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4.1 Parametric surfaces in R3

We’ll now move on to studying surfaces, the two-dimensional analog of the one-dimensional curves that
we had been studying up until now. Our consideration of surfaces will be limited to surfaces living in
three dimensional space, as our primary objective will be the modeling of physical phenomena related to
electromagnetism. Just as we had we had two types of line integrals over curves (integrals of scalar and
vector fields), we will build up the machinery of surface integrals of scalar and vector fields.

Intuitively, a surface in three dimensional space is a “thin”, essentially “two-dimensional” object, such
as a sheet of paper. Our first task is to make this somewhat vague notion mathematically precise in a clear
definition.

Definition 4.1 (Surfaces in R3). Let Φ : D → R3 be a continuous function on a region D ⊆ R2. The
(parametric) surface Σ in R3 that is traced out be the function Φ is the set of points

Σ = {Φ(s, t) | (s, t) ∈ D}.

The function Φ is said to trace out the surface Σ. If Φ is a C1-function (i.e., if each of its component
functions is C1), then the resulting surface Σ is said to be C1.

(a) A surface in R3 is a “two-dimensional” object
living in three dimensional space.

(b) A non-simple surface in R3 could have self-
intersections.

Figure 4.1: Some examples of surfaces in R3.

Similar to curves, a function Φ that traces out the surface is typically defined in terms of its component
functions Φ(s, t) = (f(s, t), g(s, t), h(s, t)), where f , g, and h are some scalar fields on D. If each of the
component functions is C1 then the mapping Φ is C1.

In our study of curves, we were only interested in studying simple curves that can be parameterized by a
one-to-one mapping γ. Such curves have no “self-intersections.” Similarly in our study of surfaces, we will
ignore any surfaces that intersect themselves (as in Figure 4.1b).

4-1
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Definition 4.2. A surface Σ ⊆ R3 is simple if there is a C1-mapping Φ : D → R3 tracing out the
surface Σ such that Φ is one-to-one on D, except possibly on the boundary of D. The mapping Φ is
said to parameterize the simple surface Σ.

As we’ve considered before, one type of surface that we can study are graphs. Given a continuous scalar
field f : D → R on a region D ⊆ R2, the graph of f is the surface in R3 defined by

Σ = {(x, y, f(x, y)) | (x, y) ∈ D},

which is parameterized by the function Φ(x, y) = (x, y, f(x, y)). Note that in this case we’ve used the variable
names x and y to parameterize the region D instead of s and t. It does really not matter what names we use
for the variables. For example, we will use ϕ and θ for the variable names when using spherical coordinates.

Example 4.3. The surface of the “top half” of a sphere of radius r > 0 in R3 with center at the origin is
the set of all points (x, y, z) ∈ R3 satisfying

x2 + y2 + z2 = r2 and z ≥ 0.

This surface can also be described as the graph of a function as follows. Define the disc D ⊂ R2 of radius r
as

D = {(x, y) |x2 + y2 ≤ r2},

and define the function f : D → R as f(x, y) =
√
r2 − x2 − y2 for all (x, y) ∈ D. It is clear that the points

(x, y, f(x, y)) trace out the surface Σ.

Figure 4.2: The top half of the sphere can be parameterized as the graph of a function.

Remark. Not all surfaces can be represented as graphs of scalar fields. Consider for example the surface
depicted in Figure 4.3. Nonetheless, surfaces like this can still be parameterized by a function Φ : D → R3.
We can think of a surface as a portion of a “deformed flat surface.” Just as it takes only two coordinates
to specify a single point on the plane, it follows that one should likewise require only two “coordinates” to
specify a point on a surface.

Example 4.4. Although the top-half of a sphere can be considered as the graph of a function, the surface
of the entire sphere cannot be the graph of some function. So we will need some other way to parameterize
this surface. One way to specify a point r on the sphere of radius r is to consider the angles that the line
connecting the origin to r makes with the x- and z-axes (see Figure 4.4). First set ϕ to be the angle that
the line connecting the origin to r makes with the z-axis, where 0 ≤ ϕ ≤ π. Then drop a line from the point



ECE 206 – Week 4: September 24, 2019 4-3

Figure 4.3: A surface in R3 with a “fold” cannot be represented as the graph of some function.

r straight down to the xy-plane. The line connecting this point to the origin makes an angle of θ with the
x-axis, where θ is taken between 0 and 2π. The coordinates of this point as functions of ϕ and θ are

x(θ, ϕ) = r sinϕ cos θ, y(θ, ϕ) = r sinϕ sin θ, and z(θ, ϕ) = r cosϕ.

