## ECE 206 Fall 2019

## Practice Problems Week 5

- 1. Use a coordinate transformation to evaluate the following integrals. Make sure to sketch the region of integration in each case.
  - (a) The integral  $\iint_D (x+y) dx dy$ , where D is the trapezoidal region with vertices given by (0,0), (1,1), (-4,3), and (-5,2).

(Hint: use the coordinate transformations x(u,v) = -5u + v and y(u,v) = 2u + v.)

- (b) Find the volume of the solid under the paraboloid defined by  $z = 2 x^2 y^2$ , above the xy-plane, and inside the cylinder defined by  $x^2 + y^2 = 1$ .
- (c) The integral  $\iint_D x^2 dx dy$ , where D is the region inside the ellipse  $10x^2 + 6xy + y^2 = 2$ . Use the coordinate transformations  $x(u,v) = \sqrt{2}u$  and  $y(u,v) = \sqrt{2}(v-3u)$  to and verify that this transforms the unit circle in the uv-plane to the region D in the xy-plane. Then use polar coordinates compute the resulting integral.)
- 2. Let  $\Gamma$  be the closed curve consisting of the semi-circle  $x^2 + y^2 = 9$  (with  $y \ge 0$ ) and the x-axis from -3 to 3, oriented in the clockwise direction, and let the vector field  $\mathbf{F}$  be defined by  $\mathbf{F} = (x^2y, -xy^2)$ . Compute  $\oint_{\Gamma} \mathbf{F} \cdot d\mathbf{r}$ . (Hint: Use Green's theorem, then an appropriate change of coordinates.)
- 3. Suppose a vector field  $\boldsymbol{v}:\mathbb{R}^3\to\mathbb{R}^3$  represents the velocity of the flow of some fluid moving through space with mass density given by the scalar field  $\rho:\mathbb{R}^3\to\mathbb{R}$  (in units of kg per meters squared). The total mass flux of the fluid flow is the vector field  $\boldsymbol{F}(\boldsymbol{r})=\rho(\boldsymbol{r})\boldsymbol{v}(\boldsymbol{r})$ , and the total mass flux through a surface  $\Sigma$  is the surface integral  $\iint_{\Sigma}\rho\boldsymbol{v}\cdot d\boldsymbol{A}$ .

Let  $b, \ell > 0$  be positive constants and consider the surface  $\Sigma$  that is the part of the cylinder defined by  $\Sigma = \{(x, y, z) : x^2 + z^2 = b^2 \text{ and } -\ell \leq y \leq \ell\}$ . Calculate the total mass flux of the fluid flow with constant density  $\rho(\mathbf{r}) = \rho_0$  through the cylinder  $\Sigma$  for the following flow velocities, where k is a constant (with units of s<sup>-1</sup>).

- (a)  $\mathbf{v} = (0, 0, kz)$
- (b)  $\mathbf{v} = (kx, ky, kz)$
- 4. If a scalar field  $T: \mathbb{R}^3 \to \mathbb{R}$  represents a temperature distribution, the *heat flux density* (the flow of energy per unit of area per unit of time) corresponding to this temperature distribution is the vector field  $\mathbf{F} = -k\nabla T$ , where k is the thermal conductivity of the material (in units of watts per meter-kelvin in SI units). The *total heat flux* through a surface is the integral of the heat flux density across that surface.

Suppose  $T(x, y, z) = x^2 + y^2 + z^2$  represents the temperature in a region of space around the origin of the coordinate system. Compute the total heat flux across the unit sphere.

5. Let  $F(x, y, z) = (xz, yz, x^2 + y^2)$ . Find the outward flux of F across the boundary surface of the solid given by  $x^2 + y^2 \le z \le 1$ . Hint: there are two separate parts of the surface.

1

6. Find the divergence and curl of the following vector fields:

- (a)  $\mathbf{F}(x, y, z) = (x 2z)\,\hat{\mathbf{i}} + (x + y + z)\,\hat{\mathbf{j}} + (x 2y)\,\hat{\mathbf{k}}$
- (b)  $\mathbf{F}(x, y, z) = e^x \sin y \,\hat{\mathbf{i}} + e^x \cos y \,\hat{\mathbf{j}} + z \,\hat{\mathbf{k}}$
- 7. In this problem you will prove two important results.
  - (a) Show that if  $f:\Omega\to\mathbb{R}$  has continuous second-order partial derivatives on  $\Omega\subseteq\mathbb{R}^3$ , then

$$\nabla \times (\nabla f) = \mathbf{0}.$$

(b) Show that if  $\mathbf{F}(x,y,z) = (P(x,y,z),Q(x,y,z),R(x,y,z))$  and P,Q,R have continuous second-order partial derivatives, then

$$\nabla \cdot (\nabla \times \mathbf{F}) = 0.$$

- 8. Let  $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$  be the vector field defined as  $\mathbf{F}(x,y,z) = (xy,yz,zx)$ . Let  $\Gamma$  be the curve defined as the triangle with vertices (1,0,0), (0,1,0), and (0,0,1), oriented counterclockwise as viewed from above. Use Stokes' Theorem to compute the circulation of the field  $\mathbf{F}$  around the curve  $\Gamma$ . (Hint: on which surface does the curve  $\Gamma$  lie?)
- 9. Let  $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$  be the vector field defined as  $\mathbf{F} = (y-z, -x-z, x+y)$  for all  $(x,y,z) \in \mathbb{R}^3$ 
  - (a) Use Stokes' Theorem to evaluate

$$\iint_{\Sigma} (\nabla \times \boldsymbol{F}) \cdot \hat{\boldsymbol{n}} \, dA,$$

where the surface  $\Sigma$  is the portion of the paraboloid  $z=9-x^2-y^2$  with  $z\geq 0$  and  $\hat{\boldsymbol{n}}$  is the upward-pointing unit normal.

(b) Let  $\Sigma$  be the disk of radius 3 on the xy-plane centered at the origin, with unit normal vector  $\hat{n}$  pointing in the positive z-direction. Calculate

$$\iint_{\Sigma} (\nabla \times \boldsymbol{F}) \cdot \hat{\boldsymbol{n}} \, dA$$

from the definition of the surface integral. (Note that the surface can be given explicity as  $\Sigma = \{(x, y, z) : x^2 + y^2 \le 9 \text{ and } z = 0\}$ ).

(c) What is the connection between (a) and (b)?