
ECE 206 Fall 2019

Practice Problems Week 5

Solutions

1. Use a coordinate transformation to evaluate the following integrals. Make sure to sketch the region of
integration in each case.

(a) The integral

∫∫
D

(x + y) dx dy, where D is the trapezoidal region with vertices given by (0, 0),

(1, 1), (−4, 3), and (−5, 2).
(Hint: use the coordinate transformations x(u, v) = −5u+ v and y(u, v) = 2u+ v.)

Solution. The region D can be visualized as in the following figure:
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While it would be possible to compute the integral straightforwardly, a simpler way to compute
it would be to make the suggested change of coordinates.

Note that every point in D can be written as a linear combination(
x
y

)
= u

(
−5
2

)
+ v

(
1
1

)
for some values u ∈ [0, 1] and v ∈ [0, 1]. (Indeed, the vectors (−5, 2) and (1, 1) determine the sides
of the parallelogram D.) The Jacobian of this transformation is

∂(x, y)

∂(u, v)
=

∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣ −5 1
2 1

∣∣∣∣ = (−5)(1)− (2)(1) = −7.

The desired integral can therefore be written as∫∫
D

(x+ y) dx dy =

∫ 1

0

∫ 1

0

(
(−5u+ v) + (2u+ v)

) ∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv
= 7

∫ 1

0

∫ 1

0

(2v − 3u) du dv

= 7

∫ 1

0

[
2uv − 3

2
u2

]1

u=0

dv

= 7

∫ 1

0

(
2v − 3

2

)
dv

= 7

[
v2 − 3

2
v

]1

v=0

= 7

(
1− 3

2

)
=

7

2
.
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(b) Find the volume of the solid under the paraboloid defined by z = 2−x2−y2, above the xy-plane,
and inside the cylinder defined by x2 + y2 = 1.

Solution. The solid lies entirely above the circle x2 + y2 = 1 in the xy-plane, which we call D.
The solid is the region above D between the plane z = 0 and the paraboloid z = 2−x2− y2. The
volume is therefore given by

V =

∫∫
D

(
2− x2 − y2

)
dx dy

Use polar coordinates, the integral becomes

V =

∫ 2π

0

∫ 1

0

(2− r2) r dr dθ =

∫ 2π

0

[
r2 − r4

4

]∣∣∣1
r=0

dθ =

(
1− 1

4

)
(2π) =

3π

2
.

(c) The integral

∫∫
D

x2 dx dy, where D is the region inside the ellipse 10x2 + 6xy + y2 = 2.

Use the coordinate transformations x(u, v) =
√

2u and y(u, v) =
√

2(v − 3u) to and verify that
this transforms the unit circle in the uv-plane to the region D in the xy-plane. Then use polar
coordinates compute the resulting integral.)

Solution. The region D may be visualized as shown in the following diagram.
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We now need to find the Φ−1(D) corresponding to the parametrization defined in the problem as
Φ(u, v) = (

√
2u,
√

2(v − 3u)).

Note: We must first discuss where this parametrization comes from. Plugging in the parameter-
ization x(u, v) =

√
2u and y(u, v) =

√
2(v − 3u) into the equation 10x2 + 6xy + y2 = 2 defining

the ellipse, we find

10x(u, v)2 + 6x(u, v)y(u, v) + y(u, v)2 = 10(
√

2u)2 + 6(
√

2u)(
√

2(v − 3u)) + (
√

2(v − 3u))2

= 20u2 + 12(uv − 3u2) + 2(v2 − 6uv + 9u2)

= 2(u2 + v2)

ore equivalently u2 + v2 = 1 which is the circle in the uv-plane. Hence Φ maps the circle in the
uv-plane to te ellipse D in the xy-plane, as desired.

The Jacobian of this transformation is

∂(x, y)

∂(u, v)
=

∣∣∣∣ √2 −3
√

2

0
√

2

∣∣∣∣ = 2.
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We can therefore write our original integral in the uv-plane as follows∫∫
D

x2 dA =

∫∫
Φ−1(D)

(√
2u
)2

(2) du dv = 4

∫∫
Φ−1(D)

u2 du dv,

where Φ−1(D) is the unit circle in the uv-plane.