This yields the parameterization Φ : D → R3 of the sphere of radius r, where we take D to be the region

D = {(θ, ϕ) | 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π}
= [0, 2π]× [0, π],

and define Φ(θ, ϕ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ).

Figure 4.4: Parameterizing the surface that is the sphere of radius r.

Example 4.5. In this example we write (r, θ) for the parametric variables names, since we want to regard
the variable r as the “radius” and the variable θ as the “angle”. Define

Φ(r, θ) = (r cos θ, r sin θ, θ)

for all r ∈ [0, 1] and θ ∈ [0, 4π]. We have a parametric mapping Φ : D → R3 where the region D is the
rectangle in the “rθ-plane” given by

D = {(r, θ) | 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π}
= [0, 1]× [0, 4π].

The surface in R3 traced out by Φ(r, θ) as (r, θ) traverses the rectangle D is called a helicoid and is shown
in Figure 4.5.
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Figure 4.5: The helicoid in Example 4.5.

4.1.1 Grid curves

Suppose we are given a parameterization Φ : D → R3 of a surface for which the region D ⊂ R2 is a rectangle
of the form

D = [a, b]× [c, d]

for some numbers a < b and c < d. For some fixed value t0 ∈ [c, d], we can define a path by holding the
second parameter constant at t = t0 and vary over the first parameter by defining

γt=t0 : [a, b]→ R3 by γt=t0(s) = Φ(s, t0) for all s ∈ [a, b].

The resulting curve Γt=t0 = {Φ(s, t0) | s ∈ [a, b]} is called a grid curve of the parameterization for this
surface. Analogously, we can define grid curves where we hold the first parameter constant and vary over
the second parameter. For a fixed value s0 ∈ [a, b], we can define a path

γs=s0 : [c, d]→ R3 by γs=s0(t) = Φ(s0, t) for all s ∈ [c, d].

By picking a number of values s0, s1, . . . , sM ∈ [a, b] and t0, t1, . . . , tN ∈ [c, d], we construct a “grid” on the
rectangle D in the st-plane. Sketching the resulting grid curves in R3 gives us an idea of what the surface
looks like.

Example 4.6. Consider the region D = [0, 1]× [0, 2π] and let Φ : D → R3 be the parameterization defined
by

Φ(s, t) = (s cos t, s sin t, s).

Sketching out some of the grid curves allows us to get an understanding of what this surface looks like. If
we hold t constant at the value t = 0, we get the curve traced out by the path

γt=0(s) = (s, 0, s)

for 0 ≤ s ≤ 1. The resulting curve is exactly the straight line segment connecting the origin to the point
(1, 0, 1). Similarly, holding t at the constant values t = π/2, t = π, and t = 3π/2 yields the paths

γt=π
2

(s) = (0, s, s), γt=π(s) = (−s, 0, s), and γt= 3π
2

(s) = (0,−s, s),

which trace out the lines connecting the origin to (0, 1, 1), (−1, 0, 1), and (0,−1, 1) respectively. To get the
grid curves of this surface where we hold the first variable constant, we see that setting s = 0 the grid curve
is just a point at the origin. Meanwhile setting s = 1/2 and s = 1 gives us the grid curves

γs= 1
2

=
1

2
(cos t, sin t, 1) and γs=1 = (cos t, sin t, 1),
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(a) Some grid curves of the surface in Example 4.6. (b) The full surface of the cone from Example 4.6.

Figure 4.6: The cone with and some of its grid curves.

which trace out circles around the z-axis of radius 1/2 and 1, each having centre at (0, 0, 1/2) and (0, 0, 1)
respectively. Sketching this curves out in R3, we see that the resulting surface is a cone along the z-axis
whose point is at the origin and whose base is the unit circle on the z = 1 plane centered at (0, 0, 1).

4.1.2 Review: Equations of lines and planes in R3

Here we review the equations that define lines and planes in R3. A line L in space is determined when we
know a point r0 on the line L and the direction of L. If v is a vector in R3 that is parallel to the line L,
then the line can be described as the set

L = {r0 + tv | t ∈ R}.

(This is a parametric representation of the line L.)

Figure 4.7: A line L in R3 specified by a point r0 on the line and a direction v.

