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Lecture notes for Week 12
Lecturer: Mark Girard November 25, 2019

12.1 Taylor series and Laurent series

12.1.1 Analytic functions

So far we have developed methods for complex integration, concluding last week with Cauchy’s integral
formula which we will review here. Suppose f is differentiable everywhere inside of a simple connected
region D ⊆ C and let Γ be a positively oriented simple closed curve going around some point z0 ∈ D. For
any integer n ≥ 0, Cauchy’s integral formula states that

f (n)(z0) =
n!

2πj

�
Γ

f(z)

(z − z0)n+1
dz, (12.1)

where f (n) is the nth derivative of f (and f (0) = f). Although we did not mention this before, this is actually
quite a remarkable fact. We have only assumed that f was once differentiable on D, but Cauchy’s integral
formula tells us that f is actually infinitely differentiable at z0 (where the value of all of the derivatives can
be found from the formula in (12.1))! This is a special property of complex-differentiable functions that is
certainly not true for regular functions of real variables. As an example, consider the function f : R → R
defined as

f(x) =

{
0 x ≤ 0
x2 x > 0.

(12.2)

This function is differentiable everywhere with derivative given by

f ′(x) =

{
0 x ≤ 0
2x x > 0,

(12.3)

but f ′ is certainly not differentiable at x = 0 (since it has a ‘kink’ there). Differentiability of complex
functions is different. Our discussion above tells us that if a complex-valued function is complex-differentiable
everywhere, then it must also be infinitely differentiable everywhere!
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(a) Plot of f in (12.2).
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(b) Plot of f ′ in (12.3).
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(c) Partial plot of f ′′.

Figure 12.1: An example of a function of real variables that is once differentiable but not twice
differentiable.

This sort of property has a special name that is common in the parlance of complex analysis but we have
so far not used. Before continuing, we must first define the concept of a disk. Let R > 0 be a positive real
number. The disk of radius R centred at a point z0 is the set D ⊆ C defined by

D = {z ∈ C | |z − z0| < R}.

12-1
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Intuitively, it consists of all points whose distance away from z0 is strictly less than R. (See Figure 12.2.)

Figure 12.2: The disk D of radius R centred at z0.

Definition 12.1. Let f be a mapping and z0 a point in the complex plane. We say that f is analytic at
a point z0 if there exists a disk DR with positive radius R > 0 such that f is differentiable everywhere
inside DR.

From our discussion above about Cauchy’s integral formula in (12.1), we see that if a function is analytic
at z0 then it is infinitely differentiable. So we may think of a function being “analytic” in some region D as
the same as that function being “infinitely differentiable” in that region.

We should remark that the concept of “complex-differentiable” is distinct from “analytic.” A function
might be differentiable at a point but not anywhere nearby to that point, such as the function f(z) = |z|
which is only differentiable at the point z = 0 and nowhere else. However, this function is not analytic at
z = 0, since analycity requires that f also be differentiable in some small disk around the point z = 0. From
now on, we will use the term “analytic” rather than “differentiable” to when discussing differentiability. This
will be useful when we begin to discuss Taylor series in the next section.

12.1.2 Taylor series

You are hopefully familiar with the concept of Taylor series from your previous calculus courses. We will
first recall a few basic definitions and facts before discussing Taylor series of complex functions.

Definition 12.2. A power series around a point z0 ∈ C is an infinite sum of the form

∞∑
n=0

cn(z − z0)n = c0 + c1(z − z0) + c2(z − z0)2 + · · ·

for some coefficients c0, c1, c2, · · · ∈ C. The power series is said to converge for a value z ∈ C if the limit

lim
N→∞

N∑
n=0

cn(z − z0)n

exists. If it does not converge then it is said to diverge. The largest value of R such that the power
series converges for all z satisfying |z − z0| < R is called the radius of convergence.
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We will not be too concerned with techniques for proving whether or not a particular series diverges.
Instead, we’ll turn directly to our discussion of Taylor series. In Section 12.1.1, we found that if a function is
analytic at a point z0 (i.e., differentiable at z0 and in some small region around z0), then it admits derivatives
of all orders there. Since f(z0), f ′(z0), f ′′(z0), · · · all exist, it is at least formally possible to write down the
Taylor series

∞∑
n=0

f (n)(z0)

n!
(z − z0)n (12.4)

of f(z) about the point z0 whether or not it converges. However, whether or not the Taylor series expansion
is useful or meaningful will depend on answers to these questions: Does the series converge and, if so, for
which values of z? If it does converge, what does it converge to? Although we will not be concerned with a
proof, the following fact tells us the usefulness of Taylor series’ of functions and answers some of the above
questions.

Theorem 12.3 (Taylor’s theorem). Let f be analytic everywhere on a disk DR of radius R centred at
a point z0. Then the power series in (12.4) converges and

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n (12.5)

holds for all z satisfying |z − z0| < R.

The main implication of Taylor’s Theorem is that, if f is analytic in some disk {z | |z − z0| < R}, then
f(z) can be represented in that disk by a convergent power series (namely, it’s Taylor series about z0). On
the other hand, if R is the radius of convergence of the series in (12.5), then the series (12.5) diverges for all
z satisfying |z− z0| > R. If f is analytic everywhere, we simply say that its radius of convergence is R =∞.
In Table 12.1 we collect a few familiar Taylor series about z0 = 0.

f(z) Taylor series Radius of convergence

ez =

∞∑
n=0

zn

n!
= 1 + z +

z

2!
+
z3

3!
+ · · · R =∞

sin z =

∞∑
n=0

z2n+1

(2n+ 1)!
= z − z3

3!
+
z5

5!
− z7

7!
+ · · · R =∞

cos z =
∞∑
n=0

z2n

(2n)!
= 1− z2

2!
+
z4

4!
− z6

6!
+ · · · R =∞

1

1− z
=

∞∑
n=0

zn = 1 + z + z2 + z3 + · · · R = 1

Table 12.1: Some familiar Taylor series for complex functions

Remark 12.4. How does one determine the radius of convergence of a Taylor series? Well, if a mapping
f is analytic at a point z0, then there must be some positive radius R > 0 such that f is analytic in the
disk of radius R centred at z0 (and thus the Taylor series converges for all points z satisfying |z − z0| < R).
However, if f is not analytic (or perhaps not even defined) at some other point z1, then the Taylor series
of f about z0 cannot converge on a disk of radius R if |z1 − z0| < R. Hence, the radius of convergence of
the Taylor series of f about z0 must be equal to the distance of z0 to the nearest nearest singularity of f .
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This helps to explain why the radius of convergence of f(z) = 1/(1 − z) about z0 = 0 is equal to 1. The
only singularity of 1/(1− z) is at z = 1, and the distance from the point 0 to the point 1 is exactly 1. The
mapping f(z) = 1/(1− z) is analytic at any other point z satisfying |z − 1| < 1.

Figure 12.3: If a mapping f is analytic at a point z0, the radius of convergence of the Taylor
series of f about z0 is equal to the distance from z0 to the nearest singularity of f .

