
ECE 206 Fall 2019

Practice Problems Week 9

Solutions

1. Simplify the following expressions using properties of the complex exponential function.

(a) e2±3πj

Solution.

e2±3πj = e2e±3πj = e2(cos(±3π) + j sin(±3π)) = e2(−1 + 0j) = −e2

(b) ez+πj for arbitrary z ∈ C.

Solution.
ez+πj = ezeπj = ez(cos(π) + j sin(π)) = −ez

2. Let f be a mapping of the complex plane and let A ⊆ C be a subset of C where f is defined. The
image of A under f is the set of values {f(z) | z ∈ A}. For each set below, sketch the set then find and
sketch its image under the given mapping.

(a) the set A =
{
z
∣∣ 5π

3 < Im(z) < 8π
3

}
under the mapping f(z) = ez

Solution. This maps all complex numbers of the form z = x + jy with 5π
3 < y < 8π

3 to
complex numbers ez = exejy. This is simply all complex numbers that have an argument
in the range ( 5π

3 ,
8π
3 ), or equivalently, with principal argument in the range (−π3 ,

2π
3 ).
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(b) the slit annulus A =
{
z
∣∣√e ≤ |z| ≤ e2 but z 6∈ [−e2,−

√
e)
}

under f(z) = Log(z)

Solution. We can describe the slit annulus in polar coordinates as the set

{rejθ |
√
e ≤ r ≤ e2, −π < θ < π}.

The principal logarithm of these complex numbers is Log(rejθ) = ln r+ jθ, where the real
and imaginary parts of this are in the ranges 1

2 ≤ ln r ≤ 2 and −π < θ < π.
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3. Solve the following for all possible values of z.

(a) ez = −2

Solution. Note that −2 = 2ejπ. Expanding z = xjy in Cartesian coordinates, we have
ex+jy = −2 = 2ejπ or equivalently exejy = 2ejπ. Equating each part of the expression,
we have ex = 2 and thus x = ln 2, while ejy = ejπ implies that y = π + 2nπ, for
n = 0,±1,±2 . . . . Thus, the solution set is

z = ln 2 + jπ(1 + 2n), n = 0,±1,±2 . . .

(b) ez = 1 +
√

3j

Solution. We first must write the right-hand side in its polar form as

1 +
√

3j = 2ejπ/3.

This yields exejy = 2ejπ/3, which again leads to x = ln 2 and y = π
3 + 2nπ, for n =

0,±1,±2 . . . . The solution set is therefore

z = ln 2 + jπ

(
1

3
+ 2n

)
, n = 0,±1,±2, . . .

(c) e2z−1 = 1

Solution. Expanding z in Cartesian coordinates, we have

2z − 1 = 2(x+ jy)− 1 = 2x− 1 + 2jy.

Moreover, we can write 1 as 1 = e2πj . Equating, we see that e2x−1e2jy = e2πj from which
we find that e2x−1 = 1, hence 2x− 1 = 0 and thusx = 1

2 . Furthermore, we must have that
2y = 2π + 2nπ for some integer n, or y = π(1 + n) for n = 0,±1,±2, . . . .
Thus, the solution set is

z =
1

2
+ jπ(1 + n), n = 0,±1,±2, . . .

(d) sin z = 3j
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Solution. In Cartesian coordinates z = x+ jy, we expand sin z as

sin z =
ejz − e−jz

2j
=
e−yejx − eye−jx

2j
=
e−y(cosx+ j sinx)− ey(cosx− j sinx)

2j

= cosx
e−y − ey

2j
+ j sinx

ey + e−y

2j

= sinx cosh y + j cosx sinh y.

So we need to solve sinx cosh y + j cosx sinh y = 3j for x and y. Equating the real parts,
we must have that sinx cosh y = 0. Note that cosh y is always positive. This means we
must have sinx = 0, or equivalently x = mπ for some integer m, and thus cosx = ±1
(with sign depending on whether m is even or odd). Equating the imaginary parts, we
have 3 = ± sinh y, or

x = mπ and 3 = sinh y if m is even or x = mπ and 3 = − sinh y if m is odd.