A plane is a bit more difficult to describe, since a single vector parallel to the plane in R3 is not enough
to specify the “direction” of the plane. However, a vector perpendicular to the plane does completely specify
the direction. Thus, a plane E in R3 can be completely specified by a single point r0 on the plane and a
normal vector n that is orthogonal to the plane. If r ∈ R3 is any other point on the plane, the normal vector
n is orthogonal to the vector r − r0. Mathematically, this is written as

n · (r − r0) = 0 or n · r = n · r0. (4.1)

So we may describe the plane as the set of all points r satisfying the equation in (4.1),

E = {r ∈ R3 |n · (r − r0) = 0}.
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The equation in (4.1) is the vector equation for the plane. Note that this representation is not unique, since
we could have chosen any point r0 on the plane to start from. Moreover, any nonzero scalar multiple of the
normal vector (i.e., an for any a 6= 0) will yield the same plane, since multiplying the equation in (4.1) by
a nonzero scalar a doesn’t change it. It is perhaps more common to see the equation for a plane written as
something like

ax+ by + cz = d (4.2)

for some constants a, b, c, d ∈ R. The value of these constants can be found from the normal vector. An
arbitary point in R3 is described in coordinate form as r = (x, y, z), the constants in (4.2) correspond to
the normal vector n = (a, b, c), and we may take d = n · r0 for some point r0 on the plane. Then (4.1) is
equivalent to the equation for the plane in (4.2), since n · r = (a, b, c) · (x, y, z) = ax+ by + cz.

Figure 4.8: A plane E in R3 specified by a point r0 on the plane and a normal vector n. A
normal vector of a plane can be found from three non-co-linear points r0, r1, and r2 on the
plane.

A plane in R3 is clearly a surface, so it makes sense that we should be able to find a parameterization for
a plane as per Definition 4.1. We first show how we can find the normal vector of a plane. Let E be a plane
and let r0, r1, and r2 be three points on the plane that do not lie on the same line (i.e., not co-linear), and
define the vectors

v1 = r1 − r0 and v2 = r2 − r0.

The vectors v1 and v2 both lie tangent to the plane and they do not point along the same line (since the
points r0, r1, and r2 were taken to be not co-linear). Taking the cross product of v1 and v2 yields a vector
that is orthogonal to both of them. This is the normal vector that we are looking for:

n = v1 × v2 = (r1 − r0)× (r2 − r0).

Since the equation defining a plane is not changed when multiplying the normal vector n by a nonzero scalar,
it is often useful to pick the normal vector to be a unit normal vector. To get a normal vector that has length
equal to one, we simply divide by its norm to get

n̂ =
n

‖n‖
,

where the ‘hat’ symbol ˆ over a vector will always be used to specify that the vector is a unit vector.
To find a parametric representation of the plane, first note that the vectors v1 and v2 span a subspace

in R3 by taking all of the possible linear combinations:

V = {sv1 + tv2 | s, t ∈ R}.
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This is a parametric representation for the plane going through the origin that is “parallel” to the tangent
plane we are looking for. To find a parametric representation for the desired tangent plane, we only have to
shift each point in the subspace V by r0:

E = {r0 + sv1 + tv2 | s, t ∈ R}.

This is the desired parametric representation, since any other point r on the plane E can be described as
r = r0 + sv1 + tv2 for some values of s and t.

4.1.3 Tangent plane and normal vector

In this section we will introduce the idea of a tangent plane of a surface at a point on that surface. We first
recall the idea of a tangent line on a curve. Consider a simple C1-curve Γ ⊆ R3 that is parameterized by a
C1-path γ : [a, b] → R3. At a point r0 = γ(t0) on the curve for some t0 ∈ [a, b], the vector velocity of the
path γ′(t0) is tangent to the curve. The tangent line of Γ at r0 (which is the set of all points on the line
that lies tangent to the curve at the point) is described as

L = {γ(t0) + tγ′(t0) | t ∈ R}.

See Figure 4.9 for a sketch.

Figure 4.9: The tangent line of a curve at a point r0 = γ(t0).

Using similar ideas, we can define the tangent plane of a surface. Consider a simple C1-surface Σ ⊆ R3

and let Φ : D → R3 be a C1-parametric representation of this surface for some region D ⊆ R2. Let (s0, t0)
be a point in the interior (i.e., not on the boundary) of D. Then there must be some small rectangle inside
D,

[a, b]× [c, d] ⊂ D such that a < s0 < b and c < t0 < d.

