## ECE 206 Fall 2019 Practice Problems Week 2

- 1. Let  $f : \mathbb{R}^2 \to \mathbb{R}$  be the scalar field defined by f(x, y) = 2xy. Compute the path integral  $\int_{\Gamma} f \, ds$  for  $\Gamma$  to be the following paths.
  - (a) Where  $\Gamma$  is the curve traced out by the path  $\gamma : [0,4] \to \mathbb{R}^2$  defined as  $\gamma(t) = (t, t+1)$ .
  - (b) Where  $\Gamma$  is the square whose vertices are (0,0), (0,1), (1,0), and (1,1).



- 2. Suppose that a wire has the shape of a helix of radius R and height h. Its shape is the curve determined by the path defined by  $\gamma(t) = (R\cos t, R\sin t, \frac{h}{2\pi}t)$  for  $0 \le t \le 2\pi$ . Suppose that the linear density of the wire varies linearly with height, so that it can be described by the function  $\rho(x, y, z) = \rho_0 \left(1 + (k-1)\frac{z}{h}\right)$ , where k and  $\rho_0$  are constants. Find the mass of the wire.
- 3. For the following vector fields  $F : \mathbb{R}^2 \to \mathbb{R}^2$ , find the equation for the flow lines and make a sketch of the field and flow lines.
  - (a)  $F(x, y) = (x, x^2)$ .
  - (b) F(x, y) = (-y, x).
  - (c) F(x, y) = (-x, y).
- 4. A static, electrically charged particle located at the origin with positive charge q produces the electric field  $E : \mathbb{R}^3 \to \mathbb{R}^3$  defined as

$$\boldsymbol{E}(\boldsymbol{r}) = kq\left(\frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3}\right)$$

where  $\mathbf{r} = (x, y, z)$ ,  $r = ||\mathbf{r}||$ , and k is a constant. Find the flow lines of  $\mathbf{E}$  and make a sketch of the field and flow lines.

- 5. Let a, b > 0 be positive constants. For the field  $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$  defined in 3(b), compute the line integral of  $\mathbf{F}$  along the ellipse  $\{(x, y) \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\}$  oriented counterclockwise.
- 6. Let  $\Gamma$  be the curve that is the intersection of the cylinder  $y^2 + x^2 = 1$  with the plane z = 3x, oriented in the counterclockwise direction as viewed from the positive z-axis. Evaluate  $\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$ , where  $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$  is the vector field given by  $\mathbf{F}(x, y, z) = (yz, -xz, y)$ .
- 7. A force field  $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$  is given by  $\mathbf{F}(x, y, z) = (x, y, z)$ . Calculate the work done by  $\mathbf{F}$  in moving a particle along the parabola z = 0,  $y = x^2$  from x = -1 to x = 2.

- 8. A force field  $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$  is given by  $\mathbf{F}(x, y) = (x^3, y, z)$ . Calculate the work done by  $\mathbf{F}$  on a particle moving along the path  $\gamma(t) = (0, a \cos t, a \sin t)$  for  $t \in [0, 2\pi]$ , where a > 0 is a constant. Explain the result geometrically.
- 9. Test whether the following fields are gradient fields. If they are, find the corresponding scalar potential functions.
  - (a)  $F(x,y) = (3x^2y, x^3)$
  - (b)  $F(x,y) = (2xe^y + y)\hat{\imath} + (x^2e^y + x 2y)\hat{\jmath}$
  - (c)  $F(x,y) = (6 2xy + y^3)\hat{\imath} + (x^2 8y + 3xy^2)\hat{\jmath}$
  - (d)  $F(x, y, z) = (2xyz^3 + ye^{xy}, x^2z^3 + xe^{xy}, 3x^2yz^2 + \cos z).$
- 10. A force field is given by F(x, y) = (y, x). Compute the work done by F to move a particle along the path  $\gamma(t) = (t^9, \sin^9(\frac{\pi}{2}t))$  for  $0 \le t \le 1$ . (Hint: the line integral is messy...)
- 11. Consider the vector field  $\mathbf{F} = (y^2 \cos x + z^3, 2y \sin x 4, 3xz^2 + z)$ . Compute the line integral  $\int_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$ , where  $\Gamma$  is any curve in  $\mathbb{R}^3$  from (0, 1, -1) to  $(\frac{\pi}{2}, -1, 2)$ .
- 12. The electric field from a point charge at the origin with charge q is  $E(\mathbf{r}) = \frac{kq}{r^3}\mathbf{r}$ , where  $\mathbf{r} = (x, y, z)$  and  $r = \|\mathbf{r}\| = \sqrt{x^2 + y^2 + z^2}$ , and k is the electrostatic constant. The Coulomb force that is experienced by another point charge with charge Q at any point  $\mathbf{r}$  is  $\mathbf{F}(\mathbf{r}) = Q\mathbf{E}(\mathbf{r})$ .
  - (a) Show that the Coulomb force field F is conservative by finding a scalar potential function  $\Psi$  such that  $F = \nabla \Psi$ .
  - (b) Find an expression for the work done by the field F to move the charge Q from the point  $r_1 = (x_1, y_1, z_1)$  to the point  $r_2 = (x_2, y_2, z_2)$ . (You may let  $r_1 = \sqrt{x_1^2 + y_1^2 + z_1^2}$  and  $r_2 = \sqrt{x_2^2 + y_2^2 + z_2^2}$  to simplify the final result.)
  - (c) When  $r_1$  and  $r_2$  are the same distance from the origin, what is the physical interpretation of the answer in part (b)?
- 13. Suppose  $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$  is a gradient field. Then there exists a scalar potential  $\psi : \mathbb{R}^3 \to \mathbb{R}$  such that  $\mathbf{F}(\mathbf{r}) = \nabla \psi(\mathbf{r})$ , where  $\mathbf{r} = (x, y, z)$ . In physics, the *potential energy* of an object is defined as  $P(\mathbf{r}) = -\psi(\mathbf{r})$ , so that  $\mathbf{F} = -\nabla P$ . Recall that a *flow line* of the field  $\mathbf{F}$  is a path  $\boldsymbol{\gamma}$  such that  $\frac{d}{dt}\boldsymbol{\gamma}(t) = \mathbf{F}(\boldsymbol{\gamma}(t))$  for each t.
  - (a) Let  $\gamma(t)$  be a flow line of the vector field  $\mathbf{F}$ . Show that  $P(\gamma(t))$  is a decreasing function of t. (This implies that the potential energy of a particle following a flow line decreases.)
  - (b) Continuing with the setup from above, if the potential energy of the particle decreases, it must go somewhere else. Show that it goes to kinetic energy. In fact, show that a gradient field conserves energy by showing that "potential energy + kinetic energy = constant" for all time.