We can use Taylor series expansions of known mappings to find Taylor series’ for other functions, as the
following few examples show.

Example 12.5. Find the Taylor series expansions of the following mappings about the given points and
determine the radius of convergence.

(i) f(z) = ez
2

about z0 = 0

(ii) f(z) = 1/(z2 + 1) about z = 0

(iii) f(z) = 1/z about z = 1

Solution. (i) Here we may simply use the known expansion for ew where we set w = z2 to get

ez
2

= ew = 1 + w +
w2

2
+
w3

3!
+ · · · = 1 + z2 +

z4

2
+
z6

3!
+ · · · =

which converges everywhere.

(ii) We may use the known Taylor series expansion for 1/(1 − w) about w = 0 where we set w = −z2.
That is,

1

z2 + 1
=

1

1− w
= 1 + w + w2 + w3 + · · ·

= 1 + (−z2) + (−z2)2 + (−z2)3 + · · ·
= 1− z2 + z4 − z6 + · · ·

=

∞∑
n=0

(−1)nz2n.

To determine the radius of convergence of this series, we may note that the series for 1/(1−w) is valid
only in the region where |w| < 1. Since we set w = −z2, we see that the Taylor series for 1/(z1 + 1) is
only valid for |−z2| < 1, or equivalently |z| < 1, so the radius of convergence is equal to 1.

Alternatively, we may note that the mapping f(z) = 1/(z2 + 1) is analytic everywhere except at the
singularities z = ±j. As the distance from z = 0 to the nearest singularity is 1, this is an alternate
way to see that the radius of convergence for the Taylor series for 1/(z2 + 1) centred at z0 = 0 has
radius of convergence equal to 1.(See Figure 12.4a.)
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(iii) Similar to the previous example, we may use the expansion 1/(1− w) about w = 0, but were we need
to express f(z) as a function of (z − 1) so that we may expand the Taylor series about z0 = 1. (Note
that 1/z is analytic at z = 1 so it will have a valid Taylor series there.) If we set w = −(z− 1), we get

1

z
=

1

1− (−1)(z − 1)
=

1

1− w
= 1 + w + w2 + w3 + · · ·

= 1 + (−1)(z − 1) + (−1)2(z − 1)2 + (−1)3(z − 1)3 + · · ·
= 1− (z − 1) + (z − 1)2 − (z − 1)3 + · · ·

=

∞∑
n=0

(−1)n(z − 1)n

which has radius of convergence equal to 1. (See Figure 12.4b.)

(a) Disk of convergence for f(z) = 1/(z2 + 1)
about z = 0. The nearest singularities are at
z = ±j.

(b) Disk of convergence for f(z) = 1/z about
z = 1. The nearest singularity is at z = 0.

Figure 12.4: Radius of convergence for the examples in Example 12.5.

12.1.3 Laurent series

Consider the mapping defined by

f(z) =
ez

z3
.

Although 1/z3 is not analytic at z = 0, the exponential part ez is analytic at z = 0 so it is not too
unreasonable to consider expanding out the Taylor series of ez and multiplying it term by term by 1/z3 to
obtain the expression

f(z) =
ez

z3
=

1

z3

(
1 + z +

z2

2!
+
z3

3!
+
z4

4!
+ · · ·

)
=

1

z3
+

1

z2
+

1

2!

1

z
+

1

3!
+
z

4!
+ · · · (12.6)

Strictly speaking, the infinite sum in (12.6) is not a Taylor series of f about z0 = 0, as it contains negative
powers of z in its first few terms. Moreover, f cannot even have a valid Taylor series about z0 = 0 since
the function is not even defined there. Nonetheless, the infinite sum in (12.6) still converges for all z 6= 0,
and it is useful to consider sums of this form. Before continuing, there are a few useful definitions we should
introduce.
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Definition 12.6. The annulus centred at a point z0 with inner radius R0 and outer radius R1 is the
set

D =
{
z ∈ C

∣∣R0 < |z − z0| < R1

}
.

Intuitively, it is the set of all points z whose distance from z0 is between R0 and R1.

Figure 12.5: A depiction of an annulus D centred at z0 with inner radius R0 and outer radius
R1.

In general, sums of the form in (12.6) will not be valid on disks (as Taylor series’ are), but will instead
be valid in regions that are annulus-shaped. Infinite series of the type in (12.6) that have negative powers
of (z − z0) are called Laurent series.

Definition 12.7. A Laurent series about a point z0 is a doubly infinite series of the form

∞∑
n=−∞

cn(z − z0)n =

∞∑
n=1

c−n
1

(z − z0)n
+

∞∑
n=0

cn(z − z0)n

= · · ·+ c−2
1

(z − z0)2
+ c−1

1

z − z0
+ c0 + c1(z − z0) + c2(z − z0)2 + · · · .

A Laurent series is distinctively different from a Taylor series, since a Taylor series does not allow for
negative powers of z − z0. (However, if a Laurent series does not contain any negative powers, then it is
simply a Taylor series.) Neither of the “infinite” sums (the part of with the negative powers or the part with
the positive powers) needs to actually be infinite. For example, the series in (12.6) is a Laurent series that
only has three nonzero terms with negative powers.

Similar to Taylor series, Laurent series are also useful representations of functions but this time about
points that are possibly singularities of f rather than only allowed to be centered at points where f is
analytic. Laurent’s Theorem below shows us the usefulness of Laurent series and indicates how to find the
coefficients.

Theorem 12.8 (Laurent’s Theorem). Let f be a mapping that is analytic everywhere inside an annulus
D centred at a point z0 with inner radius R0 and outer radius R1. Then f admits a Laurent series

f(z) =

∞∑
n=−∞

cn(z − z0)n
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that is valid for all z ∈ D with coefficients given uniquely by the formula

cn =
1

2πj

�
Γ

f(z)

(z − z0)n+1
dz (12.7)

where Γ is any positively oriented closed simple contour in D that goes around z0.

Figure 12.6: An annulus of validity for one of the Laurent series expansions of a mapping f
centred at z0.

The formula in (12.7) is in general not very useful for determining the Laurent series expansion for a given
function f . For example, the Laurent series for the mapping f(z) = ez/z3 is simply given by the formula in
(12.6), which we found by multiplying each term of the Taylor series for ez by 1/z3. Practically speaking, we
are usually able to avoid using (12.7) in developing Laurent series, as illustrated in the following examples.

Example 12.9. Find the Laurent series expansion for the mapping f(z) = e1/z about z = 0.

Solution. Similar to our approach to Taylor series, we can use the known Taylor series expansion for ew and
make the substitution w = 1/z to find

f(z) = e1/z = ew = 1 + w +
w2

2!
+
w3

3!
+ · · ·

= 1 +
1

z
+

1

2!

1

z2
+

1

3!

