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Lecture notes for Week 11
Lecturer: Mark Girard November 18, 2019

11.1 Complex integration of differentiable mappings along closed
contours

Here we will discuss methods of integrating differentiable mappings f : D → C along closed contours. It will
first be helpful to review a few definitions. Analogous to regions in R2, we say a region D ⊆ C is connected
if any two points in D can be connected by a contour in D, and is said to be simply connected if it does not
have any ‘holes’ (see Figure 11.1).

Figure 11.1: Connected and simply connected regions in C.

Similarly, analogous to curves in R2, we say a contour Γ in C is closed if every parameterization γ :
[a, b]→ C of Γ necessarily has γ(a) = γ(b). Also, a contour is simple if it doesn’t have any self-intersections.
(See Figure 11.2.)

Figure 11.2: Simple and closed contours in C.

Note that any simple closed contour Γ necessarily encloses a simply connected region R in the complex
plane. A simple closed contour is said to be positively oriented if it goes counter clockwise around the region
it encloses. Any such curve can be thought of as the boundary of the region it encloses. (See Figure 11.3.)
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Figure 11.3: Positively oriented simple closed contours in C. A simple closed contour with
positive orientation can be thought of as the boundary curve of the region R ⊂ C that the
contour encloses.

11.1.1 Cauchy-Goursat Theorem

The first useful result that we will discuss regarding integration along closed contours is the Cauchy-Goursat
theorem.

Theorem 11.1 (Cauchy-Goursat). Let f : D → C be a mapping that is differentiable everywhere on a
simply connected domain D. For every closed contour Γ in D, it holds that

�
Γ

f(z) dz = 0.

Proof. For simplicity, we’ll suppose that Γ is a simple closed contour with parameterization γ : [a, b] → C
and positively oriented. Since Γ is simple and closed, we can think of this as being the boundary curve of the
region R that it encloses with ∂R = Γ (see Figure 11.3). The trick will be to use Green’s Theorem to relate
the integral along the boundary to an area integral over the region inside. The real and imaginary parts of
the points on the path γ(t) can be written as functions of t such that γ(t) = x(t) + jy(t). The derivative
of the path is therefore given by γ′(t) = x′(t) + jy(t). We may also separate out f(x + jy) into real and
imaginary parts with functions u and v

f(x+ jy) = u(x, y) + jv(x, y)

such that
f(γ(t)) = u

(
x(t), y(t)

)
+ jv

(
x(t), y(t)

)
.

The contour integral is therefore

�
Γ

f(z) dz =

� b

a

f(γ(t))γ′(t) dt

=

� b

a

(
u
(
x(t), y(t)

)
+ jv

(
x(t), y(t)

))(
x′(t) + jy′(t)

)
dt

=

� b

a

(
u
(
x(t), y(t)

)
x′(t)− v

(
x(t), y(t)

)
y′(t)

)
dt+ j

� b

a

(
v
(
x(t), y(t)

)
x′(t) + u

(
x(t), y(t)

)
y′(t)

)
dt.

(11.1)
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To continue the computation, notice that we can write the integral on the right side of (11.1) as the sum
of two line integrals over some vector fields where we identify the path γ(t) = x(t) + jy(t) in the complex
plane with the vector-valued path in R2 with coordinates

γ(t) =

(
x(t)
y(t)

)
and derivative γ′(t) =

(
x′(t)
y′(t)

)
.

We simplify the expression in (11.1) to

�
Γ

f(z) dz =

� b

a

(
u
(
x(t), y(t)

)
−v
(
x(t), y(t)

)) · (x′(t)
y′(t)

)
dt+ j

� b

a

(
v
(
x(t), y(t)

)
u
(
x(t), y(t)

)) · (x′(t)
y′(t)

)
dt

=

� b

a

F (γ(t)) · γ′(t) dt+ j

� b

a

G(γ(t)) · γ′(t) dt

=

�
Γ

F · dr + j

�
Γ

G · dr (11.2)

where we define the vector fields F and G in R2 as

F (x, y) =

(
u(x, y)
−v(x, y)

)
and G(x, y) =

(
v(x, y)
−u(x, y)

)
.

