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Lecture notes for Week 3
Lecturer: Mark Girard September 17, 2019

3.1 Two-dimensional integration

Figure 3.1: The graph of a function f : D → R on a region D ⊆ R2 is the surface resting in
space above the plane.

Consider a region D ⊂ R2 in the plane and a scalar field f : D → R. The surface that is the graph
of of f can be viewed as sitting above the region D in the xy-plane. We can now consider the resulting
3-dimensional solid that is bounded below by D and bounded above by the surface of the graph of f . A
two-dimensional integral can be interpreted as the volume of this resulting solid.

Figure 3.2: A partitioning of a region D into N smaller subregions can be used to approximate
the volume of the solid between the xy-plane and the surface of the graph of f : D → R.

We can approximate the volume of this solid as follows. Partition the region D in to N different subregions
D1, . . . , DN , where ith subregion Di has area ∆Ai, and pick a point (xi, yi) in each subregion. The volume of
the part of the solid that sits over Di can approximated as the volume of a column whose height is f(xi, yi)
and whose base is Di with area ∆Ai. The volume of each piece is therefore approximated by

volume of solid over Di ≈ f(xi, yi) ∆Ai,

and the volume of the entire solid is approximated by summing up all of these small pieces of volume

volume of entire solid ≈
N∑
i=1

f(xi, yi) ∆Ai. (3.1)

3-1
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Partitioning the region D into smaller and smaller pieces yields a better and better approximation for the
true value of this volume. If this approximation approaches a limiting value as N →∞ and ∆Ai → 0 (i.e.,
partitioning the region into more and more pieces, each with area approaching zero as the number of pieces
in the partition tends to infinity), the value of this limit is expressed as a two-dimensional integral :∫∫

D

f dA = lim
N→∞

∆Ai→0

N∑
i=1

f(xi, yi) ∆Ai.

The double integration sign reminds us that this integral is really over two variables and the subscript D
tells us over which region in the plane we are taking the integral.

Actually computing the value of this integral is not done by taking this limit, but rather by using
standard techniques of integration. However, the integral can only be computed straightforwardly if the
region of integration is simple.

Remark. The area of a region D ⊂ R2 can be expressed as a two-dimensional integral by taking the constant
function f(x, y) = 1 and evaluating the resulting integral

area(D) =

∫∫
D

dA

over the region.

3.1.1 Simple regions

Definition 3.1 (Simple and regular regions). Let D ⊂ R2 be a region in the plane.

• The region is said to be x-simple if it can be defined all points (x, y) having x-values bounded
between two constants x0 and x1 and y-values bounded between g0(x) and g1(x), where g0 and g1

are some continuous functions on the interval [x0, x1]

D = {(x, y) ∈ R2 |x0 ≤ x ≤ x1, g0(x) ≤ y ≤ g1(x)}. (3.2)

• The region is said to be y-simple if it can be defined all points (x, y) having y-values bounded
between two constants y0 and y1 and x-values bounded between h0(x) and h1(x), where h0 and
h1 are some continuous functions on the interval [y0, y1]

D = {(x, y) ∈ R2 | y0 ≤ y ≤ y1, h0(y) ≤ x ≤ h1(y)}. (3.3)

It is simple if it is either x- or y-simple, and it is regular if it is both x- and y-simple

Two-dimensional integrals over simple regions can be computed by integrating over each of the variables
separately. For an x-simple region, we may first integrate with respect to y while holding x constant, using
the limits of integration to be g0(x) and g1(x), then integrate the resulting expression with respect to x∫∫

D

f dA =

∫ x1

x0

(∫ g1(x)

g0(x)

f(x, y) dy

)
dx.

Integration over a y-simple region is analogous, where we first integrate with respect to x while holding y
constant, using the limits of integration to be h0(x) and h1(x), then integrate the resulting expression with
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Figure 3.3: Examples of x-simple and y-simple regions.

respect to y ∫∫
D

f dA =

∫ y1

y0

(∫ h1(y)

h0(y)

f(x, y) dx

)
dy.