1

z3
+ · · · . (12.8)

In this case, the Laurent series has infinitely many terms in its expansion with negative powers. Since 1/z is
analytic everywhere except at z = 0 and the Taylor series expansion for ew is valid everywhere, the Laurent
series in (12.8) is valid for all z 6= 0. In this case, the “annulus of validity” of this Laurent series is the region
where 0 < |z|∞ (i.e., the annulus with inner radius 0 and outer radius ∞).

Example 12.10. Obtain all possible Laurent series expansions of

f(z) =
1

z(z − 1)

about z0 = 0.

Solution. There are two points where f is singular: at z = 0 and z = 1. Hence two possible annuli around
z0 = 0 where f is analytic are the regions (see Figure 12.7)

(i) {z | 0 < |z| < 1} and

(ii) {z | 1 < |z| <∞}.
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Figure 12.7: The two different ‘annuli’ centred at z = 0 where the mapping f(z) = 1/z(z − 1)
has a valid Laurent series expansion.

We’ll consider each region separately.

(i) In the region where 0|z|1, we have the Taylor series expansion

1

1− z
= 1 + z + z2 + z3 + · · · . (12.9)

Multiplying this term-by-term with −1/z, we obtain

f(z) =
1

z(z − 1)
= −1

z

1

1− z
= −1

z

(
1 + z + z2 + z3 + · · ·

)
= −1

z
− 1− 1

z
− 1

z2
− · · · . (12.10)

Since 1/z is analytic whenever 0 < |z| and the expansion in (12.9) is valid only when |z| < 1, we see
that the Laurent series for f(z) in (12.10) is valid in the annulus {z | 0 < |z| < 1}.

(ii) To determine the Laurent series expansion that is valid in the region where 1|z|∞, it will be useful to
express f(z) as a function of 1/z,

f(z) =
1

z(z − 1)
=

1

z

1

z(1− 1
z )

=
1

z2

1

1− 1
z

=
1

z2

(
1 +

1

z
+

1

z2
+

1

z3
+ · · ·

)
=

1

z2
+

1

z3
+

1

z4
+

1

z5
+ · · · , (12.11)

where we make use of the known Laurent expansion

1

1− 1
z

=
1

1− w
= 1 + w + w2 + w3 + · · · = 1 +

1

z
+

1

z2
+

1

z3
+ · · ·

(where we set w = 1/z) that is valid for |w| < 1, or equivalently |z| > 1. Hence the Laurent series
expansion in (12.11) is valid in the region where 1 < |z| <∞.

12.2 Residues and singularities

12.2.1 Classification of singularities

Recall that if a mapping f is not analytic (or not even defined) at a point z0 then it is said to be singular
there. It will be useful to classify the different types of singularities that a mapping can have. We first
introduce the idea of a punctured disk (which is really just an annulus with inner radius 0).
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Definition 12.11. The punctured disk centred at a point z0 with radius R is the set

D =
{
z ∈ C

∣∣ 0 < |z − z0| < R
}
.

It is simply the disk of radius R centred at z0 with the point z0 removed.

Let f be a mapping and suppose that z0 is a singular point of f . We say that z0 is an isolated singularity
of f if there is some positive radius R > 0 such that f is analytic everywhere inside the pictured disk of
radius R centred at z0. Otherwise the singularity is said to be non-isolated. For example, the singularity
z0 = 0 of the mapping f(z) = 1/z is isolated, as the mapping is analytic everywhere except at z = 0.

Example 12.12. We’ll next consider a few examples of non-isolated singular points.

(i) Consider the function defined by

f(z) =
1

sin 1
z

which is defined and differentiable everywhere except at z = 0 and wherever sin(1/z) = 0. That is, it
has singularities whenever 1/z = kπ for some integer k ∈ Z. Hence f has singularities at the points
z = 1/kπ for each nonzero integer k ∈ Z because sin(1/z) = 0 at those points. Each of the points
z = 1/kπ is an isolated singularity of f , but the point z = 0 is not because every punctured disk
{z | 0 < |z| < R} contains at least one other singular point (in fact, an infinite number of them) no
matter how small we choose R to be.(See Figure 12.8a.)

(a) The singular points of f(z) = 1/ sin(1/z).
The point z = 0 is a non-isolated singular
point. Each of the other singularities at z =
1/kπ for nonzero integers k is isolated.

(b) The singular points of f(z) = Log z. Each
point along the negative real axis x ∈ (−∞, 0]
is a non-isolated singularity of Log. The func-
tion Log is analytic everywhere else.

Figure 12.8: The non-isolated singularities of the mappings in Example 12.12.

(ii) The function f(z) = Log z is defined everywhere except z = 0, so z = 0 is a singular point of Log.
However, Log is not continuous (and thus not differentiable) along the negative real axis, so each point
z = x with x ∈ R and x < 0 is also a singular point of Log. None of these singularities are isolated as
they are all connected. (See Figure 12.8b.)

For the remainder of the course, we will only consider isolated singularities. By Laurent’s Theorem, if a
mapping f has an isolated singularity at a point z0, there is necessarily a punctured disk {z | 0 < |z| < R},
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with some positive radius R, on which f admits a valid Laurent series representation

f(z) =

∞∑
n=−∞

cn(z − z0)n

= · · ·+ c−2
1

(z − z0)2
+ c−1

1

z − z0
+ c0 + c1(z − z0) + c2(z − z0)2 + · · · (12.12)

for all z satisfying 0 < |z| < R. If the expansion in (12.12) terminates on the left so that it is actually of the
form

f(z) = c−m
1

(z − z0)m
· · ·+ c−2

1

(z − z0)2
+ c−1

1

z − z0
+ c0 + c1(z − z0) + c2(z − z0)2 + · · · (12.13)

for some integer m, then we say that z0 is a pole of order m. (A 1st order pole is also called a simple pole.)
Otherwise, if the expansion does not terminate on the left (i.e., there are infinitely many negative powers of
(z − z0) that appear in the Laurent series (12.12)), then z0 is said to be an essential singularity.

Example 12.13. Consider the following examples.

(i) Note that f(z) = ez/z3 has a third order pole at z = 0 since its Laurent series expansion about z = 0
is

ez

z3
=

1

z3
+

1

z2
+

1

2!

1

z
+

1

3!
+

1

4!
z + · · · .

Since the largest integer m such that the z−m term in the Laurent series has a nonzero coefficient is
m = 3, the singularity of f at z = 0 is a pole of order 3.

(ii) Meanwhile, f(z) = e1/z has an essential singularity at z = 0 since its Laurent series expansion

e1/z = 1 +
1

z
+

1

2

1

z2
+

1

3!

1

z3
+ · · ·

has infinitely many nonzero terms with negative exponents.

(iii) Consider now the mapping f(z) = 1/z(z − 1), which has two Laurent series expansions (see Example
12.10):

f(z) = −1

z
− 1− z − z2 − z3 − · · · valid in the region where 0 < |z| < 1 (12.14)

and f(z) = · · ·+ 1

z4
+

1

z3
+

1

z2
valid in the region where 1 < |z| <∞. (12.15)

While it may appear from the Laurent series expansion in (12.15) that z0 = 0 is an essential singularity,
we must consider that the definition of the order of the pole depends only on the Laurent series that
is valid in a punctured disk around z0 = 0. The proper Laurent series to consider when determining
the order of the pole is therefore the one in (12.14), which would indicate that z0 = 0 is a first-order
pole of f (i.e., a simple pole).

