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Lecture notes for Week 10
Lecturer: Mark Girard November 11, 2019

10.1 Cauchy-Riemann Equations in polar form

Recall that a mapping of the form f(x + jy) = u(x, y) + jv(x, y) is differentiable at a point z0 if and only
if the functions u and v are differentiable as functions of real numbers and satisfy the Cauchy-Riemann
equations:

∂u

∂x
− ∂v

∂y
= 0 and

∂v

∂x
+
∂u

∂y
= 0 (10.1)

at z0 = x0 + jy + 0. Moreover, if u and v satisfy (10.1) at z0 = x0 + jy + 0 then the derivative of f as a
mapping of complex numbers is given by

f ′(z0) = ux(x0, y0) + jvx(x0, y0) or f ′(z0) = vy(x0, y0)− juy(x0, y0),

where ux, vx, uy, and vy are the partial derivatives of u and v.
Not all complex mappigns can conveniently be expressed in terms of the Cartesian coordinates for the

input. Since every complex number can be written as z = rejθ it is also common to express a function in
polar form as

f(rejθ) = u(r, θ) + jv(r, θ)

where u and v still represent the real and imaginary components of f(z), but are now functions of the
modulus and the argument of z rather than the real and imaginary components. For example, the logarithm
of a complex number can be expressed as

Log(rejθ) = ln r + jθ

assuming θ ∈ (−π, π] is the principal argument, which has real and imaginary components u(r, θ) = ln r and
v(r, θ) = θ. For functions like this, there is a different form of the Cauchy-Riemann Equations that is more
useful, which we will derive here.

Suppose that f : D → C is a mapping that is differentiable at a point z0 ∈ D. This imples that the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(10.2)

exists, since we have assumed that f is differentiable at z0, and we must obtain the same value of the limit
no matter what path we use to apprach z0. As we did previously for finding the Cauchy-Riemann Equations
in Cartesian form, we will consider now two of the possible ways to approach z0: first by varying r and
holding θ = θ0 constant, then by varying θ and holding r = r0 constant.

(i) First consider the approach z → z0 where we hold θ = θ0 constant and vary r such that z = rejθ0 (see
Figure 10.1a). Expanding out f in terms of its real and imaginary components as functions of r and

10-1



ECE 206 – Week 10: November 11, 2019 10-2

(a) Approaching z0 along the path with θ = θ0
held constant and varying r.

(b) Approaching z0 along the path with r = r0
held constant and varying θ.

Figure 10.1: To derive the Cauchy-Riemann equations in polar form, we consider two ways of
approaching a fixed point z0.

θ, the limit in (10.2) becomes

f ′(z0) = lim
r→r0

f(z)− f(z0)

z − z0
= lim
r→r0

f(rejθ0)− f(r0e
jθ0)

rejθ0 − r0ejθ0

=
1

ejθ0
lim
r→r0

u(r, θ0) + jv(r, θ0)− (u(r0, θ0) + jv(r0, θ0))

r − r0

= e−jθ0
(

lim
r→r0

u(r, θ0)− u(r0, θ0)

r − r0
+ j lim

r→r0

v(r, θ0)− v(r0, θ0)

r − r0

)
= e−jθ0

(
∂u

∂r

∣∣∣∣
(r0,θ0)

+ j
∂v

∂r

∣∣∣∣
(r0,θ0)

)
= e−jθ0

(
ur(r0, θ0) + jvr(r0, θ0)

)
(10.3)

(ii) On the other hand, consider the approach z → z0 where we hold r = r0 constant and vary θ such
that z = r0e

jθ (see Figure 10.1b). Expanding out f in terms of its real and imaginary components as
functions of r and θ, the limit in (10.2) becomes

f ′(z0) = lim
θ→θ0

f(r0e
jθ)− f(r0e

jθ0)

r0ejθ − r0ejθ0

=
1

r0
lim
θ→θ0

u(r0, θ) + jv(r0, θ0)− (u(r0, θ0) + jv(r0, θ0))

ejθ − ejθ0

=
1

r0
lim
θ→θ0

(
u(r0, θ)− u(r0, θ0) + jv(r0, θ0)− jv(r0, θ0)

