ECE 206 Fall 2019 Practice Problems Week 9

- 1. Simplify the following expressions using properties of the complex exponential function.
 - (a) $e^{2\pm 3\pi j}$
 - (b) $e^{z+\pi j}$ for arbitrary $z \in \mathbb{C}$.
- 2. Let f be a mapping of the complex plane and let $A \subseteq \mathbb{C}$ be a subset of \mathbb{C} where f is defined. The *image* of A under f is the set of values $\{f(z) | z \in A\}$. For each set below, sketch the set then find and sketch its image under the given mapping.
 - (a) the set $A = \left\{ z \mid \frac{5\pi}{3} < \operatorname{Im}(z) < \frac{8\pi}{3} \right\}$ under the mapping $f(z) = e^z$
 - (b) the slit annulus $A = \{ z \mid \sqrt{e} \le |z| \le e^2 \text{ but } z \notin [-e^2, -\sqrt{e}) \}$ under f(z) = Log(z)
- 3. Solve the following for all possible values of z.
 - (a) $e^z = -2$
 - (b) $e^z = 1 + \sqrt{3}j$
 - (c) $e^{2z-1} = 1$
 - (d) $\sin z = 3j$
 - (e) $\cos z = \cosh 4$
 - (f) $|\tan z| = 1$
 - (g) $\operatorname{Log} z = \frac{\pi}{2}j$
- 4. Find all possible values of the following. Then find the principal value of each.
 - (a) $\log(-ej)$
 - (b) $\log(1-j)$
 - (c) $\log e$
 - (d) $(-1)^{1/\pi}$
 - (e) $\left(\frac{e}{2}\left(-1-\sqrt{3}j\right)\right)^{3\pi j}$
- 5. In class, we derived the formula $\sin^{-1}(z) = -j \log (jz + \sqrt{1-z^2})$ (where the equality is viewed as an equality of sets). Use similar methods to derive the following formulas.
 - (a) $\cos^{-1}(z) = -j \log \left(z + \sqrt{z^2 1}\right)$
 - (b) $\sinh^{-1}(z) = \log(z + \sqrt{1+z^2})$
- 6. Determine where the following mappings are differentiable, and find the derivative f'(z) at those values.
 - (a) $f(z) = z \bar{z}$ (b) $f(z) = x^2 + jy^2$ (c) $f(z) = z \operatorname{Im}(z)$
- 7. Let $f: D \to \mathbb{C}$ be a complex-valued function on a domain $D \subseteq \mathbb{C}$. Show that if f'(z) = 0 everywhere in D, then f must be constant throughout D (i.e., there is some $\alpha \in \mathbb{C}$ such that $f(z) = \alpha$ for all $z \in D$).