We have therefore converted a complex contour integral into the sum of path integrals over real vector fields,
each of which we may simplify using Green’s Theorem as

�
Γ

F · dr =

�
R

(
∂F2

∂x
− ∂F1

∂y

)
dA and

�
Γ

G · dr =

�
R

(
∂G2

∂x
− ∂G1

∂y

)
dA. (11.3)

The partial derivatives of the components of F and G are

∂F1

∂y
= uy,

∂F2

∂x
= −vx,

∂G1

∂y
= vy, and

∂G2

∂x
= ux.

However, since the mapping f is differentiable everywhere in D, the functions u and v satisfy the Cauchy-
Riemann equations

ux + vy = 0 and vx − uy = 0,

and thus both integrals in (11.3) are zero!

�
Γ

F · dr = 0 and

�
Γ

G · dr = 0.

It follows from (11.2) that

�
Γ

f(z) dz = 0.

The key part of the proof of the Cauchy-Goursat Theorem is that we converted the complex contour
integral in C into the sum of two path integrals over real vector fields in R2,

�
Γ

f(z) dz =

�
Γ

F · dr + j

�
Γ

G · dr,

and each of these integrals evaluates to zero as long as f is differentiable everywhere inside of the region R
whose boundary is Γ. Indeed, since f is differentiable, these two vector fields F and G are C1 everywhere
in the simply connected region D. These vector fields are also irrotational, since they have zero vorticity

vor(F ) =
∂F2

∂x
− ∂F1

∂y
= −vx − uy = 0 and vor(G) =

∂G2

∂x
− ∂G1

∂y
= ux − vy = 0.
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A theorem from vector calculus tells us, since F and G are irrotational on a simply connected domain D,
that they must also be conservative. For conservative vector fields, path integrals depend only on the initial
and final point of the path (i.e., they are path independent). We can expect such an equivalence for complex
integrals as well.

Theorem 11.2 (Path independence). Let f : D → C be differentiable everywhere on a simply connected
region D ⊆ C. For any two contours Γ1 and Γ2 that have the same start and end points, it holds that

�
Γ1

f(z) dz =

�
Γ2

f(z) dz.

Figure 11.4: Two curves with same start and end point. Reversing Γ2 and combining the two
contours yields a closed contour Γ.

Proof. Let Γ = Γ1 ∪ (−Γ2) be the contour comprising the contour Γ1 followed by the contour Γ2 in reverse.
Then Γ is a closed contour in a simply connected region D. Since f is differentiable everywhere in D, the
Cauchy-Goursat theorem tells us that �

Γ

f(z) dz = 0.

However, we may also compute this integral by splitting it up into its two parts as

�
Γ

f(z) dz =

�
Γ1

f(z) dz −
�

Γ2

f(z) dz,

and thus �
Γ1

f(z) dz =

�
Γ2

f(z) dz.

If f : D → C is differentiable everywhere in a simply connected region, we can unambiguously interpret
the value of the integral � z1

z0

f(z) dz

where we take any contour that starts at z0 and ends at z1.

Example 11.3. Recall the example from Week 10 where we integrated the mapping f(z) = z2 along two
different contours: the contour Γ1 which was the straight line segment from 0 to 1 + j, and the contour Γ2

consisting of the straight line segment from 0 to 1 followed by the straight line segment from 1 to 1 + j.
Both contours start at 0 and end at 1 + j. Since the mapping f(z) = z2 is differentiable everywhere with
derivative f ′(z) = 2z, the values of the integrals along Γ1 and Γ2 will be the same.
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Re

Im

1 + j

1

Γ1 Γ2

Figure 11.5: Two contours connecting 0 and 1 + j.

11.1.2 Deformation of paths

It is useful to think of path independence as a process of path deformation. That is, we can imagine
continuously deforming Γ1 into Γ2 while keeping the endpoints fixed. If f is differentiable in the region and
we don’t have to cross any points where f is not differentiable when deforming Γ1 into Γ2, then

�
Γ1

f(z) dz =

�
Γ2

f(z) dz.

This idea of path deformation can be applied to closed paths as well.
Let Γ1 and Γ2 be two simple closed contours with the same orientation that do not cross each other, and

suppose f is a mapping that is differentiable on Γ1, Γ2, and on the entire region contained between the two
curves (see Figure 11.6).

Figure 11.6: Two non-intersecting simple closed contours with the same orientation. If a
mapping f is differentiable everywhere in between Γ1 and Γ2, we can ‘deform’ one contour into
the other.

