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5.1 Understanding parameterizations of surfaces

Now that we have spent some time parameterizing surfaces and integrating over them, we should stop for a
moment to consider what it is exactly that we are doing. Modeling a surface in three dimensional space is
much easier if we can view it in two-dimensional space. However, there is no way in general to completely
and accurately represent a three-dimensional object on a two-dimensional plane. Consider for example the
problem of printing a map of the Earth in a book. It simply can’t be done without somewhere cutting and
warping the surface of the globe so that it fits on a page. One way to do this is shown in Figure 5.1 below.
This projection, or “flattening”, of the globe corresponds to the standard spherical coordinates given by the
parameterization Φ : D → R defined as

Φ(θ, ϕ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ) (5.1)

over the two-dimensional rectangle D = [0, 2π] × [0, π]. This gives us a one-to-one mapping between the
points on the globe and points in the rectangle, shown in Figure 5.1. Although the points on the sphere are
in one-to-one correspondence with the points in the rectangle, smaller regions on the sphere and their areas
get “warped” in the rectangle.

Figure 5.1: A parameterization of the sphere is a “flattening” that allows us to represent it in
two-dimensional space. This projection of the globe corresponds to the spherical coordinates
parameterization from last week.

The standard parameterization using spherical coordinates, however, is certainly not the only way that
one can parameterize the sphere. Different parameterizations yield different ‘projections’ of the sphere in
two-dimensional space. Figure 5.2 shows a few different examples of types of projections of the globe that
are typically used in map-making.

As we have seen, a parameterization of a surface gives us a way of computing surface integrals on that
surface. For example, given a parameterization Φ : D → R3 of a surface Σ ⊂ R3, the area of Σ can be
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Figure 5.2: There are infinitely many ways one can parameterize the sphere to represent it as a
projection in a two-dimensional plane. Here are a few typical projections used for map-making.
Each parameterization ‘warps’ the area of a region on the sphere that it represents.

computed as

area(Σ) =

∫∫
Σ

dA =

∫∫
D

∥∥∥∥(∂Φ

∂s
× ∂Φ

∂t

) ∣∣∣
(s,t)

∥∥∥∥ ds dt,
where the normal vector determined by this parameterization at a point Φ(s, t) on the surface of Σ is

nΦ(s, t) =

(
∂Φ

∂s
× ∂Φ

∂t

) ∣∣∣
(s,t)

.

The value of ‖nΦ‖ (which is the magnitude of this normal vector from this parameterization) corresponds to
how much to we need “scale” the area of the piece of the region of D in order to get the correct value for the
area of the corresponding piece of surface Σ. For example, if we were to use one of the parameterizations in
5.2 to compute the area of Greenland, straightforward comparison of the areas of the “projected” versions
of Greenland in the projections would give us wildly different answers. Multiplying by the correct scaling
factor corresponding to each parameterization gives us the correct area.

For an example of a more general surface integral that is not simply an area integral, suppose the function
f : Σ → R represents the population density of a point on the globe. For a parameterization Φ, the total
population on the Earth can be computed as

total population =

∫∫
Σ

f dA =

∫∫
D

f(Φ(s, t))

∥∥∥∥(∂Φ

∂s
× ∂Φ

∂t

) ∣∣∣
(s,t)

∥∥∥∥ ds dt. (5.2)

If we forget to include the area-scaling factor ‖nΦ(s, t)‖ inside the integral in (5.2), we would get the
wrong answer! For example, we would most likely get an overestimate for the population of Greenland and
underestimate the population countries closer to the equator.

5.2 Change of variables in two dimensions and Polar coordinates

Recall from first-semester calculus that we sometimes use a “change of variables” (or “u-substitution”) to
simplify complicated integrals into expressions that are easier to manage. Namely, if u is a continuous
one-to-one function on some interval [a, b], the change of variables formula tells us that∫ b

a

f(u(x))u′(x) dx =

∫ u(b)

u(a)

f(u) du. (5.3)

The integral on the left is over the interval [a, b]. The function u “transforms” this interval to a new interval
[u(a), u(b)] and the integral on the right integrates the new variable over this transformed interval. We can
do something similar with integrals in two-dimensions.
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5.2.1 Jacobian of a transformation