The final step is to transform to polar coordinates, by letting u = r cos θ and v = r sin θ. This
yields

4

∫∫
Φ−1(D)

u2 du dv = 4

∫ 2π

0

∫ 1

0

(r cos θ)2 (r) dr dθ

= 4

∫ 2π

0

∫ 1

0

r3 cos2 θ dr dθ

= 4

∫ 2π

0

(
1 + cos(2θ)

2

)
r4

4

∣∣∣∣1
r=0

dθ

=
1

2

∫ 2π

0

(1 + cos(2θ)) dθ

=
1

2

(
θ +

sin(2θ)

2

)∣∣∣∣2π
θ=0

= π.

2. Let Γ be the closed curve consisting of the semi-circle x2 + y2 = 9 (with y ≥ 0) and the x-axis from
−3 to 3, oriented in the clockwise direction, and let the vector field F be defined by F = (x2y,−xy2).

Compute

∮
Γ

F · dr. (Hint: Use Green’s theorem, then an appropriate change of coordinates.)

Solution. Notice that the curve is oriented clockwise, so we must put a negative sign when using
Green’s theorem to find that∮

Γ

F · dr = −
∮
−Γ

F · dr

= −
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dx dy = −

∫∫
D

(−y2 − x2) dx dy =

∫∫
D

(x2 + y2) dx dy.

Switching to polar coordinates, the value of the double integral can be evaluated as∫∫
D

(x2 + y2) dx dy =

∫ π

0

∫ 3

0

(r2) r dr dθ = π
r4

4

∣∣∣∣3
r=0

=
81π

4
.

3. Suppose a vector field v : R3 → R3 represents the velocity of the flow of some fluid moving through
space with mass density given by the scalar field ρ : R3 → R (in units of kg per meters squared). The
total mass flux of the fluid flow is the vector field F (r) = ρ(r)v(r), and the total mass flux through a

surface Σ is the surface integral

∫∫
Σ

ρv · dA.

Let b, ` > 0 be positive constants and consider the surface Σ that is the part of the cylinder defined
by Σ = {(x, y, z) : x2 + z2 = b2 and − ` ≤ y ≤ `}. Calculate the total mass flux of the fluid flow
with constant density ρ(r) = ρ0 through the cylinder Σ for the following flow velocities, where k is a
constant (with units of s−1).

(a) v = (0, 0, kz)
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Solution. The mass flux vector is F = (0, 0, ρ0kz). The cylinder can be parameterized by
Φ(u, v) = (b cos v, u, b sin v), where −` ≤ u ≤ ` and 0 ≤ v ≤ 2π. We want to compute∫∫

Σ

F · dA =

∫∫
Duv

F (Φ(u, v)) ·
(
∂Φ

∂u
× ∂Φ

∂v

)
du dv

where

∂Φ

∂u
× ∂Φ

∂v
=

∣∣∣∣∣∣
ı̂ ̂ k̂
0 1 0

−b sin v 0 b cos v

∣∣∣∣∣∣
= (b cos v)̂ı+ (b sin v)k̂.

Notice that the normal is pointing outward from the surface of the cylinder. Note that
F (Φ(u, v)) = (0, 0, ρ0kb sin v) and thus

F (Φ(u, v)) ·
(
∂Φ

∂v
× ∂Φ

∂u

)
= ρ0kb

2 sin2 v.

The surface integral can therefore be computed as∫∫
Σ

F · dA = ρ0kb
2

∫ `

−`

∫ 2π

0

sin2 v dv du

= ρ0kb
2

(∫ `

−`
du

)(∫ 2π

0

1− cos(2v)

2
dv

)
= 2πρ0kb

2`.

Note that our answer has dimensions of mass per unit time, as expected.