In either case, we always perform the ‘inside’ integration first, which eliminates the ‘inside’ variable from the
resulting expression. The resulting expression after evaluating the double integral is a number and should
not have any x’s or y’s in it.

Example 3.2. Let D be the region in the plane whose that is bounded below y = 0 and bounded above
by y =

√
1 + cosx for 0 ≤ x ≤ 2π, and consider the function defined by f(x, y) = 2y. We can integrate f

over the region D, shown in the figure below, by viewing D as an x-simple region and performing a double
integration.

π
2

π 3π
2

2π

1

2
y =
√

1 + cosx

x

y

D

Figure 3.4: The region of integration in Example 3.2

The value of the resulting two-dimensional integral computed using is double integral is∫∫
D

f dA =

∫ 2π

0

(∫ ∫ √1+cos x

0

2y dy

)
dx

=

∫ 2π

0

(
y2
∣∣∣√1+cos x

0

)
dx

=

∫ 2π

0

(1 + cosx) dx

= 2π,

where we note that

∫ 2π

0

cosx dx = 0.

A region is regular if it is both x- and y-simple. One example of a regular region is the unit disc

D = {(x, y) |x2 + y2 = 1}.
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As an x-simple region, the unit disc is the set of all points (x, y) with x-value in the range −1 ≤ x ≤ 1 and
(for a fixed value of x) having y-value in the range −

√
1− x2 ≤ y ≤ +

√
1− x2. Meanwhile, as a y-simple

region, the unit disc is the set of all points (x, y) with y-value in the range −1 ≤ y ≤ 1 and (for a fixed value

of y) having x-value in the range −
√

1− y2 ≤ x ≤ +
√

1− y2. The functions that define the boundaries as
an x-simple region (g0 and g1) will generally be different from the functions that define the boundaries as a
y-simple region (h0 and h1).

Figure 3.5: The unit disc is an example if a regular region.

Figure 3.6: A regular region can be described as both an x- and y-simple region.

3.1.2 Fubini’s Theorem

If a region is regular, it does not matter which order we perform the integration in! This fact is known as
Fubini’s theorem.

Theorem 3.3 (Fubini’s Theorem). Let D ⊆ R2 be a regular region in the plane of the form in (3.2)
and (3.3), and let f : D → R be a function. If the two-dimensional integral of f over D exists, it can be
computed by either integrating with respect to y first or with respect to x first:∫∫

D

f dA =

∫ x1

x0

(∫ g1(x)

g0(x)

f(x, y) dy

)
dx =

∫ y1

y0

(∫ h1(y)

h0(y)

f(x, y) dx

)
dy.

Sometimes a two-dimensional integral over a regular region can’t be computed exactly when integrating
the variables one way, but can be integrated when we switch the order of integration. The following example
illustrates this idea.

Example 3.4. We can use Fubini’s theorem to switch the order of integration when evaluating the integral∫ 1

0

∫ 1

√
x

ey
3

dy dx.
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This is an example of a two-dimensional integral of the function f(x, y) = ey
3

over some region D in the
plane. A straightforward attempt at computing this integral runs into trouble when trying to integrate first
with respect to y, as we cannot find the antiderivative of ey

3

! At this point we might give up and attempt to
get an approximation of this integral by integrating it numerically with a computer. However, the region of
integration is both x- and y-simple, and by switching the order of integration we can express this integral in
a different way. In fact, in this case when integrating over x first instead of y, we obtain a two-dimensional
that can be computed straightforwardly. We first need to actually describe the region of integration in this
problem. As an x-simple region, the bounds on the x-variable are 0 ≤ x ≤ 1, while the lower and upper
bounds of the region D are y =

√
x and y = 1. This region is depicted in Figure 3.7.