Our formulas for computing surface integrals of two-dimensional surfaces living in three-dimensional space
also has another application: we can use it to make use of reparameterizations of two-dimensional regions
by making a change of variables. When considering transformations like this, it is customary to use u and
v as the variable names. Consider for example a one-to-one mapping Φ : D → R2 from a region D ⊆ R2 in
the plane, as shown in Figure 5.3, which has components

Φ(u, v) = (x(u, v), y(u, v)). (5.4)

The new region Φ(D) ⊆ R2 that is parameterized by Φ is the set of points

Φ(D) =
{
Φ(u, v)

∣∣ (u, v) ∈ D
}

that gets mapped to by Φ.

r

Figure 5.3: A one-to-one mapping Φ : D → R2 transforms a region D ⊆ R2 into another region
Φ(D) in the plane by “reparameterizing” the region. In three dimensions, it can be viewed as
sitting on the xy-plane in space.

We may view this region Φ(D) as a surface Σ “in the xy-plane” of three-dimensional space

Σ = {(x(u, v), y(u, v), 0) | (u, v) ∈ D},

which we can think of as being a parameterized surface that is parameterized by the same parameterization
in (5.4) and adding a zero in the z-coordinate:

Φ(u, v) = (x(u, v), y(u, v), 0)

to get the parameterization of the corresponding surface n R3.
The “normal vector” of Σ determined by this parameterization can be found by computing the partial

derivatives
∂Φ

∂u
=

(
∂x

∂u
,
∂y

∂u
, 0

)
and

∂Φ

∂v
=

(
∂x

∂v
,
∂y

∂v
, 0

)
,

and taking the cross product

nΦ =
∂Φ

∂u
× ∂Φ

∂v
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

ı̂ ̂ k̂

∂x

∂u

∂y

∂u
0

∂x

∂v

∂y

∂v
0

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣ k̂ =

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
k̂. (5.5)
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Figure 5.4: The normal vector of the surface on the xy-plane points along the z-axis.

The determinant in (5.5) is known as the Jacobian of the transformation. We commonly use either the

notation JΦ or
∂(x, y)

∂(u, v)
to denote the Jacobian of a transformation:

JΦ =
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u

∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
, (5.6)

such that the magnitude of the normal vector of the transformation at the point Φ(u, v) is

‖nΦ(u, v)‖ = |JΦ(u, v)| =
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ .
The Jacobian is therefore a function JΦ : D → R that takes points (u, v) ∈ D and maps them to values

JΦ(u, v) =
∂(x, y)

∂(u, v)

∣∣∣∣
(u,v)

.

This value corresponds to how much the area around the point (u, v) gets “stretched” under the transfor-
mation Φ from the uv-plane to the xy-plane.

Figure 5.5: A transformation “stretches” different parts of the region D by different amounts.
The Jacobian of a transformation at a point (u0, v0) is the amount of stretching in the region
around that point.



ECE 206 – Week 5: October 1, 2019 5-5

We are now ready to present a “change of variables” formula for two-dimensional integrals. First recall
our formula for surface integrals from last week. For a parameterization Φ : D → R3 of a surface Σ ⊆ R3

and a continuous scalar field f : R3 → R, the integral of f over the surface Σ is computed by∫∫
Σ

f dA =

∫∫
D

f(Φ(s, t))

∥∥∥∥∂Φ

∂s
× ∂Φ

∂t

∥∥∥∥ ds dt,
where in the integral on the right we integrate over the variables s and t.

For a reparameterization Φ : D → R2 of a region D ⊆ R2 and a continuous function f : R2 → R, the
integral of f over Φ(D) is computed by making a change of variables:∫∫

Φ(D)

f(x, y) dx dy =

∫∫
D

f
(
x(u, v), y(u, v)

) ∣∣JΦ(u, v)
∣∣ du dv

=

∫∫
D

f
(
Φ(u, v)

) ∣∣JΦ(u, v)
∣∣ du dv (5.7)

=

∫∫
D

f
(
Φ(u, v)

) ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
5.2.2 Polar coordinates

One of the most useful examples of a coordinate transformation in the plane is the use of polar coordinates:

Φ(r, θ) = (x(r, θ), y(r, θ))

where
x(r, θ) = r cos θ and y(r, θ) = r sin θ for 0 ≤ θ < 2π and 0 ≤ r. (5.8)

This is a reparameterization of the plane R2. Each point is specified by its distance r from the origin and
the angle θ that the point makes with the x-axis.

