of movement and the direction of the force is θ), the work done is

work done = ‖F ‖ sin θ∆x.

Consider the displacement vector of the object to be ∆r = ∆x ı̂ and the suppose vector of the force to
be F (r) = F1(r)̂ı+ F2(r)̂. That is

∆r =

(
∆x
0

)
∆F (r) =

(
F1(r)
F2(r)

)
.
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Then the work done can be computed as the dot product

work done = ‖F ‖ sin θ∆x = F ·∆r.

This analysis assumes that the force is constant (in both direction and magnitude) and that the displacement
is along a straight line. If the force changes in space and the object moves along a curve instead of a straight
line, the work done is computed by a line integral where we add up all a bunch of infinitesimally small
amounts of work done by the field on infinitely small segments of the curve. Line integrals of curves are
computed by parameterizing the curve.

2.1.5.2 Definition of line integrals

Let F : D → Rn be a vector field defined on a region D ⊂ Rn and let γ : [a, b]→ Rn be a C1 path. The line
integral of the field along the path γ is defined as∫ b

a

F (γ(t)) · γ′(t) dt.

Note that line integrals of vector fields are direction dependent. If we reverse the path and instead take
the line integral of F along the reverse path γ−(t), we get∫ −a

−b
F (γ−(t)) · γ′−(t) dt =

∫ −a
−b

F (γ(−t)) · γ′(t) dt

= −
∫ b

a

F (γ(s)) · γ′(s) ds

where in the last line we make the change of variables s = −t. This is exactly the negative of the value of
the line integral of F along the original path γ.

On the other hand, if two regular C1 paths γ1 and γ2 parameterize the same simple curve Γ with the
same orientation, one has that∫ b1

a1

F (γ1(t)) · γ′2(t) dt =

∫ b2

a2

F (γ2(t)) · γ′2(t) dt.

Thus, given an oriented C1 curve Γ, we may unambiguously define the line integral of F along the curve Γ
as ∫

Γ

F · dr =

∫ b

a

F (γ(t)) · γ′(t) dt

for any orientation preserving parameterization γ : [a, b]→ Rn of Γ.
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Example 2.12. Consider the vector field defined by F (x, y) = (y,−x).

• For the path γ1 : [0, π/2] → R2 defined by γ1(t) = (cos t, sin t), the line integral of F along the curve
Γ1 defined by this path can be computed as follows. The velocity of the path is

γ′1(t) = (− sin t, cos t)

and the field evaluated at each point on the curve is

F (γ1(t)) = F (cos t, sin t) = (sin t,− cos t).

The line integral is therefore∫
Γ1

F · dr =

∫ π/2

0

(sin t,− cos t) · (− sin t, cos t) dt

= −
∫ π/2

0

(sin2 t+ cos2 t) dt = −
∫ π/2

0

1 dt = −π
2
.

beginitemize

• For the path γ2 : [0, 1] → R2 defined by γ2(t) = (1 − t, t), the line integral of F along the curve Γ2

defined by this path can be computed as follows. The velocity of the path is

γ′2(t) = (−1, 1)

and the field evaluated at each point on the curve is

F (γ2(t)) = F (1− t, t) = (t, t− 1).

The line integral is therefore∫
Γ2

F · dr =

∫ 1

0

(t, t− 1) · (−1, 1) dt

=

∫ 1

0

(t− (t− 1)) dt = −
∫ 1

0

1 dt = −1.

Line integrals along different curves are generally different, even if they have the same start and end points.

Remark. A simple curve that is piecewise C1 can also be oriented. If we can write the curve Γ as the union
of C1 curves Γ = Γ1 ∪ Γ2 ∪ · · · ∪ ΓN , the line integral can be computed by summing up the parts as∫

Γ

F · dr =

∫
Γ1

F · dr + ·+
∫

ΓN

F · dr.

Remark. When Γ is a closed oriented curve, the line integral along the curve is typically denoted using a
different symbol. We write ∮

Γ

F · r

for this line integral to indicate that the curve is closed, and we often call this the “circulation of F around Γ.”

Example 2.13. Compute the work done by the force field F (x, y) = x2 ı̂ + xy ̂ on a particle that moves
clockwise half way around the circle x2 + y2 = 4 from (2, 0) to the point (−2, 0), then back to the starting
point along the x-axis.