1

1

y =
√
x or x = y2

x

y

D

Figure 3.7: The region of integration in Example 3.4

We may alternatively describe this region as y-simple with lower and upper boundaries given by 0 ≤ y ≤ 1
with left and right boundaries given by x = 0 and x = y2. The integral can now be expressed as∫∫

D

f dA =

∫ 1

0

(∫ y2

0

ey
3

dx

)
dy

=

∫ 1

0

(
xey

3
∣∣∣x=y2

x=0

)
dy =

∫ 1

0

y2ey
3

dy =
1

3
ey

3
∣∣∣1
0
=
e− 1

3
,

which can actually be computed.

3.2 Connected, simply connected, and boundaries

Definition 3.5. A region D ⊆ R2 is connected if, for every pair of points P0, P1 ∈ D, there is a
continuous path in D with start point P0 and end point P1.

It is also important to discriminate between regions that have ‘holes’ or not. Intuitively speaking, a region
D is simply connected if it does not have any ‘holes’. This can only happen if any closed loop in D can be
shrunk to a single point without ever leaving the region D.

Definition 3.6. A connected region D ⊆ R2 is simply connected if every closed curve in D can be
continuously shrunk to a point.
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Figure 3.8: Depictions of a connected region and a disconnected region in R2.

Figure 3.9: Depictions of a simply connected region and a non-simple connected region in R2.

Given a simply connected region D ⊂ R2 in the plane, we can talk about its boundary, which is a simple
closed curve. The boundary of D is the curve denoted by

boundary of D = ∂D.

Meanwhile, any simple closed curve Γ always encloses a region of the plane whose boundary is ∂D = Γ.
The boundary of a region can be given an orientation. If the region D is a simply connected region that is
enclosed by some simple closed curve, the orientation of the boundary is always taken to be counter clockwise
by default.

Figure 3.10: The boundary ∂D of a simply connected region D is an oriented curve with
orientation always taken to be counter clockwise.

3.3 Green’s Theorem

We are now going to learn an extremely powerful and useful theorem of multivariable calculus, called Green’s
Theorem in the plane. This is essentially a two-dimensional result so our focus will be exclusively on fields in
R2, but, as we will later see, this two-dimensional result is an essential tool for establishing the main results
on three dimensional vector calculus (such as Stokes’ theorem and Gauss’ theorem) which are indispensable
for physics and engineering.

We’ll start by stating Green’s Theorem in its full generality before proving it for regular regions. In
short, Green’s theorem states that there is a relation between the line integral of a vector field around the
boundary of the region to a two-dimensional integral over the interior of that same region.
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Theorem 3.7 (Green’s Theorem). Let D ⊆ R2 be a connected region in the plane and let F : D → R2

be a vector field that is C1 on all of D with components F (x, y) = (F1(x, y), F1(x, y)). It holds that∮
∂D

F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA.

We can derive a proof of Green’s Theorem by restricting our attention to regular regions then show how
we can extend it to arbitrary regions.

3.3.1 Derivation of Green’s Theorem for regular regions

Suppose that D ⊂ R2 is a regular region and let F : D → R2 be a C1 vector field. We’ll first the vector field
into its components

F (x, y) = (F1(x, y), F2(x, y)) = (F1(x, y), 0) + (0, F2(x, y))

= F 1(x, y) + F 2(x, y)

where F 1(x, y) = (F1(x, y), 0) and F 2(x, y) = (0, F2(x, y)) are the vector fields that have only one nonzero
component. As F = F 1 + F 2, the line integral around the boundary of D can now be split into∮

∂D

F · dr =

∮
∂D

F1 · dr +

∮
∂D

F2 · dr.

We can therefore prove Green’s theorem if we can show that∮
∂D

F2 · dr =

∫∫
D

∂F2

∂x
dA and

∮
∂D

F1 · dr = −
∫∫

D

∂F1

∂x
dA. (3.4)

We will also need to decompose the boundary of D in two different ways. Since we have assumed the region
D is regular, it can be viewed as both an x- and y-simple region.