Figure 5.6: Polar coordinates are a way or reparameterizing R2. The variables 0 ≤ θ < 2π and
0 ≤ r parameterize the plane by x = r cos θ and y = r sin θ.

Given a region D ∈ R2 in the xy-plane, we are often interested in finding the region in the rθ-plane that
gets mapped to D under the polar coordinate transformation. We denote this set as

Φ−1(D) =
{

(r, θ)
∣∣Φ(r, θ) ∈ D

}
.

Example 5.1. The polar coordinate transformation is useful for converting “circular” regions in the xy-
plane into rectangles in the rθ-plane, which are easier to integrate over. Consider for example the following
regions.
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• Let D1 be the “quarter disc” that is inside the circle x2 + y2 = 1 and in the quadrant where x, y ≥ 0.
In polar coordinates, this region is a rectangle

Φ−1(D1) = [0, 1]× [0, π/2]

of the points where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π/2.

• Let D2 be the annulus that is inside the circle x2 + y2 = 4 and outside the circle x2 + y2 = 1. In polar
coordinates, this region is a rectangle

Φ−1(D) = [1, 2]× [0, 2π]

of the points where 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.

Figure 5.7: The regions D1 and D2 in the xy-plane from Example 5.1 and the regions Φ−1(D1)
and Φ−1(D2) in the rθ-plane that get mapped to those regions under the polar coordinates
transformation.

We can use polar coordinates to simplify some two-dimensional integrals using the formula in (5.7). The
partial derivatives of the transformation in (5.8) for polar coordinates are

∂x

∂r
= cos θ,

∂y

∂r
= sin θ,

∂x

∂θ
= −r sin θ, and

∂y

∂θ
= r cos θ.

which gives us the Jacobian for the polar coordinates transformation:

∂(x, y)

∂(r, θ)
=
∂x

∂r

∂y

∂θ
− ∂x

∂θ

∂y

∂r
= (cos θ)(r cos θ)− (−r sin θ)(sin θ) = r(cos2 θ + sin2 θ) = r.

This gives us the general formula for computing a two-dimensional integral using polar coordinates:∫∫
D

f(x, y) dx dy =

∫∫
Φ−1(D)

f((x(r, θ), y(r, θ))) r dr dθ .

Example 5.2. Evaluate the integral

∫∫
D

xy dx dy where D is part of an annulus in the first quadrant of

plane in the region where y ≤ x:

D =
{

(x, y)
∣∣ 1 ≤ x2 + y2 ≤ 4, x, y ≥ 0, and y ≤ x

}
.

Since we have a constraint involving an expression of the form x2 +y2, it is likely that using polar coordinates
will simplify the integral. As always, it will first be helpful to sketch the region to get an idea of what it
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(a) The annulus 1 ≤ x2 + y2 ≤ 2. (b) The half-plane where y ≤ x. (c) The region D from example 5.2.

Figure 5.8: Sketching the region D in Example 5.2

looks like. The region where 1 ≤ x2 + y2 ≤ 2 is an annulus shown in Figure 5.8a, while the region where
y ≤ x is shown in Figure 5.8b. The region D is the intersection of these regions is shown in Figure 5.8c.

From this sketch, we see that the region D can be parameterized using polar coordinates where the
parameter for the radius varies over the range 1 ≤ r ≤ 2 while the parameter for the angle will be taken
between 0 ≤ θ ≤ π/4. Changing to polar coordinates, the integral becomes∫∫

D

xy dx dy =

∫ π
4

0

∫ 2

1

(
r2 cos θ sin θ

)
r dr dθ

=

(∫ π
4

0

cos θ sin θ dθ

)(∫ 2

1

r3 dr

)
=

(
1

2
sin2 θ

∣∣∣π/4
0

)(
1

4
r4
∣∣∣2
1

)
=

(
1

4

)(
15

4

)
=

15

16
.