θ − θ0

θ − θ0

ejθ − ejθ0

)
=

1

r0

(
lim
θ→θ0

u(r0, θ)− u(r0, θ0)

θ − θ0
+ j lim

r→r0

v(r, θ0)− v(r0, θ0)

r − r0

)(
lim
θ→θ0

θ − θ0

ejθ − ejθ0︸ ︷︷ ︸
=−je−jθ0

)
(10.4)

where the value of the rightmost limit in (10.4) can be found by

lim
θ→θ0

θ − θ0

ejθ − ejθ0
=

(
lim
θ→θ0

ejθ − ejθ0
θ − θ0

)−1

=

(
lim
θ→θ0

f(θ)− f(θ0)

θ − θ0

)−1

=
(
f ′(θ0)

)−1
=
(
jejθ0

)−1
= −je−jθ0
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and we make use of the function f(θ) = ejθ which has derivative f ′(θ) = jejθ. Continuing from (10.4),
we can express f ′(z0) as

f ′(z0) =
1

r0

(
∂u

∂θ

∣∣∣∣
(r0,θ0)

+ j
∂v

∂θ

∣∣∣∣
(r0,θ0)

)(
−je−jθ0

)
=
e−jθ0

r0

(
∂v

∂θ

∣∣∣∣
(r0,θ0)

− j ∂u
∂θ

∣∣∣∣
(r0,θ0)

)

=
e−jθ0

r0

(
vθ(r0, θ0)− juθ(r0, θ0)

)
. (10.5)

Considering that it should not matter which method we use to approach z0 = e0e
jθ0 for the limit in

(10.2) to exist, the values of these two limits must be equal. Equating lines (10.3) and (10.5), we see that if
f is differentiable then it must be the case that

f ′(r0e
jθ0) = e−jθ0

(
ur(r0, θ0) + jvr(r0, θ0)

)
=
e−jθ0

r0

(
vθ(r0, θ0)− juθ(r0, θ0)

)
. (10.6)

Removing the the common factor of e−jθ and equating the real and imaginary parts of both sides, we find
that

ur(r0, θ0) =
vθ(r0, θ0)

r0
and vr(r0, θ0) = −uθ(r0, θ0)

r0
.

This gives us the Cauchy-Riemann equations in polar form:

ur −
1

r
vθ = 0 and vr +

1

r
uθ = 0. (10.7)

We have shown that, if f(rejθ) = u(r, θ) + jv(r, θ) is complex-differentiable at a point z0 = r0e
jθ0 , then the

functions u and v must satisfy (10.7). It turns out that the reverse implication is true as well. This fact is
useful for showing that certain functions are differentiable, but understanding its proof is beyond the scope
of this course.

Theorem 10.1. Suppose f : D → C is a mapping on some region D ⊆ C with real and imaginary
components given by differentiable functions u and v such that

f(rejθ) = u(r, θ) + jv(r, θ).

It holds that f is differentiable at a poinnt z0 = r0e
jθ0 if and only if the functions u and v satisfy the

Cauchy-Riemann equations in polar form (10.7) at (r0, θ0).

Moreover, if a mapping f(rejθ) = u(r, θ) + jv(r, θ) is differentiable at a point z0 = r0e
jθ0 , its derivative

at that point is given by either expression in (10.6).

Example 10.2. The principal logarithm is a good example of a function that is best expressed in polar
form. For a complex number z = rejθ with r > 0 and −π < θ < π, we have

Log(z) = Log(rejθ) = ln r + jθ = u(r, θ) + jv(r, θ)

where the real and imaginary parts are u(r, θ) = ln r and v(r, θ) = θ. These functions satisfy the Cauchy-
Riemann equations in polar form, since

ur −
1

r
vθ =

∂

∂r
ln r − 1

r

∂

∂θ
θ =

1

r
− 1

r
= 0.
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Moreover, the derivative of f(z) = Log(z) is given by

f ′(z0) = e−jθ0
(
ur(r0, θ0) + jvr(r0, θ0)

)
=

1

ejθ0

(
1

r0
− 0

)
=

1

r0ejθ0
=

1

z0
.