• As an x-simple region, the lower and upper boundaries of D can be viewed as the graphs of some
continuous functions g0 and g1 from x0 to x1. These parts of ∂D can be parameterized by the paths

β0(t) = (t, g0(t)) and β1(t) = (t, g1(t)) for x0 ≤ t ≤ x1, (3.5)

and we can define B0 and B1 to be the resulting oriented curves traced out by these paths.

• As a y-simple region, the left and right boundaries of D can be viewed as the graphs of some other
continuous functions h0 and h1 from y0 to y1. These parts of ∂D can be parameterized by the paths

γ0(t) = (h0(t), t) and γ1(t) = (h1(t)) for y0 ≤ t ≤ y1, (3.6)

and we can define Γ0 and Γ1 to be the resulting oriented curves traced out by these paths.

We can now decompose the boundary of D in two different ways as

∂D = (−Γ0) ∪ Γ1 = B0 ∪ (−B1),

where we must take the reverse of Γ0 and B1 to make sure that the orientations align correctly with the
orientation of ∂D. (See Figure 3.11.)
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Figure 3.11: Two different decompositions of the boundary ∂D of a regular region D.

We are now ready to prove the two equations in (3.4) to prove Green’s Theorem for regular domains. To
prove the first equation in (3.4), we split up the line integral around the oriented boundary curve ∂D into
two integrals, one along Γ1 and another along Γ0 with its orientation reversed∮

∂D

F 2 · dr =

∫
Γ1

F 2 · dr +

∫
−Γ0

F 2 · dr.

Using the parameterizations for Γ0 and Γ1 from (3.6), we have∮
∂D

F 2 · dr =

∫
Γ1

F 2 · dr −
∫

Γ0

F 2 · dr

=

∫ y1

y0

F 2(γ1(t)) · γ′1(t) dt−
∫ y1

y0

F 2(γ0(t)) · γ′0(t) dt

=

∫ y1

y0

(0, F2(h1(t), t)) · (h′1(t), 1) dt−
∫ y1

y0

(0, F2(h0(t), t)) · (h′0(t), 1) dt

=

∫ y1

y0

(
F2(h1(t), t)− F2(h0(t), t)

)
dt

=

∫ y1

y0

(
F2(h1(y), y)− F2(h0(y), y)

)
dy

=

∫ y1

y0

(
F2(x, y)

∣∣∣x=h1(y)

x=h0(y)

)
dy, (3.7)

where in the second to last line we simply change the name of the variable of integration from t to y. Now,
recall that the Fundamental Theorem of Calculus tells us that∫ b

a

df

dx
dx = f(b)− f(a) = f(x)

∣∣∣b
a

(3.8)

for any differentiable function f . This still works if f is a multivariate function and the differentiation and
integration of f in (3.8) are respect to x. So, in (3.7) we can simplify

F2(x, y)
∣∣∣x=h1(y)

x=h0(y)
=

∫ h1(y)

h0(y)

∂F2

∂x
dx,

and this yields the desired result of∮
∂D

F2 · dr =

∫ y1

y0

∫ h1(y)

h0(y)

∂F2

∂x
dx dy =

∫∫
D

∂F2

∂x
dA.

On the other hand, taking the line integral of F 1 along the boundary of D by splitting the curve into B0



ECE 206 – Week 3: September 17, 2019 3-9

and −B1, where we use the parameterizations in (3.5), we have∮
∂D

F 1 · dr =

∫
B0

F 1 · dr −
∫

B1

F 1 · dr

=

∫ x1

x0

F 1(γ0(t)) · γ′0(t) dt−
∫ x1

x0

F 1(γ1(t)) · γ′1(t) dt

=

∫ x1

x0

(F1(t, g0), 0) · (1, g′0(t)) dt−
∫ x1

x0

(F1(t, g1(t)), 0) · (1, g′1(t)) dt

=

∫ x1

x0

(
F1(t, g0(t))− F1(t, g1(t))

)
dt

= −
∫ x1

x0

(
F1(y, g1(y))− F1(y, g0(y))

)
dx

= −
∫ x1

x0

(
F1(x, y)