We consider the two cases separately.

• We first consider the case when m is even and solve 3 = sinh y for y. From the

definition sinh y = ey−e−y
2 and setting α = ey, we must solve α− α−1 = 6. Multiply

both sides by α and rearrange to find that α must satisfy

α2 − 6α− 1 = 0 or α =
6±
√

36 + 4

2
= 3±

√
10.

Now we have that ey = 3±
√

10. But 3−
√

10 < 0 and ey cannot be negative, so we
must have ey = 3 +

√
10 or equivalently y = ln(3 +

√
10).

• Now consider the case when m is odd and solve 3 = − sinh y for y. As before, we set

α = ey and solve α−α−1

2 = −3 for α. This is equivalent to solving

α2 + 6α− 1 = 0 or α =
−6±

√
36 + 4

2
= −3±

√
10.

Now we have that ey = −3±
√

10. But −3−
√

10 < 0 and ey cannot be negative, so
we must have ey = −3 +

√
10 or equivalently y = ln(

√
10− 3).

Hence the solutions are of the form

z = mπ+j ln(
√

10+3) for even integers m and z = mπ+j ln(
√

10−3) for odd integers m.

(e) cos z = cosh 4

Solution. As above, we expand cos z in Cartesian coordinates z = x+ jy as

cos z =
ejz + e−jz

2
=
e−yejx + eye−jx

2
=
e−y(cosx− j sinx) + ey(cosx− j sinx)

2j

= cosx
e−y + ey

2j
− j sinx

ey − e−y

2j

= cosx cosh y − j sinx sinh y.

Equating the imaginary parts, we find that x and y must satisfy sinx sinh y = 0, and
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thus either sinx = 0 or sinh y = 0. If sinh y = 0 then y = 0 and the real parts must
satisfy cosh 4 = cosx. But cosh 4 > 1 and cosx ≤ 1 for all real values x, so we must have
sinx = 0. It follows that x = mπ for some integer m. Moreover, since cosh y is always
positive, we must have cosx be positive, so x must be x = mπ for an even integer m
(otherwise cosx = −1). Finally, we need that cosh 4 = cosh y, so it must be that y = ±4.
Hence all of the solutions are of the form

z = mπ ± 4j, where m is an even integer.

(f) |tan z| = 1

Solution. Note that we can write tan z as

tan z =
sin z

cos z
=
ejz − e−jz

2j

2

ejz + e−jz
=

1

j

ejz − e−jz

ejz + e−jz
,

and thus

|tan z| =
∣∣∣∣1j ejz − e−jzejz + e−jz

∣∣∣∣ =
|ejz − e−jz|
|ejz + e−jz|

= 1

is equivalent to |ejz − e−jz| = |ejz + e−jz|. We can square both sides to find that this is
equivalent to

|ejz − e−jz|2 = |ejz + e−jz|2 or
(
ejz − e−jz

)
(ejz − e−jz) =

(
ejz + e−jz

)
(ejz + e−jz).

Since ejz − e−jz = e−jz − ejz and ejz + e−jz = e−jz + ejz, this is(
ejz − e−jz

) (
e−jz − ejz

)
=
(
ejz + e−jz

) (
e−jz + ejz

)
and expanding yields

2− e2jz − e−2jz = 2 + e2jz + e−2jz

or equivalently, after rearranging,

2
(
e2jz + e−2jz

)
= 0

which finally simplifies to cos(2z) = 0. Solving this for z, we have

2z =

(
m+

1

2

)
π for integers m ∈ Z,

or equivalently z = 2m+1
4 π for any integer m ∈ Z.

(g) Log z = π
2 j

Solution. We use polar coordinates z = rejθ, with −π < θ ≤ π. Since this is the principal
logarithm only, we have

Log z = Log(rejθ) = ln r + jθ =
π

2
j

which implies that ln r = 0 and thus r = 1, and θ = π
2 . The only complex number that

satisfies this is z = ejπ/2 or simply z = j.
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4. Find all possible values of the following. Then find the principal value of each.