This confirms what was stated last week, which is that the derivative of Log z is 1/z, as we should expect
from calculus.

10.2 Harmonic functions

The study of harmonic functions is very important in developing solutions to boundary-value problems
of differential equations in many areas of physics and engineering, including electromagnetism. The name
“harmonic” originates from the harmonic motion that a point on a vibrating string undergoes. Solutions to
differential equations for this type of motion can be written in terms of sines and cosines. Fourier analysis
involves expanding periodic functions in terms of a series of these harmonics. While the applications of
harmonic functions will not be the focus of this course, we will investigate how the idea of harmonic functions
relates to complex analysis.

Definition 10.3. A C2 function f : D → R on a region D ⊆ R2 is said to be harmonic if it satisfies

∂2f

∂x2
+
∂2f

∂y2
= 0 (10.8)

everywhere in D.

The differential equation (10.8) is often called Laplace’s equation, and can be rewritten as fxx + fyy = 0
or ∇2f = 0, where ∇2 is the Laplace operator defined previously in this course

∇2 =
∂2

∂x2
+

∂2

∂y2
.

(Here the Laplace operator is defined in two dimensions, although it can be defined for functions of any
number of dimensions.) Harmonic functions are solutions to Laplace’s equation.

We’ll now explore how the study of harmonic functions relates to complex analysis. Let f : D → C be a
mapping that is differentiable everywhere in D ⊆ C. We can consider D as a subset of R2 as well. If f has
real and imaginary components given by C2 functions u and v,

f(x+ jy) = u(x, y) + jv(x, y),

then u and v must be harmonic! Indeed, note that

∂2u

∂x2
+
∂2u

∂y2
=

∂

∂x

∂u

∂x
+

∂

∂y

∂u

∂y

=
∂

∂x

∂v

∂y
+

∂

∂y

(
−∂v
∂x

)
= vyx − vxy = 0,

where ux = vy and uy = −vx follow from the fact that u and v must satisfy the Cauchy-Riemann equations
(10.1), and vyx = vxy since we have assumed v to be C2. It can be shown that v is harmonic as well.
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Definition 10.4. Two harmonic C2 functions u : R2 → R and v : R2 → R are said to be harmonic
conjugates if together they satisfy the Cauchy-Riemann equations (10.1).

In particular we see that any pair of harmonic functions are harmonic conjugates if and only if they can be
viewed as the real and imaginary parts of some complex-differentiable mapping f(x+jy) = u(x, y)+jv(x, y).
Given one harmonic function u : R2 → R, a harmonic conjugate to u can always be found, as the following
example shows.

Example 10.5. Let u : R2 → R be the function defined by u(x, y) = 2x(1− y) for all x, y ∈ R. Show that
u is harmonic and find a harmonic conjugate v for u. Find a mapping f : C→ C whose real and imaginary
components are given by u and v.

Solution. The derivatives of u with respect to x and y are ux = 2(1 − y) and uy = −2x, and we see that
uxx = uyy = 0, so u is indeed harmonic. To find a harmonic conjugate for u, we must find a function
v : R2 → R such that u and v jointly satisfy the Cauchy-Riemann equations

vy = ux and vx = −uy.