5.3 Surface integrals of vector fields

In Week 4 we obtained a formula for the surface integral of a scalar field f over a surface Σ with a parametric
representation Φ : D → R3. In this section, our goal is to define an integral of a vector field over a surface,
analogous to how we defined line integrals of vector fields over curves. Before proceeding, we must first
introduce the concept of an orientation on a surface.

5.3.1 Oriented surfaces and boundaries

Definition 5.3. An orientation on a C1 surface Σ ⊆ R3 is a way of continuously assigning a unit normal
vector to each point on the surface. A surface together with an orientation is called an oriented surface.

If a surface can be given an orientation, it is said to be orientable. Just as oriented curves could have one of
exactly two opposite orientations, any orientable surface will have exactly two possible orientations. Giving
an orientation to a surface is simply deciding which “side” of the surface we want to denote as “up” (or
“outward”) and which side is “down” (or “inward”).

Although it will not be important for this course, it is important to note that some surfaces cannot be
given an orientation. The Möbius strip is an example of a surface which is not orientable, since there it only
has one “side.” There is no continuous way to assign a normal unit vector at each point.
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Figure 5.9: A surface can have one of two possible orientations.

Figure 5.10: The Möbius strip is an example of a non-orientable surface, since it only has one
“side.”

If a smooth surface Σ has a parameterization Φ : D → R3, that parameterization automatically provides
the surface with an orientation. The unit normal vector at the point Φ(s, t) ∈ Σ that we obtain from this
parameterization is

n̂(Φ(s, t)) =
nΦ(s, t)

‖nΦ(s, t)‖
=

∂Φ

∂s
× ∂Φ

∂t∥∥∥∥∂Φ

∂s
× ∂Φ

∂t

∥∥∥∥ .
If two different parameterizations always give the same unit normal vector, then they give the same orienta-
tion to the surface. If a surface is given with an orientation, we must be careful to choose a parameterization
that gives the normal vector pointing in the correct direction.

Recall our notion of the “boundary” ∂D of a region D ⊆ R2, which is a closed oriented curve. Any
oriented surface in space likewise a boundary. Given a smooth oriented surface Σ ⊆ R3, its boundary is the
closed oriented curve denoted by

boundary of Σ = ∂Σ

whose orientation is always given by the right-hand rule. At a point on the boundary of the surface, the
orientation of the boundary at that point can be found by pointing your thumb of your right hand in the
direction of the normal vector at that point and lining up your pinky along the boundary at that point.

Figure 5.11: The boundary of an oriented surface is an oriented curve. The orientation of the
boundary is found using the right-hand rule.
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Your fingers point in the direction of the boundary’s orientation at that point.

5.3.2 Flux through a surface

Before digging into the details of surface integration, we first introduce the idea of the “flux” of a vector field
through a window. Suppose that F is a constant vector field in space that describes, perhaps, the velocity
of water flowing through space. Given a small window with area ∆A inside the flow of the water, what is
the total rate at which water flows through the window (in units of volume per unit time)? This will depend
on the angle that the window makes with the direction of the flow. For an arbitrary field F , this quantity is
called the flux of the field through the window. If the normal of the window is parallel with the flow of the
light, the total amount of water flowing through the window will be proportional to

total flux = ‖F ‖∆A.

However, if the normal of the window is at an angle with the direction of the flow, the total flux will depend
on that angle:

total flux = ‖F ‖∆A cos θ.

If the unit normal vector of the small window is denoted n̂, this total flux can be denoted using the dot
product of these vectors by

total flux = ‖F ‖∆A cos θ = F · n̂∆A.

For a small flat piece of surface in space with a specified orientation, it is common to denote this piece of
surface as the vector ∆A = ∆A n̂ that combines the magnitude of the area ∆A with the direction of the
orientation of that area n̂ into a single vector, such that the flux through the window is equal to F ·∆A.

Figure 5.12: Flux of a constant vector field through a flat window. The total flow through the
window depends on the angle between the field and the normal vector.

5.3.3 Flux integrals

We are now ready to introduce the idea of a surface integral over a vector field. We proceed exactly as we
did in our introduction of surface integrals of scalar fields. Let Σ be an oriented surface with a specified
orientation that is parameterized by Φ : D → R3, where we may suppose for simplicity that D ⊆ R2 is a
rectangle

D =
{

(u, v)
∣∣ a ≤ s ≤ b and c ≤ t ≤ d

}
= [a, b]× [c, d].

