ECE 206 Fall 2019
Practice Problems Week 9
Solutions

1. Simplify the following expressions using properties of the complex exponential function.

(a) 62i37rj

Solution.

23T — 2eE3™ = ¢2(cos(+37) + jsin(£37)) = €*(—1 4 0j) = —€?

(b) e**™ for arbitrary z € C.

Solution. ‘ ‘
e*T™ = e*e™ = e*(cos(7) + jsin(r)) = —e”

2. Let f be a mapping of the complex plane and let A C C be a subset of C where f is defined. The
image of A under f is the set of values {f(z)|z € A}. For each set below, sketch the set then find and
sketch its image under the given mapping.

(a) the set A= {z|3F <Im(z) < %} under the mapping f(z) = €

Solution. This maps all complex numbers of the form z = = + jy with %’“ <y< %’r to

complex numbers e* = e®e/¥. This is simply all complex numbers that have an argument
in the range (5?", %’r), or equivalently, with principal argument in the range (—7%, 2%)

m
10

(b) the slit annulus A = {z| /e < |z| < e? but z & [—¢?, —\/e)} under f(z) = Log(z)
Solution. We can describe the slit annulus in polar coordinates as the set
{rel |Ve<r<e?, —m< O <m}

The principal logarithm of these complex numbers is Log(re??) = Inr + j6, where the real
and imaginary parts of this are in the ranges % <lnr<2and -7 <0 <.



3. Solve the following for all possible values of z.

(a) e* = =2

Solution. Note that —2 = 2e/™. Expanding z = x;y in Cartesian coordinates, we have
etV = —2 = 2¢J™ or equivalently e®e/¥ = 2e/™. Equating each part of the expression,
we have e = 2 and thus x = In2, while e/Y = ¢/™ implies that y = 7 + 2n7, for
n=0,£1,4+2.... Thus, the solution set is

z=1n2+ jn(1l+ 2n), n=0,+1,+2...

(b) e* =1+ /3j
Solution. We first must write the right-hand side in its polar form as
1+ V35 = 2e/™/3,
This yields e*e’V = 2¢77/3, which again leads to 2 = In2 and y = 5+ 2nm, for n =

0,4+1,42.... The solution set is therefore

1
z:1n2+j7r<3+2n>, n=0,4+1,£2,...

(c) e¥*7 1 =1

Solution. Expanding z in Cartesian coordinates, we have
2z —1=2(x+jy) — 1 =2z — 1+ 2jy.

Moreover, we can write 1 as 1 = e2™7. Equating, we see that e2*~1e2/¥ = ¢2™ from which
we find that €**~! =1, hence 2z — 1 = 0 and thusz = 3. Furthermore, we must have that
2y = 27 + 2n7 for some integer n, or y = (1 +n) for n =0,+1,£2,....

Thus, the solution set is

1
zzi—i—jﬂ(l—&—n), n=0,+1,+2,...

(d) sinz =3j



Solution. In Cartesian coordinates z = x + jy, we expand sin z as

. e7F —eIZ eTYel® —e¥e I e Y(cosx + jsinx) — e¥Y(cosx — jsin)
sinz = = =
2j 2j 2j
eV—e¥  eYgeV
=COST———— +J)sImr————
2] 2j

= sinx cosh y + j cosx sinh y.

So we need to solve sinx coshy + jcoszsinhy = 35 for x and y. Equating the real parts,
we must have that sinxcoshy = 0. Note that coshy is always positive. This means we
must have sinx = 0, or equivalently £ = mz for some integer m, and thus cosx = +1
(with sign depending on whether m is even or odd). Equating the imaginary parts, we
have 3 = +sinhy, or

x = mm and 3 = sinhy if m is even or x =mm and 3 = —sinhy if m is odd.

We consider the two cases separately.

e We first consider the case when m is even and solve 3 = sinhy for y. From the
definition sinhy = and setting a = e¥, we must solve a — a~! = 6. Multiply
both sides by « and rearrange to find that o must satisfy

eY—e Y

6++/36+ 4
o= + =3+ +10.

a®—6a—1=0 or

Now we have that e¥ =3 ++/10. But 3 —v/10 < 0 and e¥ cannot be negative, so we
must have e¥ = 3 4+ /10 or equivalently y = In(3 + 1/10).

e Now consider the case when m is odd and solve 3 = —sinhy for y. As before, we set

a = e¥ and solve ”‘_371 = —3 for «. This is equivalent to solving

a?+6a—-1=0 or

Q:L V236+4:,3:|:\/ﬁ.

Now we have that eV = —3 ++/10. But —3 — /10 < 0 and e cannot be negative, so
we must have e¥ = —3 + /10 or equivalently y = In(y/10 — 3).

Hence the solutions are of the form

z = mm+j In(v/1043) for even integers m and z = mn+jIn(v/10-3) for odd integers m.