Suppose a mapping f has an isolated singularity at z0. Normally, if z0 is a singularity of a mapping f ,
the limit

lim
z→z0

f(z)

does not exist. For example, if z0 is a pole with order m ≥ 1 or an essential singularity, then the limit of
f(z) as z → z0 blows up, as

lim
z→z0

1

(z − z0)m
does not exist
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for any integer m ≥ 1. On the other hand, if the Laurent series expansion of f in a punctured disk around
z0 has no negative powers (i.e., the point z0 is a zeroth order pole) such that the Laurent series is of the form

f(z) = c0 + c1(z − z0) + c2(z − z0)2 + c3(z − z0)3 + · · · ,

then the Laurent series is actually just a regular Taylor series. As f is not necessarily defined at z = z0 we
cannot simply plug z = z0 into the above expression. We may however take the limit of both sides to find

lim
z→z0

f(z) = lim
z→z0

(
c0 + c1(z − z0) + c2(z − z0)2 + c3(z − z0)3 + · · ·

)
= c0.

That is, the limit of f(z) as z → z0 exists and is equal to the zeroth coefficient of the Laurent series. In this
case, we say that the singularity is removable, since we might as well “plug the hold” with the limiting value.

Example 12.14. Consider the mapping defined by

f(z) =
sin z

z

for all z 6= 0. This is analytic everywhere it is defined, but we cannot blindly plug z = 0 into the formula
since we cannot divide by zero. However, examining the Laurent series expansion of f at z0 = 0,

f(z) =
1

z
sin z =

1

z

(
z − z3

3!
+
z5

5!
− z7

7!
+ · · ·

)
= 1− z2

3!
+
z4

5!
− z6

7!
+ · · · ,

has no negative powers of z, and thus

lim
z→0

sin z

z
= lim
z→0

(
1− z2

3!
+
z4

5!
− z6

7!
+ · · ·

)
= 1.

Thus sin z/z has a remove able singularity at z = 0. If we define the sinc mapping as

sinc(z) =

{
sin z

z
z 6= 0

1 z = 0

for all z ∈ C, then sinc is not only continuous everywhere, it is also analytic everywhere (in particular it is
analytic at z = 0). That is, if we “plug the hole” where sin z/z is not defined with its limiting value, we
obtain a mapping that is analytic everywhere. (That is, we have “removed” the singularity.) This explains
the terminology for this type of singularity.

12.2.2 Residues

We are now ready to introduce the useful concept of a residue (see also Figure 12.9)

Definition 12.15. Let f be analytic in some pun cured disk D centred at a point z0. The residue of f
at the point z0 is defined as

Res(f, z0) =
1

2πj

�
Γ

f(z) dz

where Γ is any positively oriented simple closed contour in D going around z0.
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Figure 12.9: If f is analytic in some punctured disk D around a point z0, then the integral
around any positively oriented closed simple contour Γ in D that goes around z0 will yield the
same value. The unique value of this integral is proportional to the residue of f at z0.

Suppose now that f is analytic in some region D ⊆ C except at possible some finite number of iso-
lated singularities, and let Γ be a positively oriented simple closed contour in D (that does not cross any
singularities of f). What is the value of �

Γ

f(z) dz?

We know from last week’s notes that the value will only depend on the singularities of f that are located
inside of the contour. By the principle of path deformation, we may deform the path Γ into a bunch of smaller
contours Γ1, . . . ,ΓN that go around each of the singularities z1, . . . , zN individually (see Figure 12.10).

Figure 12.10: The integral of f along a simple closed contour Γ is equal to the sum of the inte-
grals of f around each of the contours Γ1, . . . ,ΓN that each go around each of the singularities
enclosed within Γ separately.

The integral over the parts of the contour connecting each of the contours Γ1, . . . ,ΓN cancel out (since
they are integrated over twice, once forward and once backwards). Thus, we may compute the desired
integral as �

Γ

f(z) dz =

N∑
k=1

�
Γk

f(z) dz,

and it remains only to determine the values of the integrals along the contours Γ1, . . . ,ΓN . Since each of the
singularities z1, . . . , zN is isolated, there is some punctured disk around each one where f is analytic, and
we therefore have that �

Γk

f(z) dz = 2πj Res(f, zk)

for each k ∈ {1, . . . , N}. Putting all of this together gives us the following important result in complex
analysis.
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Theorem 12.16 (Cauchy’s residue theorem). Let f be analytic everywhere in a region simply connected
region D except at finitely many isolated singularities in D. If Γ is any positively oriented simple closed
contour in D that does not cross any of those singularities, then

�
Γ

f(z) dz = 2πj
∑
k

Res(f, zk)

where the sum is taken over all singularities zk that are located inside the region enclosed by the contour Γ.

The name “residue” comes from the following idea. A closed contour integral only depends on the values
of the residues at each of the singular points inside that contour. We can completely ignore any of the points
inside Γ that are analytic. Only at the singular points does the function leave something behind” that is
picked up by the contour integral. Hence, the function leaves a “residue” at each singular point but doesn’t
leave anything behind at the analytic points inside Γ.

What is the point of introducing this new term? Well, if we have clever ways of computing the residues
of functions at singular points, then we can make use of Cauchy’s residue theorem to greatly simplify the
computation of any contour integral!

12.2.3 Computing residues

If a mapping f is analytic at a point z0, then there is some disk around z0 where f is differentiable. The
value of any closed contour integral in that disk that goes around z0 will be zero, by the Cauchy-Goursat
theorem. We arrive at the first important rule of residues:

if f is analytic at z0, then Res(f, z0) = 0

Residues get a bit more interesting at singularities. If a mapping f is of the form

f(z) =
g(z)

(z − z0)n+1
(12.16)

for some integer n ≥ 0 and some other mapping g that is analytic at z0, then we may use the Cauchy Integral
Formula to compute the residue:

Res(f, z0) = Res

(
g(z)

(z − z0)n+1
, z0

)
=

1

2πj

�
Γ

g(z)

(z − z0)n+1
dz =

1

n!
g(n)(z0)

where Γ is any positively oriented simple closed contour going around z0 such that f is analytic everywhere
inside Γ except possibly at z0.