Suppose we are also given a continuous vector field F : R3 → R3 and we are asked to find the total flux of
the field F that flows through the surface Σ. To do this, we need to take the dot product of the field F with
the unit normal vector n̂ at each point on the surface, and integrate this value over the entire surface.

We can approximate the value of this integral by segmenting the rectangle D into a grid of N smaller
rectangles D1, . . . , DN (each of which has sides of lengths ∆s and ∆t) also segments the surface into smaller
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Figure 5.13: The flux of a field F through an oriented surface Σ is equal to the integral of the
dot product F · n̂ of the field with the unit normal vector at each point on the surface.

pieces of surface Σ1, . . . ,ΣN (each of which can be approximated as a parallelogram with sides given by the
vectors

∂Φ

∂s

∣∣∣
(si,ti)

∆s and
∂Φ

∂t

∣∣∣
(si,ti)

∆t,

where (si, ti) is a point in the region Di). As we determined in our analysis of integrals of scalar fields over
surfaces, the area of each piece Σi is approximately

∆Ai = area(Σi) ≈
∥∥∥∥(∂Φ

∂s
× ∂Φ

∂t

) ∣∣∣
(si,ti)

∥∥∥∥∆s∆t = ‖nΦ(si, ti)‖∆s∆t,

where nΦ is the (unnormalized) normal vector at that point on the surface determined by this parameteri-
zation. Meanwhile, the unit normal vector at this point is

n̂
(
Φ(si, ti

)
) =

nΦ(si, ti)

‖nΦ(si, ti)‖
.

The amount of flux through the tine piece of the surface Σi can therefore be approximated by

flux through Σi ≈ F (Φ(si, ti)) · n̂
(
Φ(si, ti

)
) area(Σi)

= F (Φ(si, ti)) ·
(
nΦ(si, ti)

‖nΦ(si, ti)‖

)(
‖nΦ(si, ti)‖∆s∆t

)
= F (Φ(si, ti)) · nΦ(si, ti) ∆s∆t.

The total flux through the entire surface can therefore be approximated by summing up the flux through
each of the pieces,

total flux through Σ =

N∑
i=1

F (Φ(si, ti)) · nΦ(si, ti) ∆s∆t.

Taking the limit of this value as N → ∞ and ∆s,∆t → 0, where we segment the region D into infinitely
many pieces of infinitesimally small area, we get the integral

total flux through Σ =

∫∫
D

F (Φ(s, t)) · nΦ(s, t) ds dt.

As with all of the other integrals we have defined in this course, it does not matter which parameterization
Φ that we choose to parameterize Σ (as long as the parameterization provides the correct orientation), so
we use the notation ∫∫

Σ

F · n̂ dA =

∫∫
D

F (Φ(s, t)) · nΦ(s, t) ds dt.
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to denote the value of this integral. This is the surface integral of a vector field F through an oriented
surface Σ. We also sometimes write this integral using the notation∫∫

Σ

F · n̂ dA =

∫∫
Σ

F · dA

where dA = n̂ dA is the differential piece of oriented surface.
When solving problems involving flux integrals, it is recommended that you always sketch the surface to

get an idea of what the situation looks like. This can provide intuition toward solving the problem and it
will help you verify that you have the correct orientation for your parameterization.

Example 5.4. Water flows through an oriented surface Σ that is determined by the equation y = x2 in
the region where 0 ≤ x ≤ 2 and 0 ≤ z ≤ 3 and whose orientation points outward toward the x-axis. If the
velocity of the water flow at a given point in space is given by the vector field

F (x, y, z) = (3z2, 6, 6xz),

compute the rate at which water flows through the surface Σ. It will be helpful to first parameterize and
sketch the surface before to get a physical intuition of the problem and to make sure our parameterization
provides the correct orientation. Choosing the parameterizations for the x- and z-coordinates as

x = s for 0 ≤ s ≤ 2 and z = t for 0 ≤ t ≤ 3,

we may parameterize the surface using Φ : D → R3 as

Φ(s, t) = (s, s2, t)

where D = [0, 2] × [0, 3]. The resulting surface is simply the curve of the graph of the function y = x2 on
the xy-plane that is extruded upward along the z-axis (see Figure 5.14).