Integrating both sides of the equation vy = ux with respect to y gives us a form for v, and thus v must have
the form

v(x, y) =

∫
vy dy =

∫
ux dy

=

∫
2(1− y) dy = 2y − y2 + g(x)

for some function g whose value is dependent only on x (i.e., constant with respect to y). On the other hand,
integrating both sides of the equation vx = −uy with respect to x gives us another form for v,

v(x, y) =

∫
vx dx = −

∫
uy dx

= −
∫
−2x dx = x2 + h(y)

for some function h whose value is dependent only on y. Comparing these two forms for v, we see that any
harmonic conjugate of u must be

v(x, y) = x2 + 2y − y2 + c

for some constant c ∈ R. Let us now find the form of a mapping f : C → C such that f(x + jy) =
u(x, y) + jv(x, y). That is,

f(x+ jy) = 2x(1− y) + j(x2 + 2y − y2)

= 2x+ j2y + jx2 − 2xy − jy2 = 2(x+ jy) + j(x2 + j2xy − y2︸ ︷︷ ︸
(x+jy)2

) = 2(x+ jy) + j(x+ jy)2,

from which we see that f is the mapping defined by f(z) = z + jx2 = z(1 + jz) for all z ∈ C.

Functions u and v that are harmonic conjugates also have a nice geometric interpretation. Suppose that
u : R2 → R and v : R2 → R are harmonic conjugates and consider the gradients ∇u and ∇v of each,

∇u = (ux, uy) and ∇v = (vx, vy).
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The Cauchy-Riemann equations imply that ∇u and ∇v must always be orthogonal to each other

∇u · ∇v = uxvx + uyvy = vyvx − (vx)vy = 0,

since the Cauchy-Riemann equations imply that ux = vy and uy = −vx. What does this mean exactly?
Consider now the level curves of u and v, where a level curve of u is the set of points (x, y) satisfying the
equation u(x, y) = c for some constant c ∈ R. How are the level curves of u related to the gradient of u?
Well, the level curves are always orthogonal to the gradient of u. Indeed, suppose some level curve

Γc = {(x, y) |u(x, y) = c}

is parameterized by some path γ(t) = (x(t), y(t)). Differentiating both sides of the equation c = u(x(t), y(t))
will yield zero (since differentiating a constant is always zero) and thus

0 =
dc

dt
=

d

dt
u(x(t), y(t)) = ux

(
x(t), y(t)

)
x′(t) + uy

(
x(t), y(t)

)
y′(t) = ∇u

(
x(t), y(t)

)
· γ′(t).

Hence the level curve of u is everywhere orthogonal to the gradient of u, since ∇u · γ′ = 0.

Figure 10.2: The level curves of a function f : R2 → R are orthogonal to the gradient of u
at each point. This figure shows some level curves of the function f(x, y) = 4x2 + y2 and the
gradient at a few points.

Since the gradients ∇u and ∇v are orthogonal to the level curves of u and v respectively, it follows that
the level curves of u are orthogonal to the level curves of v! That is, if u and v are harmonic conjugates, the
level curves of u must always intersect perpendicularly with the level curves of v.

Example 10.6. Consider the functions u(x, y) = 2x(1− y) and v(x, y) = x2 + 2y − y2 from Example 10.5,
which we have shown to be harmonic conjugates. The surfaces of the graphs of u and v are shown in Figures
10.3 and 10.4 (where the surfaces in Figure 10.4 show the level curves of u and v drawn onto the graphs).
Superimposing the sketches of the level curves of u and v together on the plane yields the graphic in Figure
10.5, which shows that the level curves of u and v always intersect perpendicularly.
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Figure 10.3: Plots of the graphs of u(x, y) = 2x(1− y) and v(x, y) = x2 + 2y − y2.

Figure 10.4: Plots of the graphs of u(x, y) = 2x(1− y) and v(x, y) = x2 + 2y− y2 with some of
the level curves shown on the surfaces of the graphs.