It is possible that f is not differentiable inside the inner contour, so we may not use the Cauchy-Goursat
theorem to say that these integrals are both zero. However, we may introduce few ‘slits’ into the contours to
create simply connected regions where f is differentiable. We’ll slit the region between Γ1 and Γ2 by adding
two contours Γ3 and Γ4 connecting the two contours (see Figure 11.7), which splits each of the contours Γ1

and Γ2 into two contours Γ′1 and Γ′′1 and Γ2 and Γ′′2 . This splits the region between Γ1 and Γ2 into two
separate regions, D1 and D2, each of which is simply connected, and the boundaries of these regions consist
of the composite contours

∂D1 = Γ′1 ∪ Γ3 ∪ (−Γ′2) ∪ (−Γ4) and ∂D2 = Γ′′1 ∪ Γ4 ∪ (−Γ′′2) ∪ (−Γ3).

Since the regions D1 and D2 are simply connected and f is differentiable everywhere on D1 and D2, we
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Figure 11.7: Adding a few ‘slices’ to the countours allows us to split the non-simply connected
region into two simply connected regions.

have that �
∂D1

f(z) dz = 0 and

�
∂D2

f(z) dz = 0.

Summing together each of the pieces of the contour integrals along ∂D1 and ∂D2, we see that the integrals
along Γ3 and Γ4 cancel out the integrals along −Γ3 and −Γ4, and we get

0 =

�
∂D1

f(z) dz +

�
∂D2

f(z) dz

=

�
∂Γ′

1

f(z) dz +

�
Γ′′
1

f(z) dz −
�
∂Γ′

2

f(z) dz −
�

Γ′′
2

f(z) dz

=

�
Γ1

f(z) dz −
�
∂Γ2

f(z) dz.

It follows that �
Γ1

f(z) dz =

�
∂Γ2

f(z) dz.

This is called the principle of deformation of paths, which we describe as follows. If a contour Γ1 can
be continuously deformed into another contour Γ2 without pulling the contour over any points where the
mapping f is not differentiable, then the integrals of f around Γ1 and Γ2 are the same.

Theorem 11.4 (Principle of deformation of paths). Let Γ1 and Γ2 be two closed simple positively
oriented contours in C. If a mapping f is differentiable everywhere on the region on and in between the
contours Γ1 and Γ2, then �

Γ1

f(z) dz =

�
Γ2

f(z) dz.

Example 11.5. Let Γ be any simple closed contour that goes counterclockwise around the origin. Evaluate
�

Γ

1

z
dz.

Solution. We have already computed this integral in the case when Γ is the unit circle centred at the origin.
Since the mapping f(z) = 1/z is differentiable everywhere except at the origin z = 0, we can ‘deform’ our
contour Γ into the unit circle without crossing over the origin, and thus integrating over these two contours
will give the same answer. It follows that �

Γ

1

z
dz = 2πj
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for any simple closed contour that goes counterclockwise around the origin.

From Example 11.5, we see that integrating a mapping f around a closed contours depends only on the
points inside the contours where f is not differentiable. If f is differentiable everywhere inside Γ, then

�
Γ

f(z) dz = 0

by Cauchy-Goursat. Otherwise, we may have small contributions to the integral that come from points
where the mapping is not differentiable, such as the point z = 0 in the mapping f(z) = 1/z. In fact, most
of the complex mappings we will deal with in this course will be differentiable almost everywhere except at
some small number of separate points. Points where a mapping f is either not defined or not differentiable
are called singularities. Computing a complex integral of a mapping f over a closed contour Γ will amount
to identifying all of the singularities of f that lie inside the contour Γ.

11.1.3 An important integral

The idea from Example 11.5 can be extended to other mappings of the form

f(z) =
1

z − z0

for points z0 ∈ CC. Let Γ1 and Γ2 be positively oriented simple closed contours that goes around z0. By
the principle of deformation of paths, the values of the integrals

�
Γ1

1

z − z0
and

�
Γ2

1

z − z0

will be equal, since we can deform one into the other without crossing over the only point z = z0 where the
mapping f(z) = 1/(z − z0) is not differentiable. Hence we might as well choose a contour that yields the
simplest integral. Let Γa be the circle of radius a centered at z0 oriented counterclockwise, which can be
parameterized as

γ(t) = z0 + aejt

for t ∈ [0, 2π]. This path has derivative γ′(t) = ajejt, and thus

�
Γa

1

z − z0
dz =

� 2π

0

1

(z0 + aejt)− z0
ajejt dt

=

� 2π

0

1

2π

1

aejt
ajejt dt = j

� 2π

0

dt = 2πj.