What if f is not of the nice form in (12.16)? In this case we can not just apply Cauchy’s Integral Formula,
but we can use our knowledge of Laurent series to help us out. If z0 is an isolated singularity of f , then it
has a Laurent series

f(z) =

+∞∑
n=−∞

cn(z − z0)n

that is valid in some punctured disk around z0. Taking the integral around any positively oriented simple
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closed contour Γ in that punctured disk around z0 gives us

Res(f, z0) =
1

2πj

�
Γ

f(z) dz

=
1

2πj

�
Γ

+∞∑
n=−∞

cn(z − z0)n dz

=

+∞∑
n=−∞

cn
2πj

�
Γ

(z − z0)n dz

=

−2∑
n=−∞

(
cn

2πj

�
Γ

(z − z0)n dz︸ ︷︷ ︸
=0

)
+
c−1

2πj

�
Γ

1

z − z0
dz︸ ︷︷ ︸

=2πj

+

+∞∑
n=0

(
cn

2πj

�
Γ

(z − z0)n dz︸ ︷︷ ︸
=0

)

= 0 + c−1 + 0 = c−1,

where we integrate separately over each term of the infinite Laurent series and make use of our well-known
integral �

Γ

(z − z0)n dz =

{
2πj n = −1
0 otherwise

for all integers n ∈ Z and all positively oriented simple closed contours going around z0. In particular, we
see that integrating f(z) along some contour going around z0 picks out exactly one coefficient of the infinite
series: the coefficient of the (z − z0)−1 term. This has actually quite remarkable implications; if we can
determine the value of the coefficient of the (−1)-term of the Laurent series expansion of f then we have
found the value of the residue! Since this is such an important result, we’ll put it inside of its own box:

If z0 is a singular point of f and f has a Laurent series expansion

f(z) =

+∞∑
n=−∞

cn(z − z0)n

that is valid in some punctured disk around z0, then

Res(f, z0) = c−1. (12.17)

Example 12.17. Consider the mapping defined by

f(z) = e1/z +
e2z

z3
.

Compute the integral �
Γ

f(z) dz

where Γ is the unit circle centered at the origin oriented counterclockwise.

Solution. Note that f has only one singularity at z = 0. It will first be helpful to notice that

Res(g(z) + h(z), z0) = Res(g(z), z0) + Res(h(z), z)
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if g and h are functions that are both analytic in some punctured disk around z0, so we may find the residues
of each of the terms of f separately. We have the Laurent series expansions

e1/z = 1 +
1

z
+

1

2!

1

z2
+

1

3!

1

z3
+ · · · with c−1 = 1

and
e2z

z3
=

1

z3

(
1 + 2z +

4z2

2!
+

8z3

3!
+

24z4

4!
+ · · ·

)
=

1

z3
+

2

z2
+ 2

1

z
+

4

3
+

2

3
z + · · · with c−1 = 2,

and thus

Res
(
e1/z, 0

)
= 1 and Res

(
e2z

z3
, 0

)
= 2.

The desired integral is therefore

�
Γ

f(z) dz = 2πj Res(f, 0) = 2πj

(
Res

(
e1/z, 0

)
+ Res

(
e2z

z3
, 0

))
= 2πj(1 + 2) = 6πj.

12.2.3.1 Residues of simple poles

If a mapping f has a simple pole at a point z0, then it possesses a Laurent series of the form

f(z) = c−1
1

z − z0
+ c0 + c1(z − z0) + c2(z − z0)2 + · · · (12.18)

that is valid in some punctured disk around z0 for some nonzero value of the coefficient c−1. The residue of
f at z0 will be Res(f, z0) = c−1, but if we don’t know the value of this coefficient, how might we find it? If
we multiply the entire expression in (12.18) by (z − z0), we obtain

(z − z0)f(z) = c−1 + c0(z − z0) + c1(z − z0)2 + c2(z − z0)3 + · · · (12.19)

which now has no negative powers of (z − z0) appearing. That is, the expression (z − z0)f(z) has a remove
able singularity at the point z0 with limiting value

lim
z→z0

(
(z − z0)f(z)

)
= lim
z→z0

(
c−1 + c0(z − z0) + c1(z − z0)2 + c2(z − z0)3 + · · ·

)
= c−1

= Res(f, z0).

This gives us a useful formula for finding the residues of simple poles:

If a mapping f has a simple pole at z0, then

Res(f, z0) = lim
z→z0

(
(z − z0)f(z)

)
(12.20)

How might we determine when a singularity is a simple pole? Well, if z0 is a pole with order m ≥ 1, then
the limit

lim
z→z0

f(z)
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does not exist (otherwise the singularity would be remove able). On the other hand, if the order of the pole
is m ≥ 2, then the limit

lim
z→z0

(
(z − z0)f(z)

)
= lim
z→z0

(
c−m

1

(z − z0)m−1
+ · · ·+ c−1 + c0(z − z0) + c1(z − z0)2 + · · ·

)
would not exist, since the part of the expression 1/(z − z0)m−1 would blow up as z → z0. Thus, if

lim
z→z0

f(z) does not exist but lim
z→z0

(
(z − z0)f(z)

)
does exist,

then z0 is a simple pole (i.e., pole of order 1) of f and its residue can be computed using (12.20).

Example 12.18. Show that the following mappings have simple poles at z = 0 and find the residues there.

(i) f(z) =
z

1− cos z
Solution. We may use l’Hopital’s rule to find that the limit

lim
z→0

f(z) = lim
z→0

z

1− cos z
= lim
z→0

1

sin z

does not exist. However, by repeated use of l’Hopital’s rule we find that

lim
z→0

(
(z)f(z)

)
= lim
z→0

z2

1− cos z
= lim
z→0

2z

sin z
= lim
z→0

2

cos z
= 2,

and thus 0 is a simple pole of f(z) = z/(1− cos z) with Res (f, 0) = 2.

(i) f(z) =
1

z(1− z)
Solution. We can clearly see that 0 is a simple pole of f , and thus

Res(f, 0) = lim
z→0

(
zf(z)

)
= lim
z→0

(
1

1− z

)
= 1.

Remark 12.19. Suppose that g and h are mappings that are both analytic at z0 such that g(z0) 6= 0,
h(z0) = 0, and h′(z0) 6= 0, and consider the mapping defined by

f(z) =
g(z)

h(z)
.

We see that z0 is an isolated singularity of f , but it is also a simple pole of f with residue

lim
z→z0

(
(z − z0)

g(z)

h(z)

)
= g(z0) lim

z→z0

(z − z0)

h(z)

= g(z0)
1

lim
z→z0

(
h(z)−h(z0)

z−z0

) =
g(z0)

h′(z0)
,

where we make use of the assumption that h(z0) = 0 and use the definition of the derivative. We therefore

see that z0 is a simple pole of f with residue Res(f, z0) = g(z0)
h′(z0) . This fact is also useful to box:

Res(f, z0) =
g(z0)

h′(z0)
where f(z) =

g(z)

h(z)
if g(z0), h′(z0) 6= 0 and h(z0) = 0. (12.21)

Example 12.20. Show that f(z) = 1/(z3 − 1) has a simple pole at z = 1 and compute the residue there.
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Solution. Here we note that f is of the form

f(z) =
g(z)

h(z)

where g(z) = 1 and h(z) = z3 − 1. Since the limit if f(z) as z → 0 is not defined but

g(1)

h′(1)
=

1

3

as h′(z) = 3z, we see that 1 is indeed a simple pole of f and that Res(f, 1) = 1/3.