(b) v = (kx, ky, kz)

Solution. Now, F (Φ(u, v)) = ρ0k(b cos v, u, b sin v). Then

F (Φ(u, v)) ·
(
∂Φ

∂u
× ∂Φ

∂v

)
= ρ0kb

2(cos2 v + sin2 v) = ρ0kb
2

The flux can therefore be computed as∫∫
Duv

F (Φ(u, v)) ·
(
∂Φ

∂u
× ∂Φ

∂v

)
du dv = ρ0kb

2

∫ `

−`

∫ 2π

0

dv du = 4πρ0kb
2`.

4. If a scalar field T : R3 → R represents a temperature distribution, the heat flux density (the flow of
energy per unit of area per unit of time) corresponding to this temperature distribution is the vector
field F = −k∇T , where k is the thermal conductivity of the material (in units of watts per meter-kelvin
in SI units). The total heat flux through a surface is the integral of the heat flux density across that
surface.

Suppose T (x, y, z) = x2 + y2 + z2 represents the temperature in a region of space around the origin of
the coordinate system. Compute the total heat flux across the unit sphere.
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Solution. The heat flux density vector is J = −k∇T = −2k(x, y, z). We can parameterize the
surface of the sphere Σ by Φ(u, v) = (sinu cos v, sinu sin v, cosu) for u ∈ [0, π] and v ∈ [0, 2π].
The heat flux is

J =

∫∫
Σ

J · dA =

∫∫
Σ

J · n̂ dA =

∫∫
Duv

J(Φ(u, v)) ·
(
∂Φ

∂u
× ∂Φ

∂v

)
du dv

where the partial derivatives of Φ are computed as

∂Φ

∂u
= (cosu cos v, cosu sin v,− sinu) and

∂Φ

∂v
= (− sinu sin v, sinu cos v, 0)

such that the normal vector is given by

∂Φ

∂u
× ∂Φ

∂v
=

∣∣∣∣∣∣
ı̂ ̂ k̂

cosu cos v cosu sin v − sinu
− sinu sin v sinu cos v 0

∣∣∣∣∣∣
= (sin2 u cos v, sin2 u sin v, sinu cosu).

We have that

J(Φ(u, v)) ·
(
∂Φ

∂u
× ∂Φ

∂v

)
= −2k(sinu cos v, sinu sin v, cosu) · (sin2 u cos v, sin2 u sin v, sinu cosu)

= −2k sinu (sin2 u cos2 v + sin2 u sin2 v + cos2 u)

= −2k sinu (sin2 u (cos2 v + sin2 v) + cos2 u)

= −2k sinu (sin2 u+ cos2 u)

= −2k sinu.

The heat flux across the unit sphere S is therefore computed as

J =

∫∫
Σ

J · dA = −2k

∫ π

0

∫ 2π

0

sinu dv du = −2k(2π)(− cosu)

∣∣∣∣π
u=0

= −8kπ.

(Note on the sign: since the temperature increases radially outwards, and heat flows from hot
to cold, we expect that heat will be transferred across the surface in the direction of −n̂, and
thus that the heat flux will be negative.)

5. Let F (x, y, z) = (xz, yz, x2 + y2). Find the outward flux of F across the boundary surface of the solid
given by x2 + y2 ≤ z ≤ 1. Hint: there are two separate parts of the surface.

Solution. The surface consists of the paraboloid z = x2 + y2 (call it Σ1) as well as the top of
the solid region, which is the disk x2 + y2 = 1 in the z = 1 plane (Σ2).
Let’s start with the disk Σ2. This can be parameterized by Φ2(u, v) = (u cos v, u sin v, 1) for
u ∈ [0, 1] and v ∈ [0, 2π]. The partial derivatives of Φ are given by

∂Φ2

∂u
= (cos v, sin v, 0) and

∂Φ2

∂v
= (−u sin v, u cos v, 0)

such that the corresponding normal vector to the surface at any point on the surface is equal to

∂Φ2

∂u
× ∂Φ2

∂v
= (0, 0, u).
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The field at each point on the parameterized surface is given by F (Φ2(u, v)) =
(u cos v, u sin v, u2). The flux through Σ2 is therefore computed as∫∫

Σ2

F · dA =

∫ 2π

0

∫ 1

0

(u cos v, u sin v, u2) · (0, 0, u) du dv =

∫ 2π

0

dv

∫ 1

0

u3 du =
π

2
.