As before, we can construct “grid curves” corresponding to this parameterization of the surface. We take
the paths

γt=t0(s) = Φ(s, t0) for s ∈ [a, b] and γs=s0(t) = Φ(s0, t) for t ∈ [c, d], (4.3)

and consider the resulting grid curves

Γt=t0 = {Φ(s, t0) | a ≤ s ≤ b} and Γs=s0 = {Φ(s0, t) | c ≤ t ≤ d} (4.4)

which intersect at the point on the surface r0 = Φ(s0, t0). Since the curves resulting from these paths lie on
the surface, the tangent lines to these curves will also be tangent to the surface at the point r0. (See Figure
4.11.)

The velocities of the paths in (4.3) defining the grid curves in (4.4) at the values of the parameters s = s0

and t = t0 are

γ′t=t0(s0) =
∂Φ

∂s

∣∣∣
(s0,t0)

and γ′s=s0(t0) =
∂Φ

∂t

∣∣∣
(s0,t0)
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Figure 4.10: Even if D is not itself a rectangle, we can always consider a smaller region inside
D that is a rectangle around the point (s0, t0) inside.

Figure 4.11: The grid curves Γt=t0 and Γs=s0 intersect at the point r0 = Φ(s0, t0). The velocity
vectors of the paths are tangent to the surface at this point.

respectively, where, to take the partial derivatives of the parameterization Φ with respect to each of its
parametric variables, we take the partial derivatives of its components Φ(s, t) = (x(s, t), y(s, y), z(s, t)),

Φs(s0, t0) =
∂Φ

∂s

∣∣∣
(s0,t0)

=

(
∂x

∂s

∣∣∣
(s0,t0)

,
∂y

∂s

∣∣∣
(s0,t0)

,
∂z

∂s

∣∣∣
(s0,t0)

)
and Φt(s0, t0) =

∂Φ

∂t

∣∣∣
(s0,t0)

=

(
∂x

∂t

∣∣∣
(s0,t0)

,
∂y

∂t

∣∣∣
(s0,t0)

,
∂z

∂t

∣∣∣
(s0,t0)

)
,

where, for simplicity, we often instead use the notation Φs(s0, t0) and Φt(s0, t0) to denote the partial deriva-
tives of Φ evaluated at (s0, t0).

The vectors Φs(s0, t0) and Φt(s0, t0) line tangent to the surface at the point r0 = Φ(s0, t0). A represen-
tation for the tangent plane to the surface Σ at this point can therefore be given by

tangent plane at r0 =

{
r0 + s

∂Φ

∂s

∣∣∣
(s0,t0)

+ t
∂Φ

∂t

∣∣∣
(s0,t0)

∣∣∣∣ s, t ∈ R
}
.

We can find a normal vector to the tangent plane at the pont r0 = Φ(s0, t0) corresponding to the parame-
terization Φ as

nΦ(s0, t0) =
∂Φ

∂s

∣∣∣
(s0,t0)

× ∂Φ

∂t

∣∣∣
(s0,t0)

. (4.5)

Since this vector is normal to the tangent plane of Σ at r0, it is normal to the surface at that point as
well! Given a parameterization Φ : D → R3 of a surface Σ, we can define another vector-valued function
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nΦ : D → R3 defined for all (s, t) ∈ D by

nΦ(s, t) =
∂Φ

∂s

∣∣∣∣
(s,t)

× ∂Φ

∂t

∣∣∣∣
(s,t)

(4.6)

= Φs(s, t)×Φt(s, t)

which gives us a normal vector at Φ(s, t) corresponding to this parameterization. Note that this normal
vector depends on which parameterization we choose, since choosing a different parameterization might result
in different partial derivatives. The resulting normal vector from a different parameterization will necessarily
point along the same direction, but might have different length.

Example 4.7. Consider a cylinder of radius r and height h in R3 that is parameterized by Φ : D → R3

where
Φ(θ, t) = (r cos θ, r sin θ, t) and D = [0, 2π]× [0, h].

We can find an expression for a normal vector at each point on the cylinder by taking the partial derivatives

∂Φ

∂θ

∣∣∣∣
(θ,t)

= (−r sin θ, r cos θ, 0) and
∂Φ

∂t

∣∣∣∣
(θ,t)

= (0, 0, 1).

The normal vector at each point on the surface corresponding to this parameterization is therefore

nΦ(θ, t) =

(
∂Φ

∂θ
× ∂Φ

∂t

)∣∣∣∣
(θ,t)

= (−r sin θ, r cos θ, 0)× (0, 0, 1)

=

∣∣∣∣∣∣
ı̂ ̂ k̂

−r sin θ r cos θ 0
0 0 1

∣∣∣∣∣∣
= r cos θ ı̂+ r sin θ ̂.