12.2.3.2 Higher order poles

Suppose now that a mapping f has a pole of order m at a point z0 such that f has a Laurent series of the
form

f(z) = c−m
1

(z − z0)m
+ · · ·+ c−2

1

(z − z0)2
+ c−1

1

(z − z0)
+ c0 + c1(z − z0) + c2(z − z0)2 + · · · .

If we do not know the coefficients, how might we get the c−1 coefficient to pop out? Multiplying the
expression this time by (z − z0)m gives us

(z − z0)mf(z) = c−m + · · ·+ c−2(z − z0)m−2 + c−1(z − z0)m−1 + c0(z − z0)m + c1(z − z0)m+1 + · · · .

If we take the (m− 1)th derivative of this expression and take the limit as z → z0, we get

lim
z→z0

[
dm−1

dzm−1

(
(z − z0)mf(z)

)]
= · · · = (m− 1)!c−1

(where we have omitted some of the details, but it is easy to check). This gives us another useful rule that
we will box:

If a mapping f has a pole of order m at z0, then

Res(f, z0) =
1

(m− 1)!
lim
z→z0

[
dm−1

dzm−1

(
(z − z0)mf(z)

)]
. (12.22)

Example 12.21. Compute the reside of

f(z) =
z3 + 2z

(z − j)3

at z = j.

Solution. This mapping clearly has a third-order pole at z = j, so we may use the formula in (12.22) to find

Res(f, j) =
1

2!
lim
z→j

[
d2

dz2

(
(z − j)2f(z)

)]
=

1

2
lim
z→j

[
d2

dz2
(z3 + 2z)︸ ︷︷ ︸

6z

]
=

1

2
lim
z→j

(6z)

=
6j

2
= 3j.
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12.3 Applications of residue theory

12.3.1 Integrals of functions of sines and cosines

(We didn’t have time to cover this part!)

12.3.2 Real integrals from −∞ to ∞
Suppose f : R → R is a real -valued function on the real line. We can use complex analysis and residue
theory to help us compute certain types of integrals that can’t normally be computed so easily. To do so, we
first introduce an important tool. It is often useful to “bound” the value of a complex integral by obtaining
an upper limit to the modulus of its value.

Let f be a mapping and let Γ be a contour in a region where f is defined. If L is the length of Γ and M
is a number such that |f(z)| ≤M holds for all points z on the contour Γ, then

∣∣∣∣�
Γ

f(z) dz

∣∣∣∣ ≤ML. (12.23)

This result is called the ML-bound.

Example 12.22. Use the ML-bound to show that∣∣∣∣�
Γ

sin z

z(z2 + 9)
dz

∣∣∣∣ ≤ π
√

cosh 10

2
,

where Γ is the circular contour of radius 5 centered at the origin (see the figure below).

Solution. First note that for z = x+ jy we can split up sin z into its real and imaginary parts as

sin z = sin(x+ jy) = sinx cosh y + j cosx sinh y.

Note that |x| ≤ 5 and |y| ≤ 5 for points z = x+ jy on the circle Γ of radius 5. Thus

|sin(x+ jy)| =
√

sin2 x cosh 2y + cos2 x sinh2 y

≤
√

cosh 2y + sinh2 y (since sin2 x ≤ 1 and cos2 x ≤ 1)

≤
√

cosh 25 + sinh2 5 =
√

cosh 10, (12.24)

where the last inequality in (12.24) follows from the identity cosh(A + B) = coshA coshB + sinhA sinhB.
Meanwhile, it holds that |z| = 5 and

|9 + z2| ≥ 9− |z|2 = 9− 5 = 4.

for all z on Γ, where the inequality follows from the fact that |α|+ |β| ≥ |α− β| for all α, β ∈ C. It follows
that ∣∣∣∣ sin z

z(9 + z2)

∣∣∣∣ ≤
√

cosh 10

(5)(4)
=

√
cosh 10

20

for all z on Γ, so we may choose M =
√

cosh 10/20. As Γ is a circle of radius 5, it has length L = 10π, so we
may use the ML-estimation technique to bound∣∣∣∣�

Γ

sin z

z(z2 + 9)
dz

∣∣∣∣ ≤ML =

√
cosh 10

20
10π =

π
√

cosh 10

2
.



ECE 206 – Week 12: November 25, 2019 12-19

A more useful application of the ML-bound is to use it to show that the value of some integral goes to
zero in some limit. In particular, if ΓR is some contour that depends on some parameter R such that, for
some complex mapping f , the modulus of the integral of f tends to zero as R tends to infinity, then it must
be the case that the integral itself goes to zero (and not just the modulus). That is,

if lim
R→∞

∣∣∣∣�
ΓR

f(z) dz

∣∣∣∣ = 0 then lim
R→∞

�
ΓR

f(z) dz = 0.

This is incredibly useful for computing certain types of real integrals with infinite limits of integration, as
the following few examples show.

Example 12.23. Compute the integral � +∞

−∞

1

x6 + 1
dx (12.25)

using residue theory.

Solution. First note that the infinite limits of integration should actually be taken as a limit,

� +∞

−∞

1

x6 + 1
dx = lim

R→∞

� +R

−R

1

x6 + 1
dx.

Next, note that we can extend the function f(x) = 1/(x6 + 1) to a mappings of complex numbers that takes
complex values as inputs. If we let ΓR be the contour in the complex plane along the real axis from −R to
R, we see that the original real integral can be viewed as a complex contour integral

� +R

−R

1

x6 + 1
d =

�
ΓR

1

z6 + 1
dz.

To make use of residue theory, we can add an additional contour CR to be the semicircular contour of radius
R in the upper half-plane that connects +R to −R (see Figure 12.11). We can now compute the integral
around the resulting closed contour �

ΓR∪Cr

1

z6 + 1
dz (12.26)

using reside theory!
To compute (12.26) we must first locate the singularities of the integrand and compute the residues there.

The roots of the polynomial z6 + 1 are all of the sixth roots of −1. Since ejπ+jk2π = −1 for all integers
k ∈ Z, the sixth roots of −1 are of the form

(−1)1/6 = ejπ(1+2k)/6 = zk for k = 0, 1, 2, 3, 4, 5.

The roots z0, z1, . . . , z5 are equally spaced on the unit circle, with z0, z1, z2 located above the real axis and
z3, z4, z5 located below the real axis (see Figure 12.11). More explicitly, they are

z0 = ejπ/6, z1 = ejπ/2, z2 = ej5π/6, z3 = ej7π/6, z4 = ej3π/2, and z5 = ej11π/6.