The paraboloid Σ1 can be parameterized by Φ1(u, v) = (u cos v, u sin v, u2) for u ∈ [0, 1] and
v ∈ [0, 2π]. Then

∂Φ1

∂u
= (cos v, sin v, 2u),

∂Φ1

∂v
= (−u sin v, u cos v, 0)

and thus
∂Φ1

∂u
× ∂Φ1

∂v
= (−2u2 cos v,−2u2 sin v, u).

Note here that the normal points upward (the z-coordinate is non-negative), which is incorrect
since that is the inward normal. So we simply switch u and v, or take a negative sign from
the cross-product, to find the correct normal vector. The field at each point on Σ1 is given by
F (Φ1(u, v)) = (u3 cos v, u3 sin v, u2). The flux through Σ1 is therefore computed as∫∫

Σ1

F · dA =

∫ 2π

0

∫ 1

0

(u3 cos v, u3 sin v, u2) · (2u2 cos v, 2u2 sin v,−u) du dv

=

∫ 2π

0

dv

∫ 1

0

2u5 − u3 du = 2π

(
1

3
− 1

4

)
=
π

6

Thus, the total flux through the boundary is∫∫
Σ1

F · dA+

∫∫
Σ2

F · dA =
π

2
+
π

6
=

2π

3

6. Find the divergence and curl of the following vector fields:

(a) F (x, y, z) = (x− 2z) ı̂+ (x+ y + z) ̂+ (x− 2y) k̂

Solution. The divergence is computed as

∇ · F =
∂

∂x
(x− 2z) +

∂

∂y
(x+ y + z) +

∂

∂z
(x− 2y) = 1 + 1 + 0 = 2

while the curl is given by

∇× F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

x− 2z x+ y + z x− 2y

∣∣∣∣∣∣
=

(
∂

∂y
(x− 2y)− ∂

∂z
(x+ y + z)

)
ı̂+

(
∂

∂z
(x− 2z)− ∂

∂x
(x− 2y)

)
̂

+

(
∂

∂x
(x+ y + z)− ∂

∂y
(x− 2z)

)
k̂

= (−2− 1)̂ı+ (−2− 1)̂+ (1− 0)k̂

= −3ı̂− 3̂+ k̂.
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(b) F (x, y, z) = ex sin y ı̂+ ex cos y ̂+ z k̂

Solution. The divergence is computed as

∇ · F =
∂

∂x
(ex sin y) +

∂

∂y
(ex cos y) +

∂

∂z
(z) = ex sin y − ex sin y + 1 = 1

while the curl is given by

∇× F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

ex sin y ex cos y z

∣∣∣∣∣∣
=

(
∂

∂y
(z)− ∂

∂z
(ex cos y)

)
ı̂+

(
∂

∂z
(ex sin y)− ∂

∂x
(z)

)
̂

+

(
∂

∂x
(ex cos y)− ∂

∂y
(ex sin y)

)
k̂

= 0ı̂+ 0̂+ (ex cos y − ex cos y)k̂

= 0.

7. In this problem you will prove two important results.

(a) Show that if f : Ω→ R has continuous second-order partial derivatives on Ω ⊆ R3, then

∇× (∇f) = 0.

Solution. Note that ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
. The curl of the gradient field is therefore

computed as

∇× (∇f) =

∣∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣
= (fyz − fzy) ı̂+ (fzx − fxz) ̂+ (fxy − fyx) k̂

= 0

by the equality of mixed partial derivatives, which is guaranteed by the continuity of second
order partials of f . This shows that any conservative vector field is irrotational. That is,
if F = ∇Ψ for some scalar field Ψ, it holds that ∇× F = 0.