-4 -2 2 4
Re

-4

-2

2

4

Im
Contour lines of u and v

Figure 10.5: Some of the level curves of u (blue) and v (dashed red). Note that u and v are
harmonic conjugates, so their level curves always intersect perpendicularly.
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10.3 Integration of complex functions

10.3.1 Complex-valued functions with real inputs

Consider a function f : [a, b] → C that takes real numbers in the interval [a, b] ⊂ R as inputs and outputs
complex numbers. Any such function can be separated out into its real and complex components

f(t) = u(t) + jv(t)

for some functions u, v : [a, b]→ R. Such a function f is said to be differentiable if each of its components u
and v are differentiable, and the derivative of f is defined as

f ′(t) = u′(t) + jv′(t),

and the function f is said to be C1 if each of its components u and v is a C1 function of real variables.
We can also integrate these kinds of complex-valued functions by integrating the real and imaginary parts
separately, ∫ b

a

f(t) dt =

∫ b

a

u(t) dt+ j

∫ b

a

v(t) dt.

Example 10.7. Consider the function f(t) = ejt, which can be written as f(t) = cos t+ j sin t. Integrating
this over some interval [a, b], we have∫ b

a

ejt dt =

∫ b

a

cos t dt+ j

∫ b

a

sin t dt

= sin t
∣∣b
a
− j cos t

∣∣b
a

= −j
(
cos t+ j sin t

)∣∣b
a

=
1

j
ejt
∣∣b
a
.

Moreover, if f : [a, b]→ C is any differentiable function, it holds that∫ b

a

f ′(t) dt = f(b)− f(a),

which can be seen by integrating the real parts u′ and v′ separately.

10.3.2 Contour integration

A path in the complex plane is a continuous function γ : [a, b] → C. We are generally only concerned with
differentiable paths. A path γ : [a, b]→ C in the complex plane with component functions γ1, γ2 : [a, b]→ R
such that

γ(t) = γ1(t) + jγ2(t)

for all t ∈ [a, b] is differentiable if γ1 and γ2 are differentiable as functions of a real variable, and its derivative
is given by γ′(t) = γ′1(t) + jγ′2(t). We can integrate along differentiable paths.

Suppose f : D → C is a complex mapping on a region D ⊂ C and let γ : [a, b] → C be a differentiable
path such that γ(t) ∈ D for all t ∈ [a, b]. The integral of f along the path γ is defined as∫ b

a

f(γ(t))γ′(t) dt.

A path γ : [a, b]→ C is said to be piecewise differentiable if we can partition the interval [a, b] in to finitely
many subintervals

[a0, a1], [a1, a2], · · · , [an−1, an] ⊂ [a, b]
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for numbers a0 < a1 < a2 < · · · < an with a = a0 and b = b0, such that γ is differentiable on the interior
of each subinterval [ai, ai+1]. Likewise, the integral of a complex mapping f : D → C along a piecewise
differentiable path is defined by integrating along each differential part of the partition∫ a1

a0

f(γ(t))γ′(t) dt+

∫ a2

a1

f(γ(t))γ′(t) dt+ · · ·+
∫ an

an−1

f(γ(t))γ′(t) dt.

Let γ : [a, b] → C be a piecewise differentiable path. The contour Γ traced out by γ is the oriented curve
traced out by γ. The integral of f along the oriented contour is∫

Γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

Similar to path integrals of vector fields, contour integrals are independent of parameterization (as long as
the parameterization is “nice” and doesn’t double-back on itself anywhere).

Example 10.8. Consider the mapping f(z) = z2. Integrate f along the contour following contours (see
Figure 10.6)

(i) Γ1 is the line segment from 0 to 1 + j.

(ii) Γ2 is the line segment from 0 to 1, followed by the line segment from 1 to 1 + j.

Re

Im

1 + j

1

Γ1 Γ2

Figure 10.6: Depiction of the oriented contours Γ1 and Γ2 example 10.8

Solution. Both contours start at 0 and end at 1 + j, but traverse along different paths.

(i) This first contour is parameterized by the path γ(t) = t + jt for t ∈ [0, 1], which has derivative
γ′(t) = 1 + j. The desired integral is therefore∫

Γ1

f(z) dz =

∫ 1

0

f(γ(t)) γ′(t)

=

∫ 1

0

(t+ jt)2(1 + j) dt = (1 + j)3

∫ 1

0

t2 dt =
(1 + j)3

3
t3
∣∣∣1
0

=
2(j − 1)

3
.