(e) cosz = cosh4

Solution. As above, we expand cos z in Cartesian coordinates z = x + jy as

_elFpeF emVelt 4 eVe It e7Y(cosx — jsinz) + e¥(cosx — jsinx)
cosz = 5 = 5 = 2]
e Vte¥ | eY—eV
:COSCUT —]SIH‘WT

= cosx coshy — jsin x sinh y.

Equating the imaginary parts, we find that z and y must satisfy sinzsinhy = 0, and



thus either sinxz = 0 or sinhy = 0. If sinhy = 0 then ¥y = 0 and the real parts must
satisfy cosh4 = cosx. But cosh4 > 1 and cosz < 1 for all real values z, so we must have
sinx = 0. It follows that x = mm for some integer m. Moreover, since coshy is always
positive, we must have cosx be positive, so £ must be x = mm for an even integer m
(otherwise cosxz = —1). Finally, we need that cosh4 = coshy, so it must be that y = +4.
Hence all of the solutions are of the form

z=mm +4j, where m is an even integer.

(f) [tanz| =1

Solution. Note that we can write tan z as

sinz  e/* — eI 2 1el% — 3%
tan z = = - - — = —— —,
cos z 27 elZ + eI jelF 4 e I*
and thus ) ) ) )
1el? —e 7% |e?% — e 77|
[tan z| = |=— —| = — — =
J eJz 4 =iz |e]z + e—]Zl
is equivalent to |e7* — e77%| = |e?% 4+ e77#|. We can square both sides to find that this is

equivalent to
e —e 2 = |e?* + e T2 or (e — eI (€07 — e7IF) = (77 + e7IF) (ed7 + e7i).
Since €7 — e=7% = ¢ 9% — ¢3% and €% + e—I% = e I% + €%, this is

(77 —e772) (e777 — 7%) = (e/* + e777) (e 777 4 €7%)

and expanding yields
2 —e¥* — M =24 27 4 7Y

or equivalently, after rearranging,
2 (¢¥9% + ¢ %) = 0

which finally simplifies to cos(2z) = 0. Solving this for z, we have

1
2z = (m + 2) w for integers m € Z,

or equivalently z = #T( for any integer m € Z.

(g) Logz=7%j

Solution. We use polar coordinates z = re/?, with —7 < # < 7. Since this is the principal
logarithm only, we have

Log z = Log(re’?) = Inr + jo = gj

which implies that Inr = 0 and thus r = 1, and 6 = 5. The only complex number that
satisfies this is z = €/™/2 or simply z = j.



4. Find all possible values of the following. Then find the principal value of each.
(a) log(—ej)
Solution. Since Arg(—ej) = —7, the argument of —ej is the set
. T
arg(—ej) = {—5 + 2nmw ’ n e Z} .
Note that |—ej| = e and thus In|—ej| = 1. Thus the logarithm is
log(—ej) = In|—ej| + jarg(—ej) =1+ 7 (2nﬂ' - g) for n € Z.
The principal value of the logarithm is found by taking the principal argument,

. LT
Log(—ej) =1-j3-

(b) log(1 —j)
Solution. Since the polar form of 1 — j is v/2e7(=™/%) | we have
. . ™ 1 . 1
log(1 — 7) =Inv2+j (_Z —|—2n7r) = §1n2—|—]7r (—4 +2n) , meEZ.

The principal logarithm is
™

) 1 )
Log(l—]):§ln2—]4

(c) loge
Solution. We have
loge =1Inle| + j(arge + 2nm) = 1+ jn(0 +2n) = 1 4 2n71j, n € Z,

and the principal logarithm is Log(e) = Ine = 1.
(d) (=Y~

Solution. We use the properties of exponents to write this as (—1)/7 = ew1os(=1)  Gince
—1 = ¢eJ™, we have that
log(—1) = jm(2n+1) forn € Z.

Thus, all of the possible values of this are

(—1)1/7 = E1o8(-1) — (E(Grn D) _ i 2ntD)

for n € Z. To find the principal value, note that Log(—1) = 7 and thus the principal value
of (=1)Y/7 is e/ = cos1+ jsinl.

0 (5 (1)



Solution. We can re-write this as

(S-1-vap)'™ = sz,

Note that |$(—1— v/3j)| = e, while Arg(—1 — v/3j) = — . Thus

Log (§<_1 . \/§j)) :ln‘g(—l - \/§j)( +j Arg(—1 = V3j) = ln@_j%ﬁ =1 Q?Wj'

2
Now, 37j Log (g(—l — \/gy)) = 3mj (1 — ;T]> = 37j 4 27, Finally, the principal value
is .

(g(*l . \/§])) ™ _ 3miLog(5(—1-V3))) _ Bmj+2n? _ 3mj2n? _ _ 2n

5. In class, we derived the formula sin~!(z) = —jlog (jz +vV1- z2) (where the equality is viewed as an
equality of sets). Use similar methods to derive the following formulas.