This is independent of the choice of radius a (as we should expect from the principle of path deformation,
since it should be the same for any path that goes counterclockwise around z = z0). We therefore obtain the
following result: For any simple closed contour that goes counterclockwise around a point z0, it holds that

�
Γ

(z − z0)−1 dz =

�
Γ

1

z − z0
dz = 2πj.

What happens if we change the integral to

�
Γ

(z − z0)n dz

for integers n other than n = −1? There are a few different cases to consider.
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(i) If n ≥ 0 then the mapping f(z) = (z − z0)n is differentiable everywhere, and thus

�
Γ

(z − z0)n dz = 0

for all closed contours by the Cauchy-Goursat theorem.

(ii) If n = −1, the above result tells us that

�
Γ

(z − z0)−1 dz = 2πj

for any simple closed contour going counterclockwise around z0.

(iii) If n < −1, the mapping f(z) = (z − z0)n is differentiable everywhere except at z = z0, so we may use
the principle of path deformation to deform the path into a circle of radius a centered at z = z0. As
before, we may integrate this directly by parameterizing the contour as γ(t) = z0 +aejt and computing

�
Γa

(z − z0)n dz =

� 2π

0

((
z0 + aejt

)
− z0

)n
ajejt dt

= aj

� 2π

0

(
aejt

)n
ejt dt

= an+1j

� 2π

0

ejt(n+1) dt

=
an+1

n+ 1
ejt(n+1)

∣∣∣2π
0︸ ︷︷ ︸

=1−1=0

= 0,

where we note that n+ 1 6= 0 since n < −1.

Combining all of these results together, we obtain the following important family of integrals: Suppose Γ
is any simple closed positively oriented contour that goes around a point z0. For all integers n ∈ Z, we have

�
Γ

(z − z0)n dz =

{
2πj n = −1
0 n 6= −1.

(11.4)

Example 11.6. Evaluate the integral

�
Γ

1

z2(z − 2)(z − 4)
dz

counterclockwise around the contour Γ shown below.

Figure 11.8: The contour for the integral in Example 11.6.
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Solution. The mapping f(z) = 1
z2(z−2)(z−4) is differentiable everywhere except at its singularities at z = 0,

z = 2, and z = 4. However, only the singularities at z = 0 and z = 2 are contained inside of the contour Γ.
We may use the method of partial fractions to factor the integrand as

1

z2(z − 2)(z − 4)
=

3

32

1

z
+

1

8

1

z2
− 1

8

1

z − 2
+

1

32

1

z − 4

and integrate each term separately. Now,

�
Γ

1

z
dz = 2πj (by (11.4), where z0 = 0 and n = −1)

�
Γ

1

z2
dz = 0 (by (11.4), where z0 = 0 and n = −2)

�
Γ

1

z − 2
dz = 2πj (by (11.4), where z0 = 2 and n = −1)

�
Γ

1

z − 4
dz = 0 (since the singularity z = 4 is not inside the contour Γ)

The integral can be evaluated as

�
Γ

1

z2(z − 2)(z − 4)
dz =

3

32

�
Γ

1

z
dz︸ ︷︷ ︸

=2πj

+
1

8

�
Γ

1

z2
dz︸ ︷︷ ︸

=0

−1

8

�
Γ

1

z − 2
dz︸ ︷︷ ︸

=2πj

+
1

32

�
Γ

1

z − 4
dz︸ ︷︷ ︸

=0

=
3

32
(2πj) +

1

8
(0)− 1

8
(2πj) +

1

32
(0)

= −jπ
16
.

11.1.4 Fundamental theorem of complex integration

A final rule of complex integration that we will consider is the so-called fundamental theorem of complex
integral calculus. Before obtaining this result, let us recall the fundamental theorem of calculus. One version
of this theorem is as foll lows: Let f : [x0, x1] → R be a function that is continuously differentiable on the
interval [x0, x1], then � x1

x0

f ′(x) dx = f(x1)− f(x0).