The first part of the curve can be parameterized by the path

γ1(t) = (cos t, sin t) with velocity γ′1(t) = (− sin t, cos t)
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Figure 2.11: The vector field and the oriented curve in Example 2.13.

for t ∈ [0, π], while the second part of the curve can be parameterized by

γ2(t) = (t, 0) with velocity γ′2(t) = (1, 0)

for t ∈ [−2, 2]. The line integrals along each of the pieces can be computed as∫
Γ1

F · dr =

∫ π

0

F (γ1(t)) · γ′1(t) dt

=

∫ π

0

(cos2 t, cos t sin t) · (− sin t, cos t) dt =

∫ π

0

(cos2 t sin t− cos2 t sin t) dt = 0,

and ∫
Γ2

F · dr =

∫ 2

−2

F (γ2(t)) · γ′2(t) dt

=

∫ 2

−2

(t2, 0) · (1, 0) dt =

∫ 2

−2

t2 dt =
16

3
.

The line integral along the entire closed curve can be computed as∮
Γ

F · dr =

∫
Γ1

F · dr +

∫
Γ2

F · dr =
16

3
.

2.1.6 The gradient and conservative vector fields

Definition 2.14 (Conservative field). A vector field F : D → Rn in a region D ⊂ Rn is said to be
conservative if there is a differentiable scalar field Ψ : D → R such that ∇Ψ(r) = F (r) at all points
r ∈ D. The scalar field Ψ is called the scalar potential of F .

The name ‘conservative’ comes from ‘conservation’ laws in physics. For example, if F is a force field that
arises from some function Ψ that defines the potential energy of a particle at a point in space, certain
conservation of energy laws can be derived.
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Recall that, for a function f : Rn → R, if all of the second order partial derivatives

∂2f

∂xi∂xj

exist and are continuous for all indices i, j ∈ {1, . . . , n} (i.e., if Ψ is C2), then it does not matter in which
order we take the derivatives with respect to the independent variables xi and xj . That is,

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

This fact is useful for determining if a vector field is conservative.
First look at an example in R3. Let F : D → R3 be a conservative vector field that is the gradient of

some C2 scalar potential field Ψ. The components of the vector field are

F (x, y, z) =
(
F1(x, y, z), F2(x, y, z), F3(x, y, z)

)
whereas the components of the gradient of the scalar field are

∇Ψ(x, y, z) =

(
∂Ψ

∂x

∣∣∣
(x,y,z)

,
∂Ψ

∂y

∣∣∣
(x,y,z)

,
∂Ψ

∂z

∣∣∣
(x,y,z)

)
.

Since F = ∇Ψ, we can equate each of the components of these vector fields:

F1 =
∂Ψ

∂x
, F2 =

∂Ψ

∂y
, and F3 =

∂Ψ

∂z
.

Since Ψ is C2, all of its second order partial derivatives exist and are continuous, and it doesn’t matter in
which order we take the derivatives with respect the variables. That is,

∂2Ψ

∂y∂x
=

∂2Ψ

∂x∂y
,

∂2Ψ

∂z∂x
=

∂2Ψ

∂x∂z
, and

∂2Ψ

∂y∂z
=

∂2Ψ

∂z∂y
.

Now, if we take the partial derivative of the first component of F with respect to the second variable, we get

∂F1

∂y
=

∂

∂y

∂Ψ

∂x
=

∂2Ψ

∂y∂x
=

∂2Ψ

∂x∂y
=

∂

∂x

∂Ψ

∂y
=
∂F2

∂x
.

Taking the derivative of F1 with respect to z and the derivative of F2 with respect to z gives us similar
results. All in all, if F is conservative and is the gradient of some C2 potential field, it must hold that

∂F1

∂y
=
∂F2

∂x
,

∂F1

∂z
=
∂F3

∂x
, and

∂F2

∂z
=
∂F3

∂y
. (2.2)

In fact, if F is C1, then F is the gradient of some C1 scalar potential field Ψ if and only if the derivatives
of its components satisfy the equations in (2.2). This rule holds in general for all dimensions.