(a) log (−ej)

Solution. Since Arg(−ej) = −π2 , the argument of −ej is the set

arg(−ej) =
{
−π

2
+ 2nπ

∣∣∣n ∈ Z
}
.

Note that |−ej| = e and thus ln|−ej| = 1. Thus the logarithm is

log(−ej) = ln|−ej|+ j arg(−ej) = 1 + j
(

2nπ − π

2

)
for n ∈ Z.

The principal value of the logarithm is found by taking the principal argument,

Log(−ej) = 1− j π
2
.

(b) log(1− j)

Solution. Since the polar form of 1− j is
√

2ej(−π/4), we have

log(1− j) = ln
√

2 + j
(
−π

4
+ 2nπ

)
=

1

2
ln 2 + jπ

(
−1

4
+ 2n

)
, n ∈ Z.

The principal logarithm is

Log(1− j) =
1

2
ln 2− j π

4
.

(c) log e

Solution. We have

log e = ln|e|+ j(arg e+ 2nπ) = 1 + jπ(0 + 2n) = 1 + 2nπj, n ∈ Z,

and the principal logarithm is Log(e) = ln e = 1.

(d) (−1)1/π

Solution. We use the properties of exponents to write this as (−1)1/π = e
1
π log(−1). Since

−1 = ejπ, we have that
log(−1) = jπ(2n+ 1) for n ∈ Z.

Thus, all of the possible values of this are

(−1)1/π = e
1
π log(−1) = e

1
π (jπ(2n+1)) = ej(2n+1)

for n ∈ Z. To find the principal value, note that Log(−1) = π and thus the principal value
of (−1)1/π is ej = cos 1 + j sin 1.

(e)
(e

2

(
−1−

√
3j
))3πj
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Solution. We can re-write this as(e
2

(−1−
√

3j)
)3πj

= e3πj log(
e
2 (−1−

√
3j)).

Note that
∣∣ e
2 (−1−

√
3j)
∣∣ = e, while Arg(−1−

√
3j) = − 2π

3 . Thus

Log
(e

2
(−1−

√
3j)
)

= ln
∣∣∣e
2

(−1−
√

3j)
∣∣∣+ jArg(−1−

√
3j) = ln e− j 2π

3
= 1− 2π

3
j.

Now, 3πj Log
(e

2
(−1−

√
3j)
)

= 3πj

(
1− 2π

3
j

)
= 3πj+ 2π2. Finally, the principal value

is (e
2

(−1−
√

3j)
)3πj

= e3πj Log(
e
2 (−1−

√
3j)) = e3πj+2π2

= e3πje2π
2

= −e2π
2

5. In class, we derived the formula sin−1(z) = −j log
(
jz +

√
1− z2

)
(where the equality is viewed as an

equality of sets). Use similar methods to derive the following formulas.

(a) cos−1(z) = −j log
(
z +
√
z2 − 1

)
Solution. We interpret cos−1(z) as the set of values

cos−1(z) = {w ∈ C | cosw = z}.

To find all values w such that cosw = z, expand cosw as

cosw =
ejw + e−jw

2
=
α+ α−1

2

where we define α = ejw. We first solve α+α−1

2 = z for α. Multiplying both sides by α
and rearranging, we see that this is equivalent to solving

α2 − 2zα+ 1 = 0, and thus α =
2z ±

√
4z2 − 4

2
= z ±

√
z2 − 1.

Since ejw = α = z±
√
z2 − 1, we have that w must be of the form w = 1

j log(z±
√
z2 − 1),

which is multi-valued.

(b) sinh−1(z) = log
(
z +
√

1 + z2
)

Solution. We interpret sinh−1(z) as the set of values

sinh−1(z) = {w ∈ C | sinhw = z}.