(b) Show that if F (x, y, z) = (P (x, y, z), Q(x, y, z), R(x, y, z)) and P,Q,R have continuous second-
order partial derivatives, then

∇ · (∇× F ) = 0.
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Solution. We first compute the curl of F as

∇× F =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
=

(
∂R

∂y
− ∂Q

∂z

)
ı̂+

(
∂P

∂z
− ∂R

∂x

)
̂+

(
∂Q

∂x
− ∂P

∂y

)
ı̂.

The divergence of the curl is computed as

∇ · (∇× F ) =
∂

∂x

(
∂R

∂y
− ∂Q

∂z

)
+

∂

∂y

(
∂P

∂z
− ∂R

∂x

)
+

∂

∂z

(
∂Q

∂x
− ∂P

∂y

)
= Rxy −Qxz + Pyz −Ryx +Qzx − Pzy
= 0,

where we make use of the equality of mixed partial derivatives (e.g. Rxy = Ryx). This
shows that any vector field which is the curl of some other vector field is solenoidal. That
is, if A = ∇×F , then ∇ ·A = 0. In this case we call F a vector potential for A. It turns
out that this implication goes the other way as well, as the following theorem states.

Theorem. If ∇ ·A = 0, then there exists a vector field F such that A = ∇× F .

8. Let F : R3 → R3 be the vector field defined as F (x, y, z) = (xy, yz, zx). Let Γ be the curve defined
as the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1), oriented counterclockwise as viewed from
above. Use Stokes’ Theorem to compute the circulation of the field F around the curve Γ. (Hint: on
which surface does the curve Γ lie?)

Solution. The curve lies on the plane passing through those same points, which turns out
to be the plane x + y + z = 1. We can parameterize the plane using the parameterization
Φ(u, v) = (u, v, 1 − u − v). Let Σ denote the surface that is the region contained inside the
triangular curve Γ on this plane. To find the bounds on the parameter varialbes u and v that
define the surface Σ, we see that it corresponds to the region in the xy-plane that lies below Σ,
which is a triangle. Hence the surface Σ can be parameterized by Φ with the domain defined
by

0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u.
By Stokes’ Theorem, it holds that∮

Γ

F · dr =

∫∫
Σ

(∇× F ) · n̂ dA

=

∫∫
Duv

(∇× F )(Φ(u, v)) ·
(
∂Φ

∂u
× ∂Φ

∂v

)
du dv,

where Duv is the region in the parameter space that parameterizes Σ. Note that the curl of F
is computed as∇ × F = (−y,−z,−x), and the term (∇ × F )(Φ(u, v)) means we evaluate the
curl expression at the parameterized point on the surface, which yields

(∇× F )(Φ(u, v)) = (−v, u+ v − 1,−u).

To compute the normal vector, we have that

∂Φ

∂u
= (1, 0,−1),

∂Φ

∂v
= (0, 1,−1) and thus

∂Φ

∂u
× ∂Φ

∂v
= (1, 1, 1).
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The integrand is therefore given by

(∇× F )(Φ(u, v)) ·
(
∂Φ

∂u
× ∂Φ

∂v

)
= −v + (u+ v − 1)− u = −1

The circulation is therefore computed as∫ 1

0

∫ 1−u

0

(−1) dv du = −
∫ 1

0

(1− u) du = −
(
u− u2

2

) ∣∣∣∣1
u=0

= −1

2
.

Solution. (Alternate solution) From the equation of the plane, we know a (unnormalized)
normal vector is n = (1, 1, 1), so that the unit normal is given by

n̂ =
1√
3

(1, 1, 1).

We may now evaluate (∇× F ) · n̂ directly as

(∇× F ) · n̂ = (−y,−z,−x) · 1√
3

(1, 1, 1) = − 1√
3

(x+ y + z) = − 1√
3
,

since we are on the plane x+ y + z = 1. We therefore have that∮
C

F · dr =

∫∫
Σ

(∇× F ) · n̂ dA = − 1√
3

∫∫
Σ

dA = − 1√
3

Area(Σ)

where Area(Σ) denotes the surface area of Σ. The surface is the triangle, with base the line
segment from (1, 0, 0) to (0, 1, 0), which has length

√
2. The height can be measured from the

midpoint of the base ( 1
2 ,

1
2 , 0) to the point (0, 0, 1), which turns out to be

√
3
2 . Thus, our final

answer is

− 1√
3
S(Σ) = − 1√

3

(
1

2

√
2

√
3

2

)
= −1

2

as above.