This is the outward facing normal vector, since we can see in Figure 4.12 that this normal vector points
outward (away from the z-axis) at any point. Consider for example the point Φ(0, h/2) on the cylinder that
is half way up. The normal vector (determined by this parameterization) at this point is

nΦ

(
0,
h

2

)
= (r, 0, 0),

which points parallel to the x-axis.

If we want to find the unit normal vector corresponding to a parameterization of a surface, we divide by
the norm:

n̂Φ(s, t) =
nΦ(s, t)

‖nΦ(s, t)‖
=

∂Φ
∂s

∣∣
(s,t)
× ∂Φ

∂t

∣∣
(s,t)∥∥∥∂Φ

∂s

∣∣
(s,t)
× ∂Φ

∂t

∣∣
(s,t)

∥∥∥ .
Notice, however, that we cannot divide by zero, so the unit normal vector can only be found if the normal
vector is nonzero (nΦ(s, t) 6= 0). This can occur if either

∂Φ

∂s
= 0 or

∂Φ

∂t
= 0 or if the partial derivatives

∂Φ

∂s
and

∂Φ

∂t
are parallel.

If either of these things happen, the resulting parametric surface might have a “sharp edge” at the point
where nΦ(s, t) = 0. This will cause troubles when we get to integrating over surfaces. In order to eliminate
this possibility, we restrict our attention only to simple surfaces that are smooth. In this course we will only
be interested in smooth surfaces.
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Figure 4.12: The tangent plane of the cylinder from Example 4.7.

Definition 4.8 (Smooth surface). Let Σ ⊆ R3 be a simple surface and let r0 ∈ Σ be a point on the
surface. The surface Σ is said to be smooth at the point r0 if there is a C1-parameterization Φ : D → R3

of Σ such that r0 = Φ(s0, t0) for some (s0, t0) ∈ D such that

∂Φ

∂s

∣∣∣
(s0,t0)

× ∂Φ

∂t

∣∣∣
(s0,t0)

6= 0.

A simple surface Σ is called smooth if it has a parameterization Φ : D → R3 such that Σ is smooth at
Φ(s0, t0) for each point (s0, t0) ∈ D.

4.2 Surface integration

Previously, we studied how to extend the notion of integration of real-valued functions on the real line to
line integrals over curves in space. We will now study how to take integrals over two-dimensional surfaces
in three-dimensional space. We’ll introduce this idea by first using parameterizations to determine the area
of a surface by integration.

4.2.1 Area of surfaces

Consider a smooth surface Σ that is parameterized by some function Φ : D → R3. For now, suppose that
the region D ⊆ R2 is a rectangle D = [a, b] × [c, d] for some values a < b and c < d. We can obtain an
approximation for the area of Σ by segmenting D into many smaller rectangles D1, D2, . . . , DN , where each
of the smaller rectangles has sides of length ∆s and ∆t for some small values of ∆s and ∆t, and the area of
each of these smaller rectangles is area(Di) = ∆s∆t. (See Figure 4.13.)

This segments the surface Σ into N smaller surfaces Σ1,Σ2, . . . ,ΣN , each of which corresponds to one of
the pieces D1, . . . , DN of the region D. We can obtain an approximation for the total area of the surface Σ by
approximating the areas of each of the pieces Σ1, . . . ,ΣN and adding all of the approximate areas together.
To obtain an approximation for the area of each of the pieces Σ1, . . . ,ΣN , for each i ∈ {1, 2, . . . , N} we may
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Figure 4.13

think of the region Di as being a small rectangle

Di = [si, si + ∆s]× [ti, ti + ∆t]

= {(s, t) ∈ R2 | si ≤ s ≤ si + ∆s and ti ≤ t ≤ ti + ∆t}

and the piece Σi as the small piece of surface mapped to from the piece Di,

Σi = {Φ(s, t) | (s, t) ∈ Di}.

For small enough values of ∆s and ∆t, each piece Σi is “approximately” a flat parallelogram, as seen in
Figure 4.14, and the edges of Σi can approximately be thought of as straight edges given by the vectors

v = Φ(si + ∆s, ti)−Φ(si) and w = Φ(si, ti + ∆t)−Φ(si)

that connect the corners of the small piece of the surface Σi.