(ii) For this contour, we must paramaterize and integrate over the the two segments separately before
adding the results together. Along the segment from 0 to 1, the integral is∫ 1

0

t2 dt =
t

3

∣∣∣∣1
0

=
1

3
, (10.9)
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while the segment from 1 to 1 + j can be parameterized by γ(t) = 1 + jt for t ∈ [0, 1] with derivative
γ′(t) = j. The integral along this segment is

∫ 1

0

f(γ(t)) γ′(t) =

∫ 1

0

(1 + jt)2j dt = j

∫ 1

0

(1− t2 + 2jt) dt = j

(
t− t3

3
+ jt2

)∣∣∣∣∣
1

0

= j
2

3
− 1. (10.10)

Adding together the integrals from (10.9) and (10.10) yields the integral along all of Γ2, which is∫
Γ2

z2 dz =
1

3
+ j

2

3
− 1 =

2(j − 1)

3
.

Interestingly, the values of the integral of f(z) = z2 along the two different contours Γ1 and Γ2 are the same!
Is this a coincidence? As we will soon see, this is due to a deeper fact about integrals of complex-differentiable
functions.

A contour Γ is said to be closed if it is parameterized by a path γ : [a, b]→ C such that γ(a) = γ(b) (that
is, if it starts and ends at the same point). As with path integrals along closed paths in vector calculus, we
use a special notation for integrals along closed contours,∮

Γ

f(z) dz,

where the circle on the integral indicates that the contour Γ is closed.
As any contour Γ has an orientation, we may consider what happens if we integrate along the same

contour with the reverse orientation, indicated by −Γ, which we expect to be∫
−Γ

f(z) dz = −
∫

Γ

f(z) dz.

Indeed, if γ : [a, b] → C parameterizes Γ, then −Γ is parameterized by the path β : [−b,−a] → C defined
as β(s) = γ(−s) for all t ∈ [−b,−a] which has derivative given by β′(t) = −γ′(−t). The integral along the
reversed contour is therefore∫

−Γ

f(z) dz =

∫ −a
−b

f(β(t))β′(t) dt = −
∫ −a
−b

f(γ(−t))γ′(−t) dt = −
∫ b

a

f(γ(t))γ′(t) dt = −
∫

Γ

f(z) dz.

Any two contours Γ1 and Γ2 with the same start and endpoints can therefore be combined into a closed
contour Γ = Γ1 ∪ (−Γ2) that traverses first along Γ1 then backwards along Γ2. For example, in Example
10.8, integrating along the closed loop that starts at 0, traverses along the straight line segment Γ1 to 1 + j,
then backwards along the contour Γ2 to 1 and back to 0, gives us∮

Γ

f(z) dz =

∫
Γ1

f(z) dz +

∫
−Γ2

f(z) dz

=

∫
Γ1

f(z) dz −
∫

Γ2

f(z) dz =
2(j − 1)

3
− 2(j − 1)

3
= 0,

and thus integrating f(z) = z2 along this particular closed contour yields zero. However, it is not necessarily
the case that integrating any function along any closed contour will always be zero, as the following example
shows.

Example 10.9. Consider the mapping f(z) = z−1 which is defined for all z 6= 0 and differentiable everywhere
it is defined. Integrate f along a circle of radius a > 0 centered at the origin and oriented counter-clockwise.
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Solution. A circle centered at the origin is paramtereized by the path γ(t) = aejt for t ∈ [0, 2π], which has
given by

γ′(t) = ajejt.

The integral of f along this path is∮
Γ

1

z
dz =

∫ 2π

0

γ′(t)

γ(t)
dt

=

∫ 2π

0

ajejt

aejt
dt = j

∫ 2π

0

dt = 2πj.

Note that this is independent of the value of the radius a. In fact, the integral of z−1 along any closed
contour that goes counter-clockwise around the origin will result in the same value.
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