(a) cos™!(z) = —jlog (2 + V2% — 1)
Solution. We interpret cos~!(z) as the set of values
cos H(z) = {w € C| cosw = z}.
To find all values w such that cosw = z, expand cosw as

eI 4 eIV a+at
cosw = =

2 2

-1

where we define a = /%, We first solve = z for a. Multiplying both sides by «
and rearranging, we see that this is equivalent to solving

a_2z:|:\/4z2—4_
==

ata
2

a?—2za+1=0, and thus 222 -1
Since e/ = o = 2+ /22 — 1, we have that w must be of the form w = %log(z:lz V22 —=1),
which is multi-valued.

(b) sinh™*(z) = log (z+ V1 +22)

Solution. We interpret sinh ™' (z) as the set of values
sinh™'(z) = {w € C| sinhw = z}.

To find all values w such that sinhw = z, expand sinhw as

. ev — eV a—at
sinhw = =
2 2

a—a”t

where we define a = . We first solve = z for a. Multiplying both sides by « and
rearranging, we see that this is equivalent to solving
224 /422 —4(-1)

a?—2za—1=0, and thus o= 5 =z2+vV22+1




Since €¥ = o« = z £ /1 + 22, we have that w must be of the form w = log(z + v'1 + 22),
which is multi-valued.

6. Determine where the following mappings are differentiable, and find the derivative f/(z) at those values.
(a) f(z)=2—7%2
Solution. Expanding z = x + jy in Cartesian coordinates, we have,
f(2)=fl@+jy) =z +jy—(x—jy) =2y

Thus, we have the real part u(z,y) = 0 and the imaginary part v(xz,y) = 2y of the
function f such that f(x + jy) = u(x,y) + jv(z,y). The partial derivatives of u and v are

Uz (2, y) = uy(z,y) =ve(2,y) =0 and  wy(z,y) =2
We see that the Cauchy-Riemann equations can never be satisfied, since
Uy — Uy = —2 # 0 for all values of z,y.

Thus f is nowhere differentiable.

(b) f(z) =2+ jy?

Solution. The real and imaginary parts of f are u(z,y) = 22 and v(z, y) = y?. The partial
derivatives of u and v are

uy(@,y) =va(z,y) =0,  uz(z,y) =22, and vy(z,y) =2y.
Checking the Cauchy-Riemann equations, we see that u, = —v, is always satisfied, but
uz(z,y) =vy(z,y) = 22=2y = y=uzu.

Thus f is differentiable only on the line y = x. Since f is differentiable on this line, we
may compute the derivative of f at points on this line as

i@+ jy) = ue(x,y) + jua(z,y) = 2,

and thus f’(z) = 2z along the line y = x.

Remark. If a function f : D — C is differentiable at some point zy € D, the derivative
f'(20) at the point zp = xo + jyo may be computed as

f'(z0) = ua (20, y0) + jvz(z0, Y0).-

Since f is differentiable, the functions v and v must satisfy the Cauchy-Riemann equations,
so the derivative can also be given by f'(z9) = vy(x0, yo) — juy(xo, Yo)-

(¢) f(z) = zIm(2)



Solution. Expanding in in Cartesian coordinates, the function can be written as f(z) =
flx+jy) = (x+jy)(y) = 2y +jy?. Hence the real and imaginary parts of f can be written
as, u(z,y) = xy and v(z,y) = y?. The partial derivatives of u and v are

Uy =Y, Uy = T, vy =0, and vy = 2y.

It holds that u, — v, = y and that u, + v, = . Hence the Cauchy-Riemann equations
hold if and only if x = y = 0. It follows that f is differentiable only at the origin z = 0.
The derivative of f at this point is f'(0) = u,(0,0) 4+ jv,(0,0) = 0.

7. Let f: D — C be a complex-valued function on a domain D C C. Show that if f/(z) = 0 everywhere
in D, then f must be constant throughout D (i.e., there is some « € C such that f(z) = « for all
z € D).

Solution. Expand f in real and imaginary parts as f(z+jy) = u(z,y)+jv(x,y). The derivative
of f exists on all of D, so f is differentiable on D and its derivative may be given by both

f@+iy) =ue(z,y) +jva(a,y)  and  f'(z+jy) = vy(z,y) — juy(2,y)

(see the Remark in the solution to problem 3b above). By assumption, it holds that f/'(z) =0
for all z € D and thus u, = v, = 0 and u, = v, = 0. Stated another way, it holds that both
Vu =0 and Vv = 0 everywhere in D (i.e., their gradients are zero everywhere). Thus, both u
and v must be constant u(z,y) = a and v(x,y) = b, where a,b € R are constants. Defining the
constant oo = a + jb, we see that f(z) = « holds for all z € D. This proves the claim.