If R is big enough, the closed contour ΓR ∪Cr contains each of the singularities as z0, z1, and z2. Note that
h′(z) = 6z5 for the function h(z) = z6 + 1, so we may use the rule in (12.21) to compute the residues at the
singularities as

Res

(
1

z6 + 1
, zk

)
=

1

6z5
k

.
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Re

Im

R−R

z0

z1

z2

z3

z4

z5

CR

ΓR

Figure 12.11: The singularities of 1/(z6 + 1) are indicated in red. The closed contour ΓR ∪ CR
used in Example 12.25 consisting of the segment ΓR of the real axis from −R to +R and the
semicircular arc CR of radius R going counterclockwise in the upper half-plane, and it encloses
the singularities at z0, z1, and z2.

Hence the residues of the integrand at z0, z1, and z2 are

z0 : Res

(
1

z6 + 1
, z = ejπ/6

)
=

1

6
(
ejπ/6

)5 =
1

6
e−j5π/6 =

1

6

(
−
√

3

2
− j 1

2

)

z1 : Res

(
1

z6 + 1
, z = ejπ/2

)
=

1

6
(
ejπ/2

)5 =
1

6
e−j5π/2 =

1

6
e−jπ/2 = −j 1

6

z2 : Res

(
1

z6 + 1
, z = ej5π/6

)
=

1

6
(
ej5π/6

)5 =
1

6
e−j25π/6 =

1

6
e−jπ/6 =

1

6

(√
3

2
− j 1

2

)
.

We may add up the residues to compute the contour integral

�
ΓR∪CR

1

z6 + 1
dz = 2πj

(
Res

(
1

z6 + 1
, ejπ/6

)
+ Res

(
1

z6 + 1
, ejπ/2

)
+ Res

(
1

z6 + 1
, ej5π/6

))
= 2πj

1

6

((
−
√

3

2
− j 1

2

)
− j +

(√
3

2
− j 1

2

))

=
2π

3
.

As long as R > 1, this integral does not depend on the value of R. Now, integrating along ΓR (the segment of
the real axis from −R to +R) gives us the same value as if we had integrated along the closed loop ΓR ∪CR
and subtracted the result from integrating along the semicircular contour CR. That is,

� +∞

−∞

1

x6 + 1
dx = lim

R→∞

� +R

−R

1

x6 + 1
dx = lim

R→+∞

�
ΓR

1

z6 + 1
dz

= lim
R→+∞

(�
ΓR∪CR

1

z6 + 1
dz −

�
CR

1

z6 + 1
dz

)
=

2π

3
− lim
R→∞

�
CR

1

z6 + 1
dz. (12.27)
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Therefore, to compute the original integral in (12.25), it remains to show that

lim
R→∞

�
CR

1

z6 + 1
dz = 0.

To do so, we will make use of the ML-bound. For points z on the semicircular contour CR we have |z| = R,
and thus

|z6 + 1| ≥ |z|6 − 1 = R6 − 1.

Therefore for any R > 1 we have ∣∣∣∣ 1

z6 + 1

∣∣∣∣ ≤ 1

R6 − 1

for all points z on CR. As the semicircular contour CR has length πR, we may use the ML-bound to obtain

lim
R→∞

∣∣∣∣�
CR

1

z6 + 1
dz

∣∣∣∣ ≤ lim
R→∞

πR

R6 − 1
= 0

from which it follows that the integral itself (without the modulus) must also go to zero

lim
R→∞

�
CR

1

z6 + 1
dz = 0. (12.28)

Putting together (12.27) and (12.28) we obtain the result that

� +∞

−∞

1

x6 + 1
dx =

2π

6
.

Remark 12.24. The method employed in Example 12.23 is fairly general, and may be applied to compute
many integrals of the form � ∞

−∞
f(x) dx (12.29)

provided that f has finitely many singularities in the upper half-plane and the limit

lim
R→∞

∣∣∣∣�
CR

f(z) dz

∣∣∣∣ = 0

holds for the function f on the semicircular contour CR. This will always occur provided the value of |f(z)|
shrinks at least as rapidly as 1/|z|2 as |z| → ∞. In this case, integrals of the form in (12.29) can be computed
using residue theory to find that

� ∞
−∞

f(x) dx = 2πj

N∑
k=1

Res(f, zk),

where we sum over each of the singularities z1, . . . , zN of f in the upper half-plane. Another example of this
method in action is shown below.

Example 12.25. Evaluate the integral

� +∞

−∞

1

x2 + 2x+ 2
dx

by applying the method used in Example 12.23 and explained in Remark 12.24.
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Re

Im

R−R

−1 + j

−1− j

CR

ΓR

Figure 12.12: The closed contour ΓR ∪CR used in Example 12.25 consisting of the segment ΓR
of the real axis from −R to +R and the semicircular arc CR of radius R going counterclockwise
in the upper half-plane. This closed contour encloses the singularity of 1/(z2 + 2z + 2) at
z = −1 + j.

Solution. As before, we must interpret the integral with infinite limits of integration as a limit and consider
the resulting real integral as a contour integral of the mapping f(z) = 1/(z2 + 2z + 1) along the contour on
the real axis from −R to R,

� +∞

−∞

1

x2 + 2x+ 2
dx = lim

R→∞

� R

−R

1

x2 + 2x+ 2
dx

= lim
R→∞

�
ΓR

1

z2 + 2z + 2
dz

= lim
R→∞

(�
ΓR∪CR

1

z2 + 2z + 2
dz −

�
CR

1

z2 + 2z + 2
dz

)
.

We may make use of residue theory to compute the contour integral along the closed loop consisting of the
straight line segment ΓR from −R to +R followed by the semicircular contour CR in the upper half-plane.
The integrand can be written as

f(z) =
1

z2 + 2z + 2
=

1

(z + 1− j)(z + 1 + j)

which has singularities at −1 + j and −1− j. Each of these singularities is a simple pole, but only the first
of those singularities is contained in ΓR ∪ CR. The residue of f at z = −1 + j is

Res(f,−1 + j) = lim
z→−1+j

(
(z + 1− j)f(z)

)
= lim
z→−1+j

(
1

z + 1 + j

)
=

1

j − 1 + 1 + j
=

1

2j

and thus, for values of R large enough, we have
�

ΓR∪CR

1

z2 + 2z + 2
dz = 2πj Res(f,−1 + j) = π.

To show that the integral along the semicircular contour CR vanishes in the limit as R→∞, note that

|z2 + 2z + 2| ≥ |z|2 − 2|z| − 2 = R2 − 2R− 2

and thus ∣∣∣∣ 1

z2 + 2z + 2

∣∣∣∣ ≤ 1

R2 − 2R− 2
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for points z on CR (i.e., |z| = R). As before, the length of the semicircular arc CR is πR, and we may use
the ML-bound ∣∣∣∣�

CR

1

z2 + 2z + 2
dz

∣∣∣∣ ≤ 1

R2 − 2R− 2
πR.

We therefore have that

lim
R→∞

∣∣∣∣�
CR

1

z2 + 2z + 2
dz

∣∣∣∣ ≤ lim
R→∞

πR

R2 − 2R− 2
= 0

and thus

lim
R→∞

�
CR

1

z2 + 2z + 2
dz = 0.

We may therefore conclude that � +∞

−∞

1

x2 + 2x+ 2
dx = π.