Figure 4.14: A small piece of surface Σi can be approximated by a small parallelogram.

Since the values ∆s and ∆t are small, these vectors are approximately

v ≈ ∂Φ

∂s

∣∣∣
(si,ti)

∆s and w ≈ ∂Φ

∂t

∣∣∣
(si,ti)

∆t.

Recall that the area of the parallelogram that approximates Σi with edges given by the vectors v and w is
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given by the norm of the cross-product v ×w, namely

area(Σi) ≈ ‖v ×w‖

≈
∥∥∥∥(∂Φ

∂s

∣∣∣
(si,ti)

∆s

)
×
(
∂Φ

∂t

∣∣∣
(si,ti)

∆t

)∥∥∥∥
=

∥∥∥∥(∂Φ

∂s
× ∂Φ

∂t

)∣∣∣
(si,ti)

∥∥∥∥∆s∆t

= ‖nΦ(si, ti)‖∆s∆t

where in the last line we recall the definition in (4.5) of the normal vector determined by the parameteriza-
tion Φ. The area of the surface can therefore be approximated as

area(Σ) =

N∑
i=1

area(Σi)

≈
N∑
i=1

‖nΦ(si, ti)‖∆s∆t

where we recall that ∆s∆t is the area of each piece Di of the region D. In the limit as N → ∞ and
∆s,∆t → 0, where we segment D into infinitely many smaller segments, this sum approaches a limiting
value, which we denote by the integral

area(Σ) =

∫∫
D

‖nΦ(s, t)‖ ds dt.

=

∫∫
D

∥∥∥∥(∂Φ

∂s
× ∂Φ

∂t

)∣∣∣∣
(s,t)

∥∥∥∥ ds dt. (4.7)

That is, we can compute the surface area of the surface in R3 as a two-dimensional integral over the
parameterizing region D in R2!

Remark. The following important question arises in connection with the area formula given by (4.7), namely
the right side appears to depend on the particular parametric representation Φ that we have chosen for the
surface Σ. However, the area of a surface is intrinsic, and should not depend on the particular parametric
representation we have chosen for the surface. This means that if we choose to represent the same surface
Σ by two different parametric representations

Φ1 : D1 → R3 and Φ2 : D2 → R3,

for regions D1 ⊆ R2 and D2 ⊆ R2, each of which parameterize the same surface Σ,

{Φ1(s, t) | (s, t) ∈ D1} = Σ = {Φ2(u, v) | (u, v) ∈ D2}

for (s, t) ∈ D1 and (u, v) ∈ D2, then it must be the case that∫∫
D1

∥∥∥∥(∂Φ1

∂s
× ∂Φ1

∂t

)∣∣∣∣
(s,t)

∥∥∥∥ ds dt =

∫∫
D1

∥∥∥∥(∂Φ2

∂u
× ∂Φ2

∂v

)∣∣∣∣
(u,v)

∥∥∥∥ du dv.
This is analogous to our analysis for lengths of curves; the value we get for computing the length of a curve
is independent of which parameterization we choose. This means, in particular, that if we have several
parametric representations of a surface Σ then we should use that particular representation which involves
the least amount of work in the integration for calculating the area. This will become clear in later examples.
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Example 4.9. In this example we will consider the two different parametric representations for the top half
of the sphere from Examples 4.3 and 4.3. Let Σ be the surface

Σ = {(x, y, z) ∈ R3 |x2 + y2 + z2 = r2 and z ≥ 0}

that is the top half of the sphere which we can parameterize in two different ways.

• For the first parameterization, we will consider Σ as the graph of the function f : D1 → R3 defined as

f(x, y) =
√
r2 − x2 − y2 (4.8)

over the region that is the disc of radius r in the plane D1 = {(x, y) ∈ R2 |x2 + y2 ≤ 1}. This gives us
the parameterization Φ1 : D1 → R3 defined by

Φ1(x, y) = (x, y, f(x, y)) =
(
x, y,

√
r2 − x2 − y2

)
. (4.9)

The partial derivatives of this parameterization are

∂Φ1

∂x

∣∣∣
(x,y)

=

(
1, 0,

x√
r2 − x2 − y2

)
and

∂Φ1

∂y

∣∣∣
(x,y)

=

(
0, 1,

y√
r2 − x2 − y2

)
,

such that the normal vector on the top half of the sphere at the point Φ1(x, y) that is obtained from
this parameterization is

nΦ1
(x, y) =

∂Φ1

∂y

∣∣∣
(x,y)