9. Let F : R3 → R3 be the vector field defined as F = (y − z,−x− z, x+ y) for all (x, y, z) ∈ R3

(a) Use Stokes’ Theorem to evaluate ∫∫
Σ

(∇× F ) · n̂ dA,

where the surface Σ is the portion of the paraboloid z = 9 − x2 − y2 with z ≥ 0 and n̂ is the
upward-pointing unit normal.

Solution. By Stokes’ Theorem, we have that∫∫
Σ

(∇× F ) · n̂ dA =

∮
∂Σ

F · dr

where ∂Σ is the curve x2+y2 = 9 on the plane z = 0, which can be parameterized by γ(t) =
(3 cos t, 3 sin t, 0), 0 ≤ t ≤ 2π. It follows that γ′(t) = (−3 sin t, 3 cos t, 0). The vector field
evaluated at each point on the curve is given by F (γ(t)) = (3 sin t,−3 cos t, 3 cos t+3 sin t).
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The desired integral is therefore computed as∮
∂Σ

F · dr =

∫ 2π

0

(3 sin t,−3 cos t, 3 cos t+ 3 sin t) · (−3 sin t, 3 cos t, 0) dt

=

∫ 2π

0

−9(sin2 t+ cos2 t) dt = −18π.

(b) Let Σ be the disk of radius 3 on the xy-plane centered at the origin, with unit normal vector n̂
pointing in the positive z-direction. Calculate∫∫

Σ

(∇× F ) · n̂ dA

from the definition of the surface integral. (Note that the surface can be given explicity as
Σ = {(x, y, z) : x2 + y2 ≤ 9 and z = 0}).

Solution. The curl of F is computed as ∇× F = (2,−2,−2). There are now two ways to
proceed.

i. We may notice that n̂ = k̂, and thus (∇× F ) · n̂ = (2,−2,−2) · (0, 0, 1) = −2. The
desired integral may therefore be computed as∫∫

Σ

(∇× F ) · n̂ dA = −2

∫∫
Σ

dA = −2 Area(S) = −18π,

where the surface area of the disk of radius 3 is Area(S) = 9π.

ii. On the other hand, we may parameterize S using the parameterization Φ(u, v) =
(u cos v, u sin v, 0) over the domain u ∈ [0, 3] and v ∈ [0, 2π]. Computing the partial
derivatives and taking the cross product, we find

∂Φ

∂u
× ∂Φ

∂v
= (0, 0, u).

The desired integral can therefore be computed as∫∫
Σ

(∇× F ) · n̂ dA =

∫ 2π

0

∫ 3

0

(2,−2,−2) · (0, 0, u) du dv

= −2

∫ 2π

0

∫ 3

0

u du dv = −18π.

(c) What is the connection between (a) and (b)?

Solution. They are equal, which can be explained as follows.

Suppose we have two oriented surfaces Σ1 and Σ2 such that ∂Σ1 = ∂Σ2 = Γ, where Γ is a
simple closed curve. Then∫∫

Σ1

(∇× F ) · n̂1 dA =

∫∫
Σ2

(∇× F ) · n̂2 dA.

In fact, given a simple closed curve Γ one can imagine infinitely many surfaces Σ with
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∂Σ = Γ. In this way, the value of the surface integral is independent of which surface Σ
we choose. Thus, we get the analogy of a surface integral being independent of surface,
much as a line integral can be independent of path.

The key point here is that the vector field must be of the form ∇× F . In other words, it
must be the curl of some other vector field. So, given a vector field G, how do we tell if
G = ∇× F , for some other vector field F ?

Well, we’ve seen previously that ∇·(∇×F ) = 0 for any F , so the requirement is ∇·G = 0.
If F exists such that G = ∇× F , we say that F is a vector potential for G.
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