∣∣∣y=g1(x)

y=g0(x)

)
dx, (3.9)

where in the second to last line we again change the name of the variable, but this time from t to x, and swap
the order of the terms in the integral and add a minus sign out front. As earlier, we can use the Fundamental
Theorem of Calculus to simplify

F1(x, y)
∣∣∣y=g1(x)

y=g0(x)
=

∫ g1(x)

g0(x)

∂F1

∂y
dy,

and the expression in (3.9) reduces to∮
∂D

F1 · dr = −
∫ x1

x0

∫ g1(x)

g0(x)

∂F1

∂y
dy dx = −

∫∫
D

∂F1

∂y
dA.

This completes the proof.

3.3.2 Green’s theorem for non-regular domains

The proof above only works when the region D is regular, but Green’s Theorem is still valid for all kinds of
regions in the plane, as long as the boundary of D is a piecewise C1 curve and the vector field F is C1 on
all of D.

Figure 3.12: Any simply connected region can be partitioned into many smaller regular regions.
We can apply Green’s Theorem to each region separately and add up the results to obtain
Green’s Theorem for all of D.

If the region D is simply connected, then we can partition D into smaller regions, D1, D2, . . . , DN , each
of which is a regular region (see Figure 3.12), such that

D = D1 ∪D2 ∪ · · · ∪DN .
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The two-dimensional integral over D in Green’s Theorem can then be computed by summing up the two-
dimensional integrals over each of the pieces Di,∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

N∑
i=1

∫∫
Di

(
∂F2

∂x
− ∂F1

∂y

)
dA.

Meanwhile, the line integral of Green’s Theorem around the boundary of D can also be computed by summing
up the individual line integrals around each of the boundaries of the pieces Di,∮

∂D

F · dr =

N∑
i=1

∮
∂Di

F · dr.

Indeed, piecing together the outer parts of the boundaries of each of the subregions yields the whole boundary
of the entire region D. But the parts of the boundaries of each of the subregions Di that do not lie on the
outer boundary ∂D of the entire region are each integrated over twice, once in each direction. These parts
of the line integrals cancel each other out, since integrating along a curve in its opposite orientation yields
the negative of the integral along its forward orientation,∫

−Γ

F · dr = −
∫

Γ

F · dr.

Adding up all of the line integrals of F around the boundaries of the parts Di therefore yields the line
integral of F around the whole boundary of D, where only the integral around ∂D does not cancel out.
The desired result for the entire region D now follows, since Green’s Theorem can be applied to each of the
smaller regular regions individually,∮

∂Di

F · dr =

∫∫
Di

(
∂F2

∂x
− ∂F1

∂y

)
dA,

and summing over i yields the result.
Green’s Theorem also holds for arbitrary connected regions, even if the region D is not simply connected.

However, if the region D has any ‘holes’ then we must carefully consider what happens along the inner
boundaries of D. The boundary of a region with holes is now defined as the union of a bunch of disconnected
curves, but we must take the orientation of the inner parts of the boundaries to be clockwise, while the outer
boundary is still taken to be counter clockwise. For example, in Figure 3.13, the boundary of the region D
is composed of the separate closed simple oriented curves Γ1, Γ2, and Γ3, such that

∂D = Γ1 ∪ Γ2 ∪ Γ3,

where the outer boundary Γ1 has counter clockwise orientation and the inner boundaries Γ2 and Γ3 have
clockwise orientation. The line integral around the entire boundary ∂D can then be interpreted as the sum
of the line integrals around each the separate parts,∮

∂D

F · dr =

∮
Γ0

F · dr +

∮
Γ1

F · dr +

∮
Γ2

F · dr,

where we must make sure to take the correct orientation for each piece.
With this definition of the boundary for non-simply connected regions, we can partition any such region

D into many simply connected domains D1, . . . , DN , and, as before, apply Green’s Theorem to each of these
subregions and sum up the results to obtain the result on all of D, and we interpret the line integral around
the boundary of D as the sum of the line integral around each of the separate parts of the boundary.
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Figure 3.13: The boundary of a non-simply connected domain is the union of disjoint closed
simple oriented curves, where the outer boundary has counterclockwise orientation and the
inner boundaries have clockwise orientation.