× ∂Φ1

∂x

∣∣∣
(x,y)

=

(
0, 1,

y√
r2 − x2 − y2

)
×

(
1, 0,

x√
r2 − x2 − y2

)

=

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂
0 1 y√

r2−x2−y2

1 0 x√
r2−x2−y2

∣∣∣∣∣∣∣∣ =
x√

r2 − x2 − y2
ı̂+

y√
r2 − x2 − y2

̂+ k̂,

which has norm equal to

‖nΦ1(x, y)‖ =

√
x2 + y2

r2 − x2 − y2
+ 1 =

√
r2

r2 − x2 − y2
=

r√
r2 − x2 − y2

.

The area of the top half of the sphere can therefore be computed as

area(Σ) =

∫∫
D1

r√
r2 − x2 − y2

dx dy. (4.10)

Evaluation of this integral is quite laborious and complicated (although not impossible) because the
integrand involves the reciprocal of a square root (which is usually quite awkward to deal with) and
because the integration is over the disc D1 = {(x, y) |x2 +y2 ≤ 1} rather than over a nice simple region
such as a rectangle.

• As an alternative to the parameterization above, we can use the spherical coordinates parameterization
from Example 4.4. In that example we have parameterized the entire surface of the sphere, but we can
restrict the region to

D2 = [0, 2π]× [0, π/2] =
{

(θ, ϕ)
∣∣∣ 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ π

2

}
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(where we only consider points that make an angle of less than 90◦ = π/2 with the z-axis), and take
the parameterization Φ2 : D2 → R3 defined as

Φ2(θ, ϕ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ) . (4.11)

This also parameterizes the top half of the sphere. The relevant partial derivatives are

∂Φ2

∂θ
= (−r sinϕ sin θ, r sinϕ cos θ, 0) and

∂Φ2

∂ϕ
= (r cosϕ cos θ, r cosϕ sin θ, −r sinϕ)

such that the normal vector on the top half of the sphere at the point Φ2(θ, ϕ) that is obtained from
this parameterization is

nΦ2
(θ, ϕ) =

∂Φ2

∂θ

∣∣∣
(θ,ϕ)

× ∂Φ2

∂ϕ

∣∣∣
(θ,ϕ)

= (−r sinϕ sin θ, r sinϕ cos θ, 0)× (r cosϕ cos θ, r cosϕ sin θ, −r sinϕ)

=

∣∣∣∣∣∣
ı̂ ̂ k̂

−r sinϕ sin θ r sinϕ cos θ 0
r cosϕ cos θ r cosϕ sin θ −r sin θ

∣∣∣∣∣∣
= −r2

(
sin2 ϕ cos θ ı̂+ sin2 ϕ sin θ ̂+ sinϕ cosϕ k̂

)
,

which has norm

‖nΦ2
(θ, ϕ)‖ = r2

√
sin4 ϕ cos2 θ + sin4 ϕ sin2 θ + sin2 ϕ cos2 ϕ

= r2
√

sin2 θ
(
sin2(ϕ cos2 θ + sin2 θ) + cos2 ϕ

)
= r2|sinϕ|.

We may now compute the area of the top half of the sphere as

area(Σ) =

∫∫
D2

‖nΦ2
(θ, ϕ)‖ dθ dϕ

= r2

∫ 2π

0

(∫ π/2

0

|sinϕ| dϕ

)
dθ

= r2

∫ 2π

0

1 dθ

= 2πr2.

Note that here we used the fact that D2 is a rectangle, and thus the integral can easily be computed
as a double integral.

This example illustrates a very important aspect of the area formula (4.7), namely the choice of parametric
representation of the surface Σ can substantially influence the amount of work involved in using this formula.
Indeed, we saw that the parametric representation of Σ as the graph of the function in (4.8) over the region
D1 given by (4.9) leads to the rather complicated integral in (4.10), whereas the area formula is quite easy
to use for the parametric representation of Σ given by (4.11).

4.2.2 Surface integral of a scalar field

In Section 4.2.1 we obtained a formula for the area of a surface Σ with a parametric representation Φ : D →
R3. In this section our goal is to generalize this idea to construct the integral of a given scalar field over
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the surface Σ. For a concrete instance of how this type of integral could be useful, suppose that the surface
Σ describes an infinitessimally thin sheet of plastic, and for each point (x, y, z) ∈ Σ on the surface function
value σ(x, y, z) gives the charge density (in units Coulombs/m2) concentrated on the surface Σ at the point
(x, y, z). The integral that we are going to definewill enable us to determine the total charge on the surface.