Theorem 2.15. Let F : D → Rn be a C1 vector field on a region D ⊂ Rn. It holds that F is
conservative if and only if it holds that

∂Fi
∂xj

=
∂Fj
∂xi

for all indices i, j ∈ {1, . . . , n}.

This rule can be used to check if a vector field is conservative and help us find a scalar potential if it is.
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Example 2.16. Here we find scalar potentials for conservative vector fields.

1. Consider the vector field on R2 given by F (x, y) = (2xy, 1 + x2). The components of this vector field
are F1(x, y) = 2xy and F2(x, y) = 1 +x2 such that F (x, y) = (F1(x, y), F2(x, y)). We check the partial
derivatives of the components,

∂F1

∂y
=

∂

∂y
(2xy) = 2x and

∂F2

∂x
=

∂

∂x
(1 + x2) = 2x.

These are equal so F must be conservative and we can find a scalar potential. That is, there is a scalar
field Ψ : R2 → R such that F = ∇Ψ. This scalar field must satisfy

∂Ψ

∂x
= F1(x, y) = 2xy and

∂Ψ

∂y
= 1 + x2.

Taking the integral of the first equation with respect to x (and holding y constant) yields∫
∂Ψ

∂x
dx =

∫
2xy dx =⇒ Ψ(x, y) = x2y + f(y),

where f(y) is constant with respect to x and depends only on the value of y. To find what this function
is, note that we can take the derivative of Ψ with respect to y which must yield F2. That is,

1 + x2 = F2(x, y) =
∂Ψ

∂y
=

∂

∂y
(x2y + f(y)) = x2 + f ′(y),

and thus 1 + x2 = f ′(y) + x2. We see that the function f must satisfy f ′(y) = 1, so f must be of the
form f(y) = y + c for some constant c. Hence a scalar potential for F is

Ψ(x, y) = x2y + y + c.

2. A similar strategy can be used for vector fields on R3. Consider the vector field on R3 given by

F (x, y, z) = y ı̂+ (z cos(yz) + x) ̂+ y cos(yz) k̂.

The components of this vector field F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)) are

F1(x, y, z) = y, F2(x, y, z) = z cos(yz) + x, and F3(x, y, z) = z cos(yz).

We first check to see that this vector field is conservative. Note that

∂F1

∂y
= 1 and

∂F2

∂x
= 1

∂F1

∂z
= 0 and

∂F3

∂x
= 0

∂F2

∂y
= −yz sin(yz) and

∂F3

∂y
= −yz sin(yz),

so we can find a scalar potential Ψ. This scalar potential must satisfy

∂Ψ

∂x
= y

∂ψ

∂y
= z cos(yz) + x, and

∂Ψ

∂z
= y cos(yz).

Taking the antiderivative of the first equation with respect to x (while holding y and z constant) yields∫
∂Ψ

∂x
dx =

∫
y dx =⇒ Ψ(x, y, z) = xy + f(y, z),
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where f(y, z) is constant with respect to x and depends only on the values of y and z. Taking the
derivative of this with respect to y yields

F2(x, y, z) =
∂Ψ

∂y

∣∣∣
(x,y,z)

=
∂

∂y
(xy + f(y, z)) = x+

∂f

∂y

∣∣∣
(y,z)

.

Since this must be equal to F2(x, y, z) = z cos(yz) + x, we find that f must satisfy

∂f

∂y

∣∣∣
(y,z)

= z cos(yz).

Taking the antiderivative of this equation with respect to y (and holding z constant) yields∫
∂f

∂y
dy =

∫
z cos(yz) dy =⇒ f(y, z) = sin(yz) + c

for some constant c. Hence the scalar potential has the form

Ψ(x, y, z) = xy + sin(yz) + c.

Finally, we check that

∂Ψ

∂z
=

∂

∂z
(xy + sin(yz) + c) = y cos(yz) = F3(x, y, z),

so Ψ is indeed a scalar potential for F .

2.1.7 A chain rule for scalar fields

Suppose f : D → R is a C1 scalar field on a region D ⊂ Rn and suppose we have a differentiable path γ in
D. The value of f(γ(t)) indicates the value of f at the point on the path γ(t) at time t. What is the rate
of change of f(γ(t)) with respect to time?