Figure 5.14: The parabolic surface Σ from Example 5.4 with the specified orientation (outward
toward the x-axis) indicated.

To compute the desired flux integral we must determine the normal vector at each point on the surface.
The tangent vectors are

∂Φ

∂s
= (1, 2s, 0) and

∂Φ

∂t
= (0, 0, 1),

and the normal vector at the point Φ(s, t) from this parameterization is

nΦ(s, t) = (1, 2s, 0)× (0, 0, 1)

=

∣∣∣∣∣∣
ı̂ ̂ k̂
1 2s 0
0 0 1

∣∣∣∣∣∣ = 2s ı̂− ̂ = (2s,−1, 0).
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Before proceeding, we must first verify that this normal vector gives us the correct orientation. At the point
(s, t) = (1, 1) in the region D, the corresponding point on the surface is Φ(1, 1) = (1, 1, 1) and the normal
vector we found at that point is nΦ(1, 1) = (2,−1, 0). This is indeed the vector pointing in the “outward”
direction of the parabolic surface and towards the x-axis in the figure, so our parameterization gave us the
correct orientation. (If the parameterization had given us the opposite orientation, we would have needed
to multiply the value of the resulting integral by −1 to correct for the direction.)

The field at each point on the surface is F (Φ(s, t)) = (3t2, 6, 6st). The total flux is therefore given by∫∫
Σ

F · dA =

∫∫
D

F (Φ(s, t)) · nΦ(s, t) ds dt

=

∫∫
D

(3t2, 6, 6st) · (2s,−1, 0) ds dt

=

∫ 3

0

(∫ 2

0

(6st2 − 6) ds

)
dt

= · · ·
= 72.

In “real life” we would be required to provide units with our answers. For example, if we suppose that the
velocity field is given in units of m ·s−1, integrating this over an area would give us a value in units of m3 ·s−1

for the total flow rate that we compute.

5.4 Curl and Stokes’ Theorem

5.4.1 Curl

Recall that the vorticity of a C1-vector field on R2 at a point (x, y) is defined as

(vorF )(x, y) =

(
∂F2

∂x
− ∂F1

∂y

)∣∣∣∣
(x,y)

.

It describes how much the vector field ‘spins’ at the point (x, y). That is, if we stick a very small paddlewheel
in the flow at that point, the vorticity tells how much angular velocity that paddlewheel picks up as a result
of the flow. The analogous vector field in three dimensions is the curl.

Definition 5.5. Let F : D → R3 be a C1-vector field region D ⊆ R3 in space with components

F (x, y, z) = F1(x, y, z)̂ı+ F2(x, y, z)̂+ F3(x, y, z)k̂. (5.9)

The curl of the vector field is the vector field curlF on the same region D defined by

(curlF )(x, y, z) =

(
∂F3

∂y
− ∂F2

∂z

)∣∣∣∣
(x,y,z)

ı̂ −
(
∂F3

∂x
− ∂F1

∂z

)∣∣∣∣
(x,y,z)

̂ +

(
∂F2

∂x
− ∂F1

∂y

)∣∣∣∣
(x,y,z)

k̂

for all (x, y, z) in D.

Remark. The definition of the curl in (5.9) looks like a confusing jumble of symbols. Just as we defined
the gradient of a scalar field using the symbol ∇ as

grad f = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.
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The gradient of a scalar field is a vector field, and we can think of ∇ as an “operator” that is also a vector

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= ı̂

∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z
.

Using this notation, we can write the curl of a vector field as a cross product of the ∇-operator with the F
as

curlF = ∇× F =

∣∣∣∣∣∣∣∣∣∣∣∣

ı̂ ̂ k̂

∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣∣∣
.

Recall that the vorticity of a vector field F : R2 → R2 tells us what the “local spin” in the flow is at a
point in the plane. That is, how fast a small paddlewheel placed at that point would spin.