Separating non-simply connected domain

Figure 3.14: We can separate non-simply connected regions into many simply connected do-
mains and apply Green’s theorem to each piece.

3.3.3 Applications of Green’s Theorem

Example 3.8. Suppose Γ is the unit circle in the plane oriented counter clockwise and let F : R2 → R2 be
the vector field defined in terms of its components F (x, y) = (F1(x, y), F2(x, y)) by

F1(x, y) = y + ln(1 + x2) and F2(x, y) = 8x+ sin y.

If we were asked to compute the value of the line integral of F around the unit circle by parameterizing the
curve, the resulting integral would be quite complicated! In this example it will be much simpler to evaluate
this integral if we use Green’s Theorem to change the line integral around a curve into a two-dimensional
integral on the region enclosed by the curve. To use Green’s Theorem, we must interpret the closed oriented
curve Γ as the boundary of some region. Let D be the region that is the unit disc in the plane

D = {(x, y) |x2 + y2 ≤ 1}

such that the unit circle oriented counter clockwise is exactly the boundary of D. Then the desired line
integral can be computed using Green’s Theorem as∮

Γ

F · dr =

∮
∂D

F · dr =

∫∫
D

(
∂F2

∂x
− ∂F1

∂x

)
dA.

In this example, it turns out that the mixed partial derivatives of the comments of F are quite simple, since

∂F2

∂x
= 8 and

∂F1

∂y
= 1

such that the desired integral simplifies to∫∫
D

(
∂F2

∂x
− ∂F1

∂x

)
dA =

∫∫
D

7 dA = 7

∫∫
D

dA = 7 area(D) = 7π,

where we use the fact that the area of the unit disc (the interior of a circle with radius 1) is area(D) = π.

The example above shows that a line integral of some vector field around some closed curve can be related
to the area of the region enclosed by that curve. With a judicious choice of a C1 vector field F (x, y) whose
partial derivatives satisfy

∂F2

∂x
− ∂F1

∂y
= 1, (3.10)

we can use Green’s Theorem to compute the area of a region D by evaluating the line integral of F around
∂D. For this type of application of Green’s Theorem, it is usually best to choose a vector field whose
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comments are simple so that the resulting line integral is easy to compute. A typical choice for this is the
field

F (x, y) =
(
−y

2
,
x

2

)
which clearly satisfies (3.10). This gives us a useful rule for computing the area of a region:

area(D) =
1

2

∫
∂D

F · dr where F (x, y) = (−y, x). (3.11)

Example 3.9. Consider the curve that is a hypocycloid in the plane defined by the equation

x2/3 + y2/3 = 1. (3.12)

We can use (3.11) to compute the area of the region D that is inside this curve.

−1 1

−1

1

Figure 3.15: The region inside the curve that is the hypocycloid defined by (3.12). We can use
Green’s Theorem to compute the area contained inside this curve by evaluating a line integral.

To compute the resulting line integral, we must first provide a parameterization for this curve. Rewriting
the equation defining this hypocycloid as (

x1/3
)2

+
(
y1/3

)2

= 1,

we see that we can parameterize this by parameterizing the components as

x1/3 = cos t and y1/3 = sin t

for t ∈ [0, 2π]. The resulting path γ(t) = (cos3 t, sin3 t) has velocity

γ′(t) =
(
−3 sin t cos2 t, 3 cos t sin2 t

)
.