There is also a fundamental theorem of line integrals that we discussed previously in the course. For functions
in R2, this can be stated as: Let f : D → R2 be C1 in a connected region D ⊆ R2 and let Γ be a curve in D
that starts at r0 and ends at r1, then

�
Γ

∇f · dr = f(r1)− f(r0).

In particular, if F is a conservative field (i.e., F = ∇f for some C1 scalar field f), then line integrals are
independent of path since they depend only on the start and endpoints of the curve and we can unambiguously
interpret the integral � r1

r0

∇f · dr.

We have a similar important result for complex integration. To derive this, we use a similar strategy in
the proof of the Cauchy-Goursat theorem. namely, we interpret the contour Γ in C with parameterization
γ : [a, b]→ C as a curve in R2 with parameterization γ : [a, b]→ R2.
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Theorem 11.7 (Fundamental theorem of complex integration). Let f : D → C be a mapping that is
differentiable everywhere in a connected region D ⊆ C. For any contour Γ in D, it holds that

�
Γ

f ′(z) dz = f(z1)− f(z0), (11.5)

where z0 and z1 are the start and end points of the contour.

Figure 11.9: A contour that starts at z0 = x0 + jy0 and ends at z1 = x1 + jy1.

Proof. Suppose that f(z) can be decomposed in Cartesian form as

f(x+ jy) = u(x, y) + jv(x, y)

for some functions u : R2 → R and v : R2 → R. Let γ : [a, b] → C be a parameterization of Γ with
components

γ(t) = x(t) + jy(t),

and let z0 and z1 have components z0 = x0 + jy0 and z1 = x1 + jy1. The desired integral can be computed
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as �
Γ

f ′(z) dz =

� b

a

f ′(γ(t))γ′(t) dt

=

� b

a

(
ux
(
x(t), y(t)

)
+ jvx

(
x(t), y(t)

))(
x′(t) + jy′(t)

)
dt

=

� b

a

(
ux
(
x(t), y(t)

)
x′(t)− vx

(
x(t), y(t)

)
y′(t)

)
dt

+ j

� b

a

(
vx
(
x(t), y(t)

)
x′(t) + ux

(
x(t), y(t)

)
y′(t)

)
dt (11.6)

=

� b

a

(
ux
(
x(t), y(t)

)
x′(t) + uy

(
x(t), y(t)

)
y′(t)

)
dt

+ j

� b

a

(
vx
(
x(t), y(t)

)
x′(t) + vy

(
x(t), y(t)

)
y′(t)

)
dt (11.7)

=

� b

a

∇u(γ(t)) · γ′(t) dt+ j

� b

a

∇v(γ(t)) · γ′(t) dt (11.8)

= u(γ(b))− u(γ(a)) + j
(
v(γ(b))− v(γ(a))

)
(11.9)

= u(x1, y1) + jv(x1, y1)−
(
u(x0, y0) + jv(x0, y0)

)
= f(x1 + jy1)− f(x0 + jy0)

= f(z1)− f(z1),

where, to get from line (11.6) to (11.7) we use the assumption that f is differentiable and thus u and v
satisfy the Cauchy-Riemann equations

vx = −uy and ux = vy,

and in (11.8) we view the path γ : [a, b] → C with components γ(t) = x(t) + jy(t) as a path in R2 with
components γ(t) =

(
x(t), y(t)

)
such that we can convert the integral to a line integral of the gradients of u

and v. Since the line integral of a conservative vector field depends only on the initial and end points, we
obtain the desired result.

Example 11.8. Consider again our example �
Γ

z2 dz

where Γ was any path that starts at 0 and ends at 1+j. The mapping f(z) = z2 is differentiable everywhere.
By the fundamental theorem of complex integral we have,

�
Γ

z2 dz =

� 1+j

0

z2 dz =
z3

3

∣∣∣∣1+j

0

=
(1 + j)3

3
− 0 =

2(j − 1)

3
.

11.2 Cauchy’s integral formula

Recall that the Cauchy-Goursat theorem depends on the differentiability of the mapping. If f has any
singularities inside of a closed contour we must determine the value of the integral around each singularity.
Here we will show how to integrate over certain types of singularities.

Let f : D → C be a differentiable mapping in a simply connected region D ⊂ C, let Γ be any positively
oriented simple closed contour in D that goes around some fixed point z0 ∈ D, and consider the integral�

Γ

f(z)

z − z0
dz (11.10)
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(see Figure 11.10).