In R3, we can make sense of this by defining the path in terms of its coordinate functions

γ(t) = (x(t), y(t), z(t))

whose velocity is given by
γ′(t) = (x′(t), y′(t), z′(t)).

At a point r = (x, y, z), the value of the scalar field is f(r) = f(x, y, z). Using the chain rule for multiple
variables, if the variables x, y, and z all depend on some underlying variable t, we have

d

dt
f
(
x, y, z

)
=
∂f

∂x

dx

dt
+
∂f

∂z

dz

dt
+
∂f

∂z

dz

dt
.

Hence

d

dt
f
(
γ(t)

)
=

d

dt
f
(
x(t), y(t), z(t)

)
=
∂f

∂x

∣∣∣
γ(t)

d

dt
x(t) +

∂f

∂y

∣∣∣
γ(t)

d

dt
y(t) +

∂f

∂z

∣∣∣
γ(t)

d

dt
z(t)

=

(
∂f

∂x

∣∣∣
γ(t)

,
∂f

∂y

∣∣∣
γ(t)

,
∂f

∂z

∣∣∣
γ(t)

)
· (x′(t), y′(t), z′(t))

= ∇f(γ(t)) · γ′(t).

We can write the derivative of f along γ as the dot product of the gradient and the velocity! This holds in
general for higher dimensions as well.
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Theorem 2.17. Let f : D → R be a C1 scalar field on a region D ⊂ Rn and let γ be a C1 path in D.
For all t it holds that

d

dt
f(γ(t)) = ∇f(γ(t)) · γ′(t). (2.3)

2.1.8 Fundamental theorem of line integrals

First recall the Fundamental Theorem of Calculus. For a differentiable function f : [a, b] → R, the integral
of its derivative is ∫ b

a

f ′(t) dt = f(b)− f(a).

Now let f : D → R be a C1 scalar field on a region D ⊂ Rn and let γ : [a, b]→ Rn be a C1 path in D. By
the fundamental theorem of calculus, we have∫ b

a

∇f(γ) · γ′(t) dt =

∫ b

a

d

dt
f(γ(t)) dt

= f(γ(b))− f(γ(a)).

Remark. Suppose F : D → Rn is a conservative field on a domain D ⊂ Rn and suppose P0 and P1 are two
points in D. Since F is conservative, there is a scalar potential function such that F = ∇Ψ. If γ : [a, b]→ Rn
is any path from P0 to P1 (i.e., γ(a) = P0 and γ(a) = P1), then∫ b

a

F (γ(t)) · γ′(t) dt = Ψ(P1)−Ψ(P0).

Since it does not patter which path we use to connect P0 to P1, it is common to write the resulting integral
as ∫ P1

P0

F · dr.

We say that line integrals of conservative vector fields are independent of path, since they only depend on
the start and end points of an oriented curve and not the specific path that connects those points.

Figure 2.12: If two paths γ and β have the same start and end points, the line integral of a
conservative vector field will be the same regardless of which path we take.
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If Γ is a closed curve, then the start and end points are the same. Thus,∮
Γ

F · dr = 0

for any conservative field F .

Example 2.18. Let F : R3 → R3 be the vector field defined by

F (x, y, z) = y ı̂+ (z cos(yz) + x) ̂+ y cos(yz) k̂

and let Γ be any oriented curve that starts at P0 = (0, 0, 1) and ends at P1 = (1, 1, π). We can evaluate∫ P1

P0
F · dr as follows. From Example 2.16(2), we see that F is conservative with scalar potential given by

Ψ(x, y, z) = xy + sin(yz). Therefore,∫ P1

P0

F · dr = Ψ(P1)−Ψ(P0) = Ψ(1, 1, π)−Ψ(0, 0, 1) = (1 + sinπ)− (0 + sin 0) = 1.

Theorem 2.19. Let f : D → R be a C1 vector field on D ⊂ Rn.

1. For all closed oriented C1 curves Γ in D, it holds that∮
Γ

∇f · r = 0

2. If Γ is an oriented curve in D from a point P0 to a point P1, it holds that∫
Γ

∇f · dr = f(P1)− f(P0)
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