Taking the field F (x, y) = (−y, x) and evaluating the field along this path,

F (γ(t)) = F (cos3 t, sin3 t) = (− sin3 t, cos3 t),
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we can compute the area of the region D inside of the hypocycloid as

area(D) =

∮
∂D

F · dr =
1

2

∫ 2π

0

F (γ(t)) · γ′(t) dt

=
1

2

∫ 2π

0

(
− sin3 t, cos3 t

)
·
(
−3 sin t cos2 t, 3 cos t sin2 t

)
dt

=
1

2

∫ 2π

0

(
3 sin4 t cos2 t+ 3 sin2 t cos4 t

)
dt

=
3

2

∫ 2π

0

sin2 t cos2 t (sin2 t+ cos2 t) dt

=
3

2

∫ 2π

0

(sin t cos t)2 dt

=
3

8

∫ 2π

0

sin2 2t dt using sin 2t = 2 sin t cos t

=
3π

8
,

where in the second to last line we use the trigonometric identity sin 2t = 2 sin t cos t.

3.3.4 Vorticity and an interpretation of Green’s Theorem

Why is it that we can equate a line integral along a boundary with the two-dimensional integral of the
difference of partial derivatives? To understand this, it will be important to have an an interpretation of
what the quantity

∂F2

∂x
− ∂F1

∂y

means for a particular vector field F . Consider the vector field in the region around some fixed point (x0, y0)
in the plane. For each choice of positive number ε > 0, we can consider the disc of radius ε centered at the
point (x0, y0) to be the region

Dε = {(x, y) ∈ R2 | (x− x0)2 + (y − y0)2 ≤ ε}.

We define the vorticity of F at the point (x0, y0) to be the limiting value of the ratio of the circulation of F
around ∂Dε to the area of Dε as ε→ 0,

voriticyF (x0, y0) = lim
ε→0

1

area(Dε)

∮
∂Dε

F · dr.

This is essentially the circulation of F per unit area at the point (x0, y0) and measures how much ‘swirliness’
the vector field has at a point. We can use Green’s Theorem to change the line integral in the definition of
the vorticity to ∮

∂Dε

F · dr =

∫∫
Dε

(
∂F2

∂x
− ∂F1

∂y

)
dA.

In the limit as ε → 0, the region Dε shrinks to the point (x0, y0) and the value of this two-dimensional
integral is approximated by∫∫

Dε

(
∂F2

∂x
− ∂F1

∂y

)
dA −→

(
∂F2

∂x
− ∂F1

∂y

)∣∣∣∣∣
(x0,y0)

area(Dε).

This gives us the a useful definition for the vorticity of a vector field as a point.
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Definition 3.10. The vorticity of a C1 vector field F in R2 at a point (x0, y0) is

vorticityF (x0, y0) =

(
∂F2

∂x
− ∂F1

∂y

)∣∣∣∣∣
(x0,y0)

where F (x, y) = (F1(x, y), F2(x, y)).

This gives us a way of rewriting Green’s Theorem :∮
∂D

F · dr =

∫∫
D

vorticityF dA

The line integral of F around a curve is the circulation, which we can interpret as how much counter clockwise
rotation would result from the vector field pushing the curve around in a circle. Meanwhile, the vorticity is
the amount of microscopic rotation around a single point. Therefore, Green’s Theorem tells us that we can
find the total amount of circulation around a curve that results from the flow of the vector field by adding
up all of the microscopic bits of circulation in the area inside the the curve!

Figure 3.16: Green’s Theorem tells us that we can compute the circulation around a curve by
adding up all of the microscopic amounts of circulation (i.e., the vorticity) of the field at each
point inside the curve.

We can get a further understanding of the vorticity by thinking about how much rotation is caused by
the vector field at a single point. If we were to stick a very small paddle wheel of into the flow of the vector
field at the point, how much would the paddle spin as a result of the flow at that point? The torque resulting
from the vector field pushing on the edges of the paddle wheel results in the paddle wheel spinning around
that point, with the magnitude of the spinning given by the vorticity of F at that point!



ECE 206 – Week 3: September 17, 2019 3-15

Figure 3.17: A paddle wheel inserted into the flow of a vector field at a point in the plane. The
‘vorticity’ tells us how much the paddle will spin counter clockwise as a result of the flow.
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