Consider a simple C1 surface Σ and choose a paramterization Φ : D → R3, for which we will suppose for
simplicity that D ⊆ R2 is a rectangle

D = [a, b]× [c, d],

and let f : R3 → R be a continuous scalar field. As in 4.2.1, we will divide the region D into tiny rectangles
D1, . . . , DN , each with area ∆s∆t for some small values ∆s and ∆t. Then Φ maps Di onto a small piece of
the surface Σi which is approximately a parallelogram with area

∆Ai = area(Σi) ≈ ‖nΦ(si, ti)‖∆s∆t,

where we recall that the normal vector from this parameterization is

nΦ(s, t) =
∂Φ

∂s

∣∣∣
(s,t)
× ∂Φ

∂t

∣∣∣
(s,t)

.

We now multiply the area ∆Ai of Σi by the value of the scalar field at the point Φ(si, ti) corresponding to
the corner of Σi to get

f(Φ(si, ti))∆Ai ≈ f(Φ(si, ti))‖nΦ(si, ti)‖∆s∆t. (4.12)

To get some idea of what this quantity means, suppose that at each point (x, y, z) on the surface Σi the value
f(x, y, z) gives the density of charge per unit area concentrated on the surface around the point (x, y, z).
Then the total amount of charge contained on the small piece of surface Σi is given by the expression in
(4.12). Summing over all of the pieces gives us the total amount of charge on the entire surface. If we take
the limit as N →∞ and ∆s,∆t→ 0, the value of this limit is equal to

lim
N→∞

∆s,∆t→0

N∑
i=1

f(Φ(si, i))∆s∆t =

∫∫
D

f(Φ(s, t)) ds dt.

As before, it turns out that the value of this limit does not depend on which parameterization we choose for
the surface. We can therefore define the value of the surface integral of a scalar field f over a surface Σ as∫∫

Σ

f dA =

∫∫
D

f(Φ(s, t)) ds dt. (4.13)

As before, the value of the integral on the left-hand side is independent of parameterization, so we may
choose whichever parameterization we choose that allows us to compute the right-hand side of (4.13) most
efficiently.

Example 4.10. Consider the conic surface determined by the equations x2 +y2 = z2 for 0 ≤ z ≤ 1. Suppose
that the surface charge density at a point (x, y, z) on the surface is equal to σ(x, y, z) = 1 +xyz. To find the
total charge contained on the surface of this cone, we must set up a surface integral. To do so we must first
find a parameterization. We may choose Φ : D → R3 defined by

Φ(r, θ) = (r cos θ, r sin θ, r)

over the rectangular region D = [0, 1]× [0, 2π], which has partial derivatives given by

∂Φ

∂r
= (cos θ, sin θ, 1) and

∂Φ

∂θ
= (−r sin θ, r cos θ, 0).
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The normal vector to the surface that is determined by this parameterization is

nΦ(r, θ) =

(
∂Φ

∂θ
× ∂Φ

∂r

)∣∣∣∣
(r,θ)

= (−r sin θ, r cos θ, 0)× (cos θ, sin θ, 1)

= (r cos θ, r sin θ, r),

which has norm equal to

‖nΦ(r, θ)‖ =
√
r2 cos2 θ + r2 sin2 θ + r2 =

√
2r.

The value of the function f at the points on the surface determined by the paramterization is

f(Φ(r, θ)) = 1 + r3 sin θ cos θ.

The total charge can now be computed by setting up a surface integral∫∫
Σ

f dA =

∫∫
D

f(Φ(r, θ))‖nΦ(r, θ)‖ dr dθ

=

∫∫
D

(1 + r3 sin θ cos θ)(
√

2r) dr dθ

=
√

2

∫ 1

0

(∫ 2π

0

(r + r4 sin θ cos θ) dθ

)
dr

=
√

2

∫ 1

0

(
r

∫ 2π

0

dθ︸ ︷︷ ︸
2π

+r4

∫ 2π

0

cos θ sin θ dθ︸ ︷︷ ︸
0

)
dr

= 2
√

2π

∫ 1

0

r dr =
√

2π.

Remark. We note that the area of a smooth surface can be expressed using this notation as an integral
over a scalar field,

area(Σ) =

∫∫
Σ

dA,

where we take the constant scalar field f = 1.
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