12.3.3 Fourier transforms

As our final application, we will show how residue theory can be used to compute Fourier and inverse Fourier
transforms. The Fourier transform F = F(f) of a function f is another function F that is defined as

F (ω) =

� +∞

−∞
f(x)e−jωx dx

for all values ω ∈ C where the integral converges. The inverse Fourier transform of a function F is another
function f = F−1(F ) given by

f(x) =
1

2π

� +∞

−∞
F (ω)ejωx dω

for all values x ∈ R where the integral converges. Using the same approach as in Section 12.3.2, we can use
residue theory to compute such transforms.

Example 12.26. Determine the inverse Fourier transform of the function

F (ω) =
1

ω2 + 1
.

Solution. Essentially, we are asked to compute the integral

f(x) =
1

2π

� +∞

−∞

ejωx

ω2 + 1
dω

for different values of x. The integral we must compute is technically a limit

� +∞

−∞

ejωx

ω2 + 1
dω = lim

R→+∞

� +R

−R

ejωx

ω2 + 1
dω,

which we may consider as a contour integral and use residue theory to compute it. We first note that the
integrand

ejωx

ω2 + 1
=

ejωx

(ω + j)(ω − j)
(12.30)

has first-order poles at ω = ±j with residues

Res

(
ejωx

(ω + j)(ω − j)
, ω = j

)
=

ej(j)x

((j) + j)
=
e−x

2j

and Res

(
ejωx

(ω + j)(ω − j)
, ω = −j

)
=

ej(−j)x

((−j)− j)
= −e

x

2j
.
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Next, note that we may expand ω in Cartesian coordinates as ω = u+ jv and find that

ejωx = ej(u+jv)x = e−vxejux.

In order to use the method of ML-estimates to bound the integral of (12.30), we must find an upper bound
of ∣∣∣∣ ejωxω2 + 1

∣∣∣∣ =

∣∣∣∣e− Im(ω)xej Re(ω)x

ω2 + 1

∣∣∣∣ =
∣∣∣ej Re(ω)x

∣∣∣︸ ︷︷ ︸
=1

∣∣∣∣e− Im(ω)x

ω2 + 1

∣∣∣∣ ≤ e− Im(ω)x

R2 − 1

for points ω = u + vj on the circle |z| = R (as long as R > 1). To do this, however, we must consider the
following two cases separately: (i) the case where x > 0, and (ii) the case where x < 0.

(i) If x > 0, we may use the the same strategy as in the examples in Section 12.3.2, and consider the
closed contour integral along the real axis from from −R to +R followed by the semicircular contour
CR of radius R in the upper half-plane.

Re

Im

R−R

+j

−j

CR

Figure 12.13: The closed contour ΓR ∪ CR for computing the inverse Fourier transform in
case (i) (with x > 0) of Example 12.26, which is positively oriented and encloses the singularity
at ω = j.

Points ω = Re(ω) + j Im(ω) in the upper half-plane have positive imaginary part Im(ω) ≥ 0. Since we
have assume that x > 0 as well, note that − Im(ω)x ≤ 0 and thus e− Im(ω)x ≤ 1. Hence,

e− Im(ω)x

R2 − 1
≤ 1

R2 − 1

and thus ∣∣∣∣ ejωxω2 + 1

∣∣∣∣ =

∣∣∣∣ej Re(ω)xe− Im(ω)x

ω2 + 1

∣∣∣∣ ≤ 1

R2 − 1
(12.31)

for all ω on the semicircular contour of radius R in the upper half-plane. Therefore

lim
R→+∞

∣∣∣∣�
CR

ejωx

ω2 + 1
dω

∣∣∣∣ ≤ lim
R→+∞

πR

R2 − 1
= 0 and thus lim

R→+∞

�
CR

ejωx

ω2 + 1
dω = 0.

Since the closed contour that follows the part of the real line from−R to +R followed by the semicircular
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arc in the upper half-plane goes counterclockwise around the singularity at ω = j, we have

f(x) =
1

2π
lim

R→+∞

� +R

−R

ejωx

ω2 + 1
dω =

1

2π
2πj Res

(
ejωx

(ω + j)(ω − j)
, ω = j

)
︸ ︷︷ ︸

= e−x

2j

− 1

2π
lim

R→+∞

�
CR

ejωx

ω2 + 1
dω︸ ︷︷ ︸

=0

(12.32)

= j

(
e−x

2j

)
=
e−x

2
(12.33)

for x > 0.

(ii) In the case when x < 0, we have that − Im(ω)x ≤ 0 for points ω = Re(ω) + j Im(ω) in the upper
half-plane (with Im(ω) ≥ 0), and we can no longer use the bound in (12.31). Indeed, in the limit as
R → ∞, the imaginary parts of ω on the circle |ω| = R can take on larger and larger positive values,
and thus − Im(ω)x > 0 can take on larger and larger positive values since x is negative. However,
we can instead use the semicircular contour of radius R in the lower half-plane (see Figure 12.14) to
create a different closed contour than the one used in case (i).

Re

Im

R−R +j

−j

CR

Figure 12.14: The closed contour ΓR ∪ CR for computing the inverse Fourier transform in
case (i) (with x > 0) of Example 12.26, which is negatively oriented and encloses the singularity
at ω = −j.

Now our closed contour consists of the segment of the real axis from −R to R follows by the semicircular
arc CR of radius R in the lower half-plane (and going clockwise). Points ω on CR in the lower half-plane
have negative imaginary component Im(ω) ≤ 0 and thus − Im(ω)x ≤ 0 (since we have assumed in this
case that x is negative). Hence e− Im(ω)x ≤ 1 such that∣∣∣∣ ejωxω2 + 1

∣∣∣∣ =

∣∣∣∣ej Re(ω)xe− Im(ω)x

ω2 + 1

∣∣∣∣ ≤ 1

R2 − 1
(12.34)

for all points ω on the semicircular contour CR in the lower half-plane. As before, we now have that

lim
R→∞

�
CR

ejωx

ω2 + 1
dω = 0.

However, as the closed contour in Figure 12.14 now is negatively oriented instead of positively oriented
(i.e., goes clockwise around the singularity instead of counterclockwise), the value of the closed contour
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integral around the singularity will be equal to the negative of 2πj times the residue. Since the
singularity enclosed is now at ω = −j, this is

f(x) =
1

2π
lim

R→+∞

� +R

−R

ejωx

ω2 + 1
dω =

1

2π

([
−2πj Res

(
ejωx

(ω + j)(ω − j)
, ω = −j

)
︸ ︷︷ ︸

=− ex

2j

]
− lim
R→+∞

�
CR

ejωx

ω2 + 1
dω︸ ︷︷ ︸

=0

)

= j

(
ex

2j

)
=
ex

2
(12.35)

for x < 0.

Putting together the results of (12.33) and (12.35), we find that

f(x) =


e−x

2
, x > 0

ex

2
, x < 0,

or equivalently, f(x) =
e−|x|

2
.
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