In three dimensions the curl has a similar interpretation, but the resulting spin now depends on what
“angle” the paddlewheel sits. Figure 5.15 shows a small paddle wheel placed at the point (x, y, z) in space
and whose axis of rotation is along the vector n̂. If we allow the paddlewheel to rotate the flow of the vector
field F : R3 → R3 at that point, then the value of the dot product (∇× F (x, y, z)) · n̂ tells us exactly how
much (and in which direction) spinning would result from the flow. The axis of roation that would result
in the greatest amount of angular velocity in the spinning paddlewheel is the direction of the curl ∇× F at
that point.

Figure 5.15: The curl can be given a physical meaning. Place a small paddlewheel at a point
in the field and let the flow of the vector field cause the paddlewheel to spin. The maximum
angular velocity of the paddlewheel at that point is proportional to the magnitude of the curl,
while the axis of maximum angular momentum is the direction of the curl.

5.4.2 Stokes’ Theorem

The curl of a vector field in R3 is the generalization of the vorticity of a vector field in R2. In the plane,
recall that Green’s Theorem equates line integrals of a vector field along a boundary of a region with the
two-dimensional integral of the vorticity:∮

∂D

F · dr =

∫∫
D

(vorF ) dA.

Stokes’ Theorem is essentially a generalization of Green’s Theorem.
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Theorem 5.6 (Stokes’ Theorem). Let Σ ∈ R3 be a connected oriented surface and let F be a vector
field that is C1 on Σ. Then ∮

∂Σ

F · dr =

∫∫
Σ

(∇× F ) · dA.

Since we have already proved Green’s Theorem we will not bother presenting the details of a proof of
Stokes’ Theorem. However, we will note that the two theorems have essentially the same physical interpre-
tation. That is, computing the circulation of a vector field around a closed curve is equivalent to adding up
all of the microscopic amounts of circulation around all of the points inside that curve.

Remark. Recall that the line integral of a gradient field is independent of path. That is, if Γ0 and Γ1 are
two oriented C1-curves with the same start and end points, then∫

Γ0

∇Ψ · dr =

∫
Γ1

∇Ψ · dr = Ψ(γ(b))−Ψ(γ(a))

where γ : [a, b]→ R3 is a parameterization of either Γ0 or Γ1. That is, “the line integral of gradient field is
independent of path.” Stokes’ Theorem gives us an analogous statement for flux integrals over surfaces with
the same boundary. If Σ0 and Σ1 are two smooth oriented surfaces with the same boundary ∂Σ0 = ∂Σ1,
then ∫∫

Σ0

(∇× F ) · dA =

∮
∂Σ0

F · dr =

∮
∂Σ1

F · dr =

∫∫
Σ1

(∇× F ) · dA.

That is, “the flux integral of a curl is independent of surface.” This fact will have many useful applications
in electromagnetism that we will see later on.

Figure 5.16: Two oriented curves with the same start and end points, and two oriented surfaces
with the same boundary.

Example 5.7. Consider a vector field F : R3 → R3 defined for all (x, y, z) ∈ R3 as

F (x, y, z) = x ı̂+ (x+ y)̂+ (x+ y + z)k̂

and let Σ be the top half of the sphere with radius r > 0 centered at the origin with outward orientation.
We want to calculate the surface integral of the curl field ∇×F through Σ. Note that the boundary of Σ is
the circle of radius r on the xy-plane and centered at the origin (and oriented counterclockwise when viewed
from above). See Figure 5.17.

We could evaluate this integral using Stokes’ Theorem to turn the surface integral into a line integral
along the boundary, but this line integral turns out to be quite tedious. However, we may see from 5.17 that
the flat surface

Σ1 =
{

(x, y, z)
∣∣ z2 + y2 ≤ r2 and z = 0

}
,
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Figure 5.17: The boundary of the top half of the sphere is the same as the boundary of the disc
on the xy-plane.

which is the disc of radius r on the xy-plane centered at the origin, has the same boundary as Σ, where we
take the upward orientation of this surface with normal vector n̂ = k̂ everywhere on this surface. From the
previous remark, we get ∫∫

Σ

(∇× F ) · dA =

∫∫
Σ1

(∇× F ) · dA,

where we can give Σ1 the very simple parameterization Φ : D → R3 defined as

Φ(s, t) = sı̂+ t̂+ 0k̂

for all (s, t) ∈ D where D ⊆ R2 is the disc in plane

D = {(s, t) | s2 + t2 ≤ r2}.