Figure 11.10: A positively oriented simple closed contour Γ going around a point z0. We can
deform the contour to a small circle Γε centred at the singularity at z = z0.

To evaluate the integral in (11.10), we begin by making use of the Principal of Deformation of Paths to
deform the contour into a circular contour Γε of radius ε centred at z0 with ε small enough so that Γε lies
entirely inside Γ, as shown in Figure 11.10. This deformation is justified since the integrand f(z)/(z− z0) is
differentiable everywhere between Γ and Γε.

Note that the integral of f(z)/(z − z0) around Γε is independent of the choice of radius ε, provided
that Γε stays entirely within Γ. Thus we can take the limit as ε → 0. This is convenient since, for small
enough values of ε, we may approximate f(z) ≈ f(z0) for z on the contour Γε. As the contour Γε can be
parameterized as γ(t) = z0 + εejt for t ∈ [0, 2π], we have

�
Γ

f(z)

z − z0
dz = lim

ε→0

�
Γε

f(z)

z − z0
dz = lim

ε→0

� 2π

0

f(z0 + εejt)

(z0 + εejt)− z0
jεejt dt

= lim
ε→0

� 2π

0

f(z0 + εejt)

εejt
jεejt dt

= j lim
ε→0

� 2π

0

f(z0 + εejt) dt

= j

� 2π

0

lim
ε→0

f(z0 + εejt) dt

= j

� 2π

0

f(z0) dt = 2πjf(z0).

This result is known as Cauchy’s integral formula.

Theorem 11.9 (Cauchy’s integral formula). Let f : D → C be differentiable in a simply connected
region D and let Γ be a positively oriented simple closed curve going around a point z0 in D. Then

�
Γ

f(z)

z − z0
dz = 2πjf(z0). (11.11)

Example 11.10. Evaluate the integral �
Γ

cos z

z − 1
dz

where Γ is the circle of radius 2 centred at the origin oriented counterclockwise.
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Figure 11.11: The contour from Example 11.10.

Solution. First note from Figure 11.11 that the singularity z = 1 is located inside of the contour. Setting
f(z) = cos z, we may use Cauchy’s Integral Formula to find that�

Γ

cos z

z − 1
dz = 2πj cos 1.

Note that if the singularity at z = 1 was not contained inside the contour Γ then the resulting integral would
be zero since the integrand would be differentiable everywhere inside the contour.

Example 11.11. Evaluate the integral �
Γ

z

(9− z2)(z + j)
dz

where Γ is the circle of radius 2 centred at the origin oriented counterclockwise.

Figure 11.12: The contour from Example 11.11.

Solution. Here, we see that the integrand has singularities as z = ±3 and at z = −j. From 11.12, we see
that only the singularity at z = −j is located inside the contour. If we choose the function f(z) = z/(9−z2),
which is differentiable everywhere inside the contour Γ, we may use Cauchy’s Integral Formula to find that�

Γ

z

(9− z2)(z + j)
dz =

�
Γ

f(z)

z + j
dz = 2πjf(−j) = 2πj

−j
9− (−j)2

=
2π

9 + 1
=
π

5
.

The Cauchy integral formula allows us to integrate functions that have “first order singularities” of the
form f(z)/(z − z0) for functions f that are differentiable at z = z0. It does not apply if the singularity is of
higher order, that is if the integrand is of the form f(z)/(z − z0)2, f(z)/(z − z0)3, or so on. To deal with
these cases, we may start by using using the limit definition to compute the derivative of f and make use of
the Cauchy integral formula. That is, at z = z0 the derivative of f is given by

f ′(z0) = lim
∆→0

f(z0 + ∆z)− f(z0)

∆z
,



ECE 206 – Week 11: November 18, 2019 11-14

which we may evaluate by choosing a simple closed contour Γ small enough so that f is differentiable
everywhere inside Γ and use the Cauchy integral formula to find that

f(z0) =
1

2πj

�
Γ

f(z)

z − z0
dz and f(z0) =

1

2πj

�
Γ

f(z)

z − z0 −∆z
dz.