To find all values w such that sinhw = z, expand sinhw as

sinhw =
ew − ew

2
=
α− α−1

2

where we define α = ew. We first solve α−α−1

2 = z for α. Multiplying both sides by α and
rearranging, we see that this is equivalent to solving

α2 − 2zα− 1 = 0, and thus α =
2z ±

√
4z2 − 4(−1)

2
= z ±

√
z2 + 1.
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Since ew = α = z ±
√

1 + z2, we have that w must be of the form w = log(z ±
√

1 + z2),
which is multi-valued.

6. Determine where the following mappings are differentiable, and find the derivative f ′(z) at those values.

(a) f(z) = z − z̄

Solution. Expanding z = x+ jy in Cartesian coordinates, we have,

f(z) = f(x+ jy) = x+ jy − (x− jy) = 2jy.

Thus, we have the real part u(x, y) = 0 and the imaginary part v(x, y) = 2y of the
function f such that f(x+ jy) = u(x, y) + jv(x, y). The partial derivatives of u and v are

ux(x, y) = uy(x, y) = vx(x, y) = 0 and vy(x, y) = 2

We see that the Cauchy-Riemann equations can never be satisfied, since

ux − vy = −2 6= 0 for all values of x, y.

Thus f is nowhere differentiable.

(b) f(z) = x2 + jy2

Solution. The real and imaginary parts of f are u(x, y) = x2 and v(x, y) = y2. The partial
derivatives of u and v are

uy(x, y) = vx(x, y) = 0, ux(x, y) = 2x, and vy(x, y) = 2y.

Checking the Cauchy-Riemann equations, we see that uy = −vx is always satisfied, but

ux(x, y) = vy(x, y) ⇐⇒ 2x = 2y ⇐⇒ y = x.

Thus f is differentiable only on the line y = x. Since f is differentiable on this line, we
may compute the derivative of f at points on this line as

f ′(x+ jy) = ux(x, y) + jvx(x, y) = 2x,

and thus f ′(z) = 2x along the line y = x.

Remark. If a function f : D → C is differentiable at some point z0 ∈ D, the derivative
f ′(z0) at the point z0 = x0 + jy0 may be computed as

f ′(z0) = ux(x0, y0) + jvx(x0, y0).

Since f is differentiable, the functions u and v must satisfy the Cauchy-Riemann equations,
so the derivative can also be given by f ′(z0) = vy(x0, y0)− juy(x0, y0).

(c) f(z) = z Im(z)
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Solution. Expanding in in Cartesian coordinates, the function can be written as f(z) =
f(x+jy) = (x+jy)(y) = xy+jy2. Hence the real and imaginary parts of f can be written
as, u(x, y) = xy and v(x, y) = y2. The partial derivatives of u and v are

ux = y, uy = x, vx = 0, and vy = 2y.

It holds that ux − vy = y and that uy + vx = x. Hence the Cauchy-Riemann equations
hold if and only if x = y = 0. It follows that f is differentiable only at the origin z = 0.
The derivative of f at this point is f ′(0) = ux(0, 0) + jvx(0, 0) = 0.

7. Let f : D → C be a complex-valued function on a domain D ⊆ C. Show that if f ′(z) = 0 everywhere
in D, then f must be constant throughout D (i.e., there is some α ∈ C such that f(z) = α for all
z ∈ D).

Solution. Expand f in real and imaginary parts as f(x+jy) = u(x, y)+jv(x, y). The derivative
of f exists on all of D, so f is differentiable on D and its derivative may be given by both

f ′(x+ jy) = ux(x, y) + jvx(x, y) and f ′(x+ jy) = vy(x, y)− juy(x, y)

(see the Remark in the solution to problem 3b above). By assumption, it holds that f ′(z) = 0
for all z ∈ D and thus ux = vx = 0 and uy = vy = 0. Stated another way, it holds that both
∇u = 0 and ∇v = 0 everywhere in D (i.e., their gradients are zero everywhere). Thus, both u
and v must be constant u(x, y) = a and v(x, y) = b, where a, b ∈ R are constants. Defining the
constant α = a+ jb, we see that f(z) = α holds for all z ∈ D. This proves the claim.
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