The partial derivatives of this parameterization are simply

∂Φ

∂s

∣∣∣
(s,t)

= ı̂ and
∂Φ

∂t

∣∣∣
(s,t)

= ̂

for all (s, t) ∈ D from which we get (
∂Φ

∂s
× ∂Φ

∂s

)∣∣∣∣
(s,t)

= ı̂× ̂ = k̂

for all (s, t) ∈ D. From the definition in 5.5, the curl of this vector field is

(∇× F )(x, y, z) = ı̂− ̂+ k̂

for all (x, y, z), which we see is a constant vector field, and thus the curl at each point on the surface Σ1 is
given by

(∇× F )(Φ(s, t)) = ı̂− ̂+ k̂

for all (s, t) ∈ D. The unit normal vector everywhere on the surface Σ1 is n̂ = k̂, so

(∇× F ) ·

((
∂Φ

∂s
× ∂Φ

∂s

)∣∣∣∣
(s,t)

)
= (̂ı− ̂+ k̂) · k̂ = 1,
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and we obtain ∫∫
Σ1

(∇× F ) · dA =

∫∫
D

(∇× F )(Φ(s, t)) ·

((
∂Φ

∂s
× ∂Φ

∂s

)∣∣∣∣
(s,t)

)
ds dt

=

∫∫
D

dA = area(D) = πr2.

5.4.3 Irrotational fields

Definition 5.8. A C1-vector field F : Ω→ R3 is said to be irrotational if ∇× F = 0 on all of Ω.

Recall that a conservative field is a vector field F : Ω → R3 that is just the gradient of some scalar field
Ψ : Ω→ R3 (i.e., ∇Ψ = F ). The curl of a conservative C2-scalar field must be zero, since

∇× (∇Ψ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ı̂ ̂ k̂

∂

∂x

∂

∂y

∂

∂z

∂Ψ

∂x

∂Ψ

∂y

∂Ψ

∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
∂2Ψ

∂y∂z
− ∂2Ψ

∂z∂y

)
︸ ︷︷ ︸

=0

ı̂−
(
∂2Ψ

∂x∂z
− ∂2Ψ

∂z∂x

)
︸ ︷︷ ︸

=0

̂+

(
∂2Ψ

∂x∂y
− ∂2Ψ

∂y∂x

)
︸ ︷︷ ︸

=0

k̂ = 0, (5.10)

where we note that it does not matter the order of the partial derivatives of Ψ in (5.10) since Ψ is C2. In
particular, we see that conservative fields are irrotational.

Theorem 5.9. Let Ω ⊆ R3 be a simply connected region in space and let F : Ω → R3 be a C1-vector
field. The following are equivalent:

1. The field F is conservative.

2. The field F is irrotational (i.e. ∇× F = 0).

3. For any closed oriented simple curve Γ in Ω it holds that

∮
Γ

F · dr = 0.

Remark. Note that (1) ⇒ (2) follows from the observation in (5.10), while (2) ⇒ (3) follows from Stokes’
Theorem since any closed curve Γ can be viewed as the boundary of some surface Σ such that Γ = ∂Σ and
thus ∮

Γ

=

∫∫
Σ

(∇× F︸ ︷︷ ︸
=0

) · dA = 0.

To show that (3)⇒ (1), it suffices to define a scalar potential. To do this, we pick a fixed point r0 ∈ Ω. For
any other point r ∈ Ω, we may choose any oriented curve Γr with start point r0 and end point r and define

Ψr0
(r) =

∫
Γr

F · ds. (5.11)
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By assumption, the line integral of any closed oriented simple curve over F must be zero, and this implies
that the line integrals of F are independent of path. Hence it doesn’t matter which curve Γ we pick to define
Ψr0

(r) in (5.11). The equation in (5.11) therefore defines a scalar field on Ω. For this scalar field, it can be
shown that

∇Ψr0(r) = ∇
∫

Γr

F · ds = F (r),

and thus F is conservative with Ψr0 as a scalar potential.
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