The derivative of f at z0 can therefore be determined by

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

=
1

2πj
lim

∆z→0

(
1

∆z

(�
Γ

f(z)

z − z0 −∆z
dz −

�
Γ

f(z)

z − z0
dz

))
=

1

2πj
lim

∆z→0

(
1

∆z

�
Γ

(
f(z)

z − z0 −∆z
− f(z)

z − z0

)
dz

)
=

1

2πj
lim

∆z→0

(
1

∆z

�
Γ

f(z)∆z

(z − z0 −∆z)(z − z0)
dz

)
=

1

2πj
lim

∆z→0

�
Γ

f(z)

(z − z0 −∆z)(z − z0)
dz

=
1

2πj

�
Γ

f(z)

(z − z0)2
dz,

which yields the formula �
Γ

f(z)

(z − z0)2
dz = 2πjf ′(z0).

for any positively oriented simple closed contour Γ that goes around a point z0 in a simply connected region
D (and assuming that f is differentiable everywhere in D).

Similarly, we can repeat this process of differentiation as many times as we would like to obtain the
formula �

Γ

f(z)

(z − z0)n+1
dz =

2πj

n!
f (n)(z0)

for any nonnegative integer n ≥ 0, where f (n) indicates the nth order derivative of f (and f (0) = f). This
result is known as the generalized Cauchy integral formula.

Theorem 11.12 (Generalized Cauchy integral formula). Let f : D → C be differentiable in a simply
connected region D and let Γ be a positively oriented simple closed curve going around a point z0 in D.
For any integer n ≥ 0,

n!

�
Γ

f(z)

(z − z0)n+1
dz = 2πjf (n)(z0). (11.12)

Example 11.13. Evaluate the integral �
Γ

e2z

z4
dz

where Γ is the circle of radius 1 centred at the origin oriented counterclockwise.

Solution. Note that the singularity at z = 0 is inside the contour. Setting f(z) = e2z, we may rewrite the
integral as �

Γ

f(z)

(z − 0)3+1
dz
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and use the generalized Cauchy integral formula. Note that f (3)(z) = 8e2z and thus
�

Γ

f(z)

(z − 0)3+1
dz =

2πj

3!
f (3)(0) =

8π

3
j.

Example 11.14. Evaluate the integral from Example 11.6�
Γ

1

z2(z − 2)(z − 4)
dz

but this time using the generalized Cauchy integral formula.

Solution. Note that the contour Γ only contains the singularities z = 0 and z = 2. We may use the principle
of deformation of paths to deform the contour Γ into the the contour shown in Figure 11.13, which consists
of two small circles Γ0 and Γ2 centered at z = 0 and z = 2 respectively and the line along the real axis that
connects them (where this line segment is traversed twice: once backwards and once forwards). Hence�

Γ

1

z2(z − 2)(z − 4)
dz =

�
Γ0

1

z2(z − 2)(z − 4)
dz +

�
Γ2

1

z2(z − 2)(z − 4)
dz,

since the integrals along the line segment on the real axis cancel each other out.

Figure 11.13: Deforming the contour Γ into two smaller contours Γ0 and Γ2 around the two
singularities z = 0 and z = 2.

To compute each of the separate integrals around the singularities z = 0 and z = 2, we can express the
integrand two different ways:

1

z2(z − 2)(z − 4)
=
f(z)

z2
where f(z) =

1

(z − 2)(z − 4)
=

1

z2 − 6z + 8

and
1

z2(z − 2)(z − 4)
=

g(z)

z − 2
where g(z) =

1

z2(z − 4)
=

1

z3 − 4z2
.

We may then use the generalized Cauchy integral formula to compute each piece as�
Γ0

1

z2(z − 2)(z − 4)
dz =

�
Γ0

f(z)

z2
dz = 2πjf ′(0) =

3π

16
j,

where we note that

f ′(z) = − 2z − 6

(z2 − 6z + 8)2
and thus f ′(0) =

6

82
=

3

32
,

and �
Γ2

1

z2(z − 2)(z − 4)
dz =

�
Γ2

g(z)

z − 2
dz = 2πjg(2) = −π

4
j.

The desired integral is therefore�
Γ

1

z2(z − 2)(z − 4)
dz =

3π

16
j − π

4
j = − π

16
j.
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Remark 11.15. From the previous example, we see that integrating a mapping f around a closed contour
Γ depends only on the singularities of f that lie inside the contour Γ. Summing up the values of the contour
around each singularity separately